Electromagnetic Waves

1.	The range of wavelength of the visible light is				
	(a) $10 \stackrel{0}{A}$ to $100 \stackrel{0}{A}$		(b) 4,000 Å to 8,00	00 Å	
	(c) 8,000 Å to 10,000	$\overset{\scriptscriptstyle{0}}{A}$	(d) 10,000 Å to 15,	000 Å	
2.	The frequencies of	X-rays, γ -rays and	ultraviolet rays ar	e respectively a, b and	
	c. Then			C	
	(a) $a < b$, $b > c$		(b) $a > b$, $b > c$	^	
	(c) a > b, b < c		(d) $a < b$, $b < c$		
3.	Energy stored in ele	ectromagnetic oscilla	ations is in the forn	n of-	
	(a) Electrical Energy	(b) Magnetic Energ	y (c) Both (a) and	(b) (d) None of these	
4.	The oscillating elect	tric and magnetic ve	ectors of an electron	magnetic wave are	
	oriented along				
	(a) The same direction but differ in phase by 90°				
	(b) The same direction and are in phase				
	(c) Mutually perpendicular directions and are in phase				
	(d) Mutually perpend	dicular directions and	differ in phase by 9	90°	
5.	An electromagnetic wave, going through vacuum described			d	
	by $E = E_0 \sin(kx - \omega t)$. Which of following is independent of wavelength?				
	(a) <i>k</i>	(b) ω	(c) k/ω	(d) $k\omega$	
6.	In a plane electrom	agnetic wave, the el	ectric oscillates sim	usoidal at a frequency	
	of 2×10^{10} amplitude 48 Vm ⁻¹ . The wavelength of the wave is				
	(a) $24 \times 10^{-10} m$	(b) $1.5 \times 10^{-2} m$	(c) 4.16×10	^{8}m (d) $3\times10^{8}m$	
7.	Which of the follow	ing electromagnetic	waves have the lor	ngest wavelength?	
	(a) Heat waves	(b) Light waves	(c) Radio waves	(d) Microwaves	

8.	In an electromagnetic wave, the average energy density associated with				
	magnetic field is-				
	(a) $Li_0^2/2$	(b) $B^2/2\mu_0$	(c) $\mu_0 B^2 / 2$	(d) $\mu_0 / 2B^2$	
9.	The electromagnetic	c waves do not	transport		
	(a) Energy	(b) Charge	(c) Momentum	(d) Information	
10.	The velocity of light	c measured by	y an observer moving	with velocity equal	
	that of light in the d	lirection of pro	pagation of light is		
	(a) Zero	(b) c	(c) 2c	(d) Uncertain	
11.	Total energy densit	y of electromag	gnetic waves in vacuur	n is given by the	
	relation:		. (
	(a) $\frac{1}{2} \cdot \frac{E^2}{\varepsilon_0} + \frac{B^2}{2\mu_0}$	(b) $\frac{1}{2}\varepsilon_0$	$\partial E^2 + \frac{1}{2}\mu_0 B^2$		
	$(c) \frac{E^2 + B^2}{c}$	(d) $\frac{1}{2}\varepsilon_0 E^2 + \frac{B}{2\mu}$	$\frac{r^2}{L_0}$		
12.					
	(a) Wavelength	*	(b) Freque	ency	
	(c) Electric and Mag	netic Field	(d) None	of the above	
13.	Dimensions of $\varepsilon_0 \frac{d\phi_E}{dt}$ are				
	(a) Charge	(b) Potential	(c) Capacitance	(d) Current	
14.					
	(a) AC only		(b) DC only	(b) DC only	
	(c) Both AC and DC		(d) Neither for D	OC nor AC	
15.	What is the cause of "Green house effect"?				
	(a) Infrared rays	((b) Ultraviolet rays		
	(c) X-rays	((d) Radio waves		
16.	The theory of electr	omagnetic wav	ves predicted by Maxv	vell in 1888 was	
	confirmed experimentally first by				
	(a) Maxwell	(b) Hertz	(c) Marconi	(d) J.C.Bose	

