www.sakshieducation.com

Relative Velocity

1. Relative velocity: When the distance between two bodies is altering either in magnitude or direction or both, then each is said to have a relative velocity with respect to the other.

Relative velocity is vector difference of velocities.
a. The relative velocity of body 'A' w.r.t. 'B' is given by $\vec{V}_{R}=\vec{V}_{A}-\vec{V}_{B}$
b. The relative velocity of body 'B' w.r.t. 'A' is given by $\vec{V}_{R}=\vec{V}_{B}-\vec{V}_{A}$
c. $\vec{V}_{A}-\vec{V}_{B}$ and $\vec{V}_{B}-\vec{V}_{A}$ are equal in magnitude but opposite in direction
d. $\left|\overrightarrow{\mathrm{V}}_{\mathrm{R}}\right|=\left|\overrightarrow{\mathrm{V}}_{\mathrm{A}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}\right|=\sqrt{\mathrm{V}_{\mathrm{A}}^{2}+\mathrm{V}_{\mathrm{B}}^{2}-2 \cdot \mathrm{~V}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}} \cdot \cos \theta}$
e. For two bodies moving in the same direction, relative velocity is equal to the difference of velocities. $\left(\theta=0^{\circ} \cdot \cos 0=1\right)$ $\left|\vec{V}_{R}\right|=V_{A}-V_{B}$
f. For two bodies moving in opposite direction, relative velocity is equal to the sum of their velocities. $\left(\theta=180^{\circ} ; \cos 180=-1\right)$

$$
\therefore\left|\overrightarrow{\mathrm{V}}_{\mathrm{R}}\right|=\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}
$$

g. If they move at right angle to each other, then the relative velocity $=\sqrt{v_{1}^{2}+v_{2}^{2}}$.
2. Rain is falling vertically downwards with a velocity \vec{V}_{R} and a person is travelling with a velocity \vec{V}_{P}. Then the relative velocity of rain with respect to the person is $\vec{V}=\vec{V}_{R}-\vec{V}_{P}$.

Relative velocity $=|\overrightarrow{\mathrm{V}}|=\sqrt{\mathrm{V}_{\mathrm{R}}{ }^{2}+\mathrm{V}_{\mathrm{P}}{ }^{2}}$.
3. The direction of relative velocity (or) the angle with the vertical at which an umbrella is to be held is given by $\operatorname{Tan} \theta=\left|\frac{\vec{V}_{P}}{\overrightarrow{\mathrm{~V}}_{\mathrm{R}}}\right|$.

