www.sakshieducation.com Vector Addition

- Scalar: A physical quantity having only magnitude but no direction is called a scalar.
 eg: Time, mass, distance, speed, electric charge, etc.
- 2. Vector: A physical quantity having both magnitude and direction and which obeys the laws of vector addition is called a vector quantity.

eg: Displacement, velocity, acceleration, intensity of electric field, etc.

- 3. Surface area can be treated both as a scalar and a vector. A is magnitude of surface area which is a scalar. If \hat{n} is a unit vector normal to the surface, we can write A \hat{n} as a vector.
- 4. Electric current and velocity of light are not vectors even though they have direction since they do not obey the laws of addition.
- 5. A vector quantity which has direction by its nature is called a polar vector. Ex: velocity.
- 6. A vector quantity which has direction by a convention is called a pseudo (or) axial (or) non-polar vector. The direction of pseudo vector can be known from right hand thumb rule. Ex: Angular velocity.
- 7. Equal vectors: Vectors having same magnitude and which have same direction are called equal vectors. Their corresponding components are equal.
- 8. Negative vectors: A vector which has the same magnitude as that of another and which is opposite in direction is called a negative vector.
- **9.** Null Vector (Zero Vectors): A vector whose magnitude is zero and which has no specific direction is called a null vector.

e.g. 1) The cross product of two parallel vectors is a null vector.

- 2) The difference of two equal vectors is a null vector.
- **10. Unit vector:** It is a vector whose magnitude is unity. A unit vector parallel to a given vector.

If \vec{A} is a vector, the unit vector in the direction of \vec{A} is written as $\hat{A} = \frac{\vec{A}}{|\vec{A}|} \cdot \hat{i}$, \hat{j} and \hat{k} are units

vectors along x, y and z axis.

11. Position vector: The position of a particle is described by a position vector which is drawn from the origin of a reference frame. The position vector of a particle P in space is given by $\overrightarrow{OP} = \overrightarrow{r} = xi + yj + zk$.

www.sakshieducation.com

www.sakshieducation.com Its magnitude is given by $r = \sqrt{x^2 + y^2 + z^2}$

Unit vector of
$$\overline{r}$$
 is given by $r = \frac{\overline{r}}{|\overline{r}|} = \frac{xi + yj + zk}{\sqrt{x^2 + y^2 + z^2}}$

Addition of Vectors

12. Resultant can be found by using

a) Triangle law of vectors b) Parallelogram law of vectors c) Polygon law of vectors

13. Triangle law: If two vectors are represented in magnitude and direction by the two sides of a triangle taken in order, then the third side taken in the reverse order represents their sum or resultant both in magnitude and direction.

14. Parallelogram law

If two vectors \vec{P} and \vec{Q} are represented by the two sides of a parallelogram drawn from a point, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram passing through that point.

$$\mathbf{R} = \sqrt{\mathbf{P}^2 + \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q}\cos\theta}$$

$$\operatorname{Tan} \alpha = \frac{\operatorname{Q} \sin \theta}{\operatorname{P} + \operatorname{Q} \cos \theta}$$
 and $\operatorname{tan} \beta = \frac{\operatorname{P} \sin \theta}{\operatorname{Q} + \operatorname{P} \cos \theta}$

- **15.** If the resultant \overline{R} of \overline{P} and \overline{Q} makes an angle α with \overline{P} and β with \overline{Q} and if $\overline{P} > \overline{Q}$ then $\alpha < \beta$.
- **16.** For two vectors \overline{P} and \overline{Q} , $R_{max} = P + Q$ and $R_{min} = P Q$
- 17. If two vectors \overline{P} and \overline{Q} have equal magnitudes x, then $R = 2x \cos \frac{\theta}{2}$
- 18. Vectors addition obeys
 - a) Commutative law: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$
 - b) Associative law: $\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$
 - c) Distributive law: $m(\vec{A} + \vec{B}) = m\vec{A} + m\vec{B}$ where m is a scalar.
- 19. Polygon law: If a number of vectors are represented by the sides of a polygon taken in the same order, the resultant is represented by the closing side of the polygon taken in the reverse order.

www.sakshieducation.com

20. Resolution of a vector

Consider a vector \overline{A} represented along \overrightarrow{OA} in two co-ordinate system, which makes an angle θ with X-axis.