17.	The conduction current ideal case through a circuit is zero when a charge on			
	capacitor is			
	(a) Zero	(b) Maximum		
	(c) Any transient value	(d) Depends on capacitor used		
18.	If ϵ_0 and μ_0 are respectively the electri	c permittivity and magnetic permeability		
	of free space, ϵ and μ are the correspo	nding quantities in a medium the index		
	of refraction of the medium is			
	(a) $\sqrt{\frac{\varepsilon_0 \mu_0}{\varepsilon \mu}}$ (b) $\sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}}$			
	(c) $\sqrt{\frac{\epsilon_0 \mu}{\epsilon \mu_0}}$ (d) $\sqrt{\frac{\epsilon}{\epsilon_0}}$			
19.	The most penetrating radiation out of t	he following is		
	(a) γ -rays (b) α -particles	(c) β -rays (d) X -rays		
20.	Electromagnetic radiation of frequency n, of velocity c and wavelength λ in air			
	enters a glass slab of refractive index $\boldsymbol{\mu}$. The frequency, wavelength and velocity			
	of radiation in glass slab will be, respectively			
	(a) $\frac{n}{\mu}, \frac{\lambda}{\mu}, c$	(b) $n, \lambda, \frac{c}{\mu}$		
	(c) $n, \frac{\lambda}{\mu}, \frac{c}{\mu}$	(d) $\frac{n}{\mu}, \frac{\lambda}{\mu}, \frac{c}{\mu}$		
21.	The electromagnetic radiations are cau	sed by		
	(A) Stationary Charges	(B) Uniformly Moving Charges		
	(c) Accelerated Charges	(d) All of these		
22.	Pick out the statement which is not true?			
	(a) Shorter wavelength UV radiation are beneficial to living tissue while longer			
	wavelength are harmful.			
	(b) UV radiations have wavelength extending from 200 nm to 400 nm.			
	(c) UV radiations are used for sterilization of water.			
	(d) Sun is natural source of UV radiations.			

23.	Highest frequency v	vaves are			
	(a) Microwaves		(b) Infrared	Rays	
	(c) Ultraviolet Rays		(d) None of	these	
24.	The wavelength of Y	X-rays is of th	e order of		
	(a) 1 fermi	(b) 1A		(c) 1 mm	(d) 1 micron
25.	Assertion: Displace	ment current	decreases wi	th the increa	se in frequency of AC
	supplied to a capaci	tor.			~O,
	Reason: Reactance	due to capacit	ance is inver	sely proport	ional to the frequency
	of AC.				()
	A) If both assertion	and reason a	re true and r	eason is the c	correct explanation of
	assertion.				
	(B) If both assertion	and reason a	re true but r	reason is not	the correct
	explanation of asser	ction.			
	(C) If assertion is true but reason is false.				
	(D) If assertion is false but reason is true.				
	(a) A	(b) B	(c) C		(d) D
26.	Assertion: In an elec	ctromagnetic	wave, magni	tude of magr	netic field vector \vec{B} is
	much smaller than the magnitude of vector \overrightarrow{E} . Reason: This is because in an electromagnetic wave $E/B = c = 3 \times 10^8 \ m/s$. A) If both assertion and reason are true and reason is the correct explanation of				
					$c = 3 \times 10^8 \ m/s.$
					correct explanation of
	assertion. (B) If both assertion and reason are true but reason is not the correct explanation of assertion.				
	(C) If assertion is tr	ue but reason	is false.		
	(D) If assertion is fa	lse but reason	is true.		
	(a) A	(b) B	(c) C	(d) D	

27.	Assertion: The velocity of all electromagnetic waves in vacuum is different.			
	Reason: The different electromagnetic waves are of different frequencies.			
	A) If both assertion and reason are true and reason is the correct explanation of			
	assertion.			
	(B) If both asse	rtion and reason are	true but reason	n is not the correct
	explanation of a	assertion.		
	(C) If assertion	is true but reason is	false.	
	(D) If assertion	is false but reason is	s true.	
	(a) A	(b) B	(c) C	(d) D
28.	Assertion: The	electromagnetic wav	ves are transver	se in nature.
	Reason: They c	an be polarized.		
	A) If both asser	tion and reason are	true and reasor	is the correct explanation of
	assertion.		.0	
	(B) If both assertion and reason are true but reason is not the correct explanation of assertion.(C) If assertion is true but reason is false.(D) If assertion is false but reason is true.			
	(a) A	(b) B	(c) C	(d) D
29.	29. Assertion: Accelerated charge radiates electromagnetic waves. Reason: As the wave propagate through the space, the oscillating electric and			netic waves.
	magnetic field regenerate each other.			
	A) If both asser	tion and reason are	true and reasor	is the correct explanation of
	assertion.			
	(B) If both asse	rtion and reason are	true but reason	n is not the correct
	explanation of a	assertion.		
	(C) If assertion	is true but reason is	false.	
	(D) If assertion	is false but reason is	s true.	
	(a) A	(b) B	(c) C	(d) D

