Motion in a Plane Oblique Projection

1. A body which has uniform velocity in the horizontal direction and uniform acceleration in the vertical direction is called a projectile.
2. The path of a projectile is called trajectory and it is a parabola.
3. For a projectile, the horizontal component of velocity $\left(u_{x}=u \cos \theta\right)$ remains constant throughout its motion.
4. The vertical component $\left(\mathrm{u}_{\mathrm{y}}=\mathrm{u} \sin \theta\right)$ is subjected to acceleration due to gravity.

5. Equations of a projectile

a) Maximum height reached $=\frac{u^{2} \sin ^{2} \theta}{2 g}$
b) Time of flight $=\frac{2 u \sin \theta}{g}$

Time of ascent $=$ time of descent $=\frac{u \sin \theta}{g}$
c) Range $=\frac{u^{2} \sin 2 \theta}{g}$
d) $\tan \square=\frac{4 \mathrm{H}_{\text {max }}}{\mathrm{R}}$ and $\tan \square=\frac{\mathrm{gT}^{2}}{2 \mathrm{R}}$
6. At the highest point of the projectile
a) Velocity is $u \cos \theta$ (minimum).
b) Vertical component of velocity is zero.
c) KE of the body is $\frac{1}{2} m u^{2} \cos ^{2} \theta$.
d) PE of the body is $\frac{1}{2} m u^{2} \sin ^{2} \theta$.
e) Angle between the velocity and acceleration is 90°.

www.sakshieducation.com

f) The direction of motion of the body is horizontal.

7. Velocity after time ' t "

a) Vertical component of velocity $\mathrm{V}_{\mathrm{y}}=\mathrm{u} \sin \tilde{\theta} \mathrm{gt}$
b) Velocity of a projectile after t seconds $v=\sqrt{(u \cos \theta)^{2}+(u \sin \theta-g t)^{2}}$.
c) The angle made by a projectile after t seconds, then $\tan \alpha=\frac{u \sin \theta-g t}{u \cos \theta}$.
8. If projected from level ground
a) Velocity of the projectile when it moves perpendicular to its initial velocity is U $\cot \theta$.
b) Time taken for the velocity to become perpendicular to the initial velocity is $\frac{u}{g \sin \theta}$
9. Position of the projectile after time ' t '
a) If x and y represent the horizontal and vertical displacements with respect the point of projection't' seconds after projection

$$
\begin{aligned}
& x=(u \cos \theta) t \\
& y=(u \sin \theta) \tilde{t} \frac{1}{2} g t^{2}
\end{aligned}
$$

b) Equation of trajectory is

$$
\mathrm{Y}=(\tan \theta) x-\left(\frac{g}{2 u^{2} \cos ^{2} \theta}\right) x^{2}
$$

10. If $y=A x-B x^{2}$, then
a) The angle of projection $\theta=\tan ^{-1} \mathrm{~A}$
b) Maximum height $\mathrm{H}=\frac{A^{2}}{4 B}$
c) Range $R=\frac{A}{B}$
d) Time of flight $T=\sqrt{\frac{2}{B g}}$
e) Velocity of projection $u=\sqrt{\frac{g\left(A^{2}+1\right)}{2 B}}$

www.sakshieducation.com

11. At the half of the maximum height
a) Vertical component of velocity is $\frac{u \sin \theta}{\sqrt{2}}$
b) Horizontal component of velocity is $u \cos \theta$
c) Velocity of the body is $u\left(\frac{1+\cos ^{2} \theta}{2}\right)^{1 / 2}$
12. If the angle of projection is θ and $(90-\theta)$ (Complementary angles)
a) Range is same
b) Sum of maximum heights is $\frac{u^{2}}{2 g}$
c) Ratio of max heights is $\tan ^{2} \theta: 1$
d) Ratio of times of flight is $\tan \theta: 1$
e) If h_{1} and h_{2} are the maximum heights, then $R=4 \sqrt{h_{1} h_{2}}$
f) Range $=\frac{1}{2} g T_{1} T_{2}$ where T_{1} and T_{2} are the times of flights.
13. If a man throws a body to a maximum distance R then he can project the body to vertical height $\mathrm{R} / 2$.
14. If a body is projected down at an angle θ with the horizontal from the top of a tower then

$$
h=-(u \sin \theta) t+\frac{1}{2} g t^{2}
$$