$A = A_x i + A_y j + A_z k \text{and} $	$\left \overline{A}\right = \sqrt{A_x^2 + A_y^2 + A_z^2}$
$Cos\alpha = \frac{A_x}{ \overline{A} } = \ell; Cos\beta = \frac{A_y}{ \overline{A} } = m$ an	d $Cos\gamma = \frac{A_z}{\left \overline{A}\right } = m$
$\cos\alpha^2 + \cos^2\beta + \cos^2\gamma = 1$ (or)	$\ell^2 + m^2 + n^2 = 1$
And $Sin^2\alpha + Sin^2\beta + Sin^2\gamma = 2$	(Law of cosines)

- **21.** If ℓ_1, m_1, n_1 and $\ell_2 m_2 n_2$ the direction cosines of two vectors and θ is the angle between them then $\cos \theta = \ell_1 \ell_2 + m_1 m_2 + n_1 n_2$.
- 22. Component of a vector is a vector.
- **23.** If vectors $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$ are parallel, then $\frac{A_x}{B_x} = \frac{A_y}{B_y} = \frac{A_z}{B_z}$ and

 $\vec{A} = K\vec{B}$ where K is a scalar.

Equilibrium

- **24.** Equilibrium is the state of a body in which there is no acceleration i.e., net force acting on a body is zero.
- **25.** The forces whose lines of action pass through a common point are called concurrent forces.
- **26.** Resultant force is the single force which produces the same effect as a given system of forces acting simultaneously.
- **27.** A force which when acting along with a given system of forces produces equilibrium is called the equilibrant.

- **28.** Resultant and equilibrant have equal magnitude and opposite direction. They act along the same line and they are themselves in equilibrium.
- 29. Triangle law of forces: If a body is in equilibrium under the action of three coplanar forces, then these forces can be represented in magnitude as well as $\frac{p}{|\vec{P}|} = \frac{q}{|\vec{Q}|} = \frac{r}{|\vec{R}|}$ direction by the three sides of a triangle taken in order.

Where p, q, r are sides of a triangle. \vec{P} , \vec{Q} , \vec{R} are coplanar vectors.

- 30. Lami's theorem: When three coplanar forces \vec{P}, \vec{Q} and \vec{R} keep a body in equilibrium, then $\frac{P}{\sin \alpha} = \frac{Q}{\sin \beta} = \frac{R}{\sin \gamma}$.
- **31.** If $\vec{A}_1 + \vec{A}_2 + \vec{A}_3 + \dots + \vec{A}_n = 0$ and $A_1 = A_2 = A_3 = \dots A_n$, then the adjacent vectors are inclined to each other at an angle $\frac{2\pi}{N}$ or $\frac{360^{\circ}}{N}$.
- 32. N forces each of magnitude F are acting on a point and angle between any two adjacent

forces is , then resultant force $F_{\text{resultant}} = \frac{F \sin \left(\frac{N\theta}{2}\right)}{\sin(\theta/2)}$

33. Body Pulled Horizontally

The horizontal force required to pull a suspended body through an angle θ with the vertical is given by

$$T\sin\theta = F$$
 and $T\cos\theta = mg$

$$T^2 = F^2 + (mg)^2$$

$$Tan\theta = \frac{F}{mg}$$
$$\Rightarrow F = mg Tan\theta$$

ma

Motion of the boat in a river

34. Let V_B be the velocity of the boat and V_R the velocity of the river.

1. The time taken by the

boat to go from A to B and B to A in still water $T = \frac{2d}{V}$

Đ A

2. If the river is flowing

37. Subtraction of two vectors

a) If \vec{P} and \vec{Q} are two vectors, then $\vec{P} - \vec{Q}$ is defined as $\vec{P} + (-\vec{Q})$ where $-\vec{Q}$ is the negative vector of \vec{Q} .

If $\vec{R} = \vec{P} - \vec{Q}$, then $R = \sqrt{P^2 + Q^2 - 2PQCos\theta}$

In the parallelogram OMLN, the diagonal OL represents $\vec{A} + \vec{B}$ and the diagonal NM represents $\vec{A} - \vec{B}$

www.sakshieducation.com

- **www.sakshieducation.com** b) subtraction of vectors does not obey commutative law $\vec{A} \vec{B} \neq \vec{B} \vec{A}$

- c) subtraction of vectors does not obey Associative law $\vec{A} - (\vec{B} - \vec{C}) \neq (\vec{A} - \vec{B}) - \vec{C}$
- d) Subtraction of vectors obeys distributive law $m(\vec{A} \vec{B}) = m\vec{A} m\vec{B}$.
- $R = 2x Sin\left(\frac{\theta}{2}\right)$ **38.** For two equal vectors www.saksheducation.con

www.sakshieducation.com