30.	Assertion: In an	electromagnetic	c wave, magnitude of m	agnetic field vector is		
	much smaller than the magnitude of electric field vector.					
	Reason: Energy	Reason: Energy of electromagnetic waves is shared equally by the electric and				
	magnetic fields.					
	A) If both assert	ion and reason	are true and reason is t	ne correct explanation of		
	assertion.					
	(B) If both asser	(B) If both assertion and reason are true but reason is not the correct				
		explanation of assertion.				
	(C) If assertion i	(C) If assertion is true but reason is false.				
	(D) If assertion i	s false but reaso	on is true.			
	(a) A	(b) B	(c) C	$O_{(d)D}$		
31.	Instantaneous di	isplacement cur	rent of 1.0 A in the space	e between the parallel		
	plates of 1 μF ca	apacitor can be	established by changing	potential difference of		
	(a) $10^{-6} V/s$	(b) $10^6 V/s$	(c) $10^{-8} V/s$	(d) $10^8 V/s$		
32.	The magnetic fie	eld between he r	plates of radius 12 cm se	parated by distance of 4		
	mm of a parallel plate capacitor of capacitance 100 pF along the axis of plates					
	having conduction current of 0.15 A is					
	(a) Zero	(b) 1.5 T	(c) 15 T	(d) 0.15 T		
33.	In an apparatus,	, the electric fiel	d was found to oscillate	with amplitude of 18		
	V/m. The magnitude of the oscillating magnetic field will be					
	(a) $4 \times 10^{-6} T$		(b) $6 \times 10^{-8} T$			
	(c) $9 \times 10^{-9} T$		(d) $11\times10^{-11} T$			
34.		f electromagnet	. ,	rage power output of 800		
		_	ric field at a distance 4.			
	(a) 64.7 V/m	, , , , , , , , , , , , , , , , , ,				
	(b) 57.8 V/m					
	(c) 56.72 V/m					
	(d) 54.77 V/m					
	(3) 2 111 / 1/22					

35. Maxwell's equation $\int \vec{B} \cdot d\vec{s} = 0$ is a statement of

- a) Faraday's law of induction
- b) Modified Ampere's law
- c) Gauss's law of electricity
- d) Gauss's law of magnetism

Key

1) b 52 a 3) c 4) c 6) b 7) b 8) c 9) 2 10) b 11) d 15) a 13) d 14) c 16) b 12) c 17) b 21) c 18) b 19) a 22) a 23) c 24) b 25) d 27) d 28) a 29) a 30) b 32) a 33) b 34) d 35) d

Solutions

6.
$$\lambda = \frac{c}{f} = \frac{3.0 \times 10^8}{2.0 \times 10^{10}} = 1.5 \times 10^{-2} m$$

31.
$$\frac{Q}{E} = \frac{CV}{t} \text{ Or } i_d = C\left(\frac{V}{t}\right)$$
Or
$$\frac{V}{t} = \frac{i_d}{C} = \frac{1.0}{10^{-6}} = 10^6 \text{ V/s}$$

- 32. As $B \propto r$, since the point is on the axis, where r = 0, so B = 0.
- 33. Here, $E_0 = 18 V/m$, $B_0 = ?$

$$\therefore B_0 = \frac{E_0}{c} = \frac{18}{3 \times 10^8} = 6 \times 10^{-8} T$$

34. Intensity of electromagnetic wave is

$$I = \frac{P_{av}}{2\pi r^2} = \frac{E_0^2}{\mu_0 c}$$

$$\operatorname{Or} E_0 = \sqrt{\frac{\mu_0 C P_{av}}{2\pi r^2}} = \sqrt{\frac{\left(4\pi \times 10^{-7}\right) \times \left(3 \times 10^8\right) \times 800}{2\pi \times \left(4\right)^2}}$$