www.sakshieducation.com <u>Motion under Gravity</u>

1. Freely falling body

a) The equations of motion

i)	V = u + at	ii) $s = ut + \frac{1}{2} at^2$
	V = gt	$\mathbf{h} = \frac{1}{2} \operatorname{gt}^2$
	Vαt	$h \alpha t^2$
	$\frac{V_1}{V_2} = \frac{t_1}{t_2}$	$\frac{h_1}{h_2} = \frac{t_1^2}{t_2^2}$
iii)	$V^2 = u^2 + 2as$	iv) $s_n = u + \frac{a}{2}(2n-1)$
	$V^2 = 2gh$	$h_n = \frac{g}{2}(2n-1)$
	$V^2 \alpha h$	$h_n \alpha (2n-1)$
	$\frac{V_1}{V_2} = \frac{h_1}{h_2}$	

b) The average velocity during fall (V) = $\sqrt{\frac{gh}{2}}$

- c) The ratio of distance traveled in 1^{st} , 2^{nd} , 3^{rd} n seconds is 1:3:5.....(2n-1)
- d) The ratio of distances traveled in first, first two, first three seconds..... is 1:4:9....n²
- e) The ratio of time taken to travel first, 2^{nd} , 3^{rd}nth unit of distances is

$$1:\sqrt{2}-1:\sqrt{3}-\sqrt{2}\ldots\ldots\left(\sqrt{n}-\sqrt{n-1}\right)$$

f)The ratio of times taken to travel first, first two, first three ... first n units of distances is 1: $\sqrt{2}$: $\sqrt{3}$: \sqrt{n}

- g) If x is the distance traveled in the nth second, then the distance traveled in the $(n + 1)^{th}$ second is $\left(\frac{2n+1}{2n-1}\right)x$ (or) x + g.
- h) If x is the distance traveled in the nth second, then distance traveled in the (n-1)th second is $\left(\frac{2n-3}{2n-1}\right)x$ (or) x g

www.sakshieducation.com

i) The ratio of distances covered in the nth second and the distance traveled in n seconds

- is $\frac{s_n}{s} = \frac{2}{n} \frac{1}{n^2} = \frac{2n-1}{n^2}$
- **j**) $\mathbf{S}_{n+1} \mathbf{s}_n = \mathbf{g}$
- **k**) If a body travels $\frac{1}{n}$ th of the total distance in the last second the total time of fall $T = \left[n + \sqrt{n(n-1)} \right]$
- I) If a particle takes x seconds less and acquires a velocity y ms⁻¹ more at one place than at another in falling through the same distance. If g_1 and g_2 are accelerations due to gravity at these two places, then x: y is $(1 / \sqrt{g_1 g_2})$.

m) The acceleration of a body in a medium is given by $g^{I} = g\left(\frac{1-d_{m}}{d_{h}}\right) = g\left(1-\frac{d_{m}}{d_{h}}\right)$

Where d_m = density of the medium and d_b = density of the body

n) If a body is dropped into a well of depth h the time taken to hear the sound from start

 $T = \sqrt{\frac{2h}{a} + \frac{h}{v}}$

(v is the velocity of sound) T is given by

2. Body thrown vertically upwards

- The equations of motion a)
 - a) v = u + at v = u gtb) $s = ut + \frac{1}{2} at^{-1}$ $h = ut \frac{1}{2} gt^{2}$ c) $V^2 = u^2 + 2as$ $u = \sqrt{2gh}$ d) $s_n = u + \frac{a}{2}(2n-1)$ $h_n = u - \frac{g}{2}(2n-1)$

b) Maximum height reached = H = $\frac{u^2}{2a}$

c) Time of ascent = Time of descent = $\frac{u}{a}$

Time of flight = $\frac{2u}{g}$

d) Maximum height H =
$$\frac{1}{2g} \left(\frac{gT}{2}\right)^2 = \frac{gT^2}{8}$$

e) The velocity of the body at the half of the maximum height is \sqrt{gh} (or) $\sqrt{\frac{u^2}{2}}$

www.sakshieducation.com

www.sakshieducation.comf) A body projected vertically up from the top of a tower of height h reaches the ground

in a time t, then $h = -ut + \frac{1}{2}gt^2$ and $h = \frac{v^2 - u^2}{2\sigma}$

g) A body is projected up with a velocity u and another body is also projected up from the same point with same velocity but after t sec. Then they will meet after a time

$$T = \frac{u}{g} + \frac{t}{2}$$

- h) A body projected up from the top of a tower with a velocity u reaches the ground in a time t_1 . Another body projected down with same velocity reaches the ground in time t_2
 - i) The time difference $(t_1 t_2) = \frac{2u}{a}$

ii) Time take by the freely falling body to reach the ground is $\sqrt{t_1 t_2}$

- iii) Height of the tower is $h = \frac{1}{2}gt_1t_2$
- iv) Velocity of projection is $u = \frac{g}{2}(t_1-t_2)$

www.saks

i) If air resistance is considered, time of ascent < time of descent.