1. Freely falling body

a) The equations of motion
i) $\quad \mathrm{V}=\mathrm{u}+\mathrm{at}$
ii) $s=u t+1 / 2 a t^{2}$
$\mathrm{V}=\mathrm{gt}$
$h=1 / 2 \mathrm{gt}^{2}$
$\mathrm{V} \alpha \mathrm{t}$
$h \alpha t^{2}$
$\frac{V_{1}}{V_{2}}=\frac{t_{1}}{t_{2}}$
$\frac{h_{1}}{h_{2}}=\frac{t_{1}^{2}}{t_{2}^{2}}$

$$
\begin{array}{rlr}
\text { iii) } \begin{aligned}
\mathrm{V}^{2} & =\mathrm{u}^{2}+2 \mathrm{as} \\
\mathrm{~V}^{2} & =2 \mathrm{gh} \\
& \text { iv) } \mathrm{s}_{\mathrm{n}}=u+\frac{a}{2}(2 \mathrm{n}-1) \\
\mathrm{V}^{2} \alpha \mathrm{~h} & \mathrm{~h}_{\mathrm{n}}=\frac{g}{2}(2 \mathrm{n}-1) \\
\frac{V_{1}}{V_{2}} & =\frac{h_{1}}{h_{2}}
\end{aligned} & \mathrm{~h}_{\mathrm{n}} \alpha(2 \mathrm{n}-1)
\end{array}
$$

b) The average velocity during fall $(\mathrm{V})=\sqrt{\frac{g h}{2}}$
c) The ratio of distance traveled in $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \ldots . . n$ seconds is $1: 3: 5 \ldots \ldots(2 n-1)$
d) The ratio of distances trayeled in first, first two, first three seconds...... is 1:4:9......n n^{2}
e) The ratio of time taken to travel first, $2^{\text {nd }}, 3^{\text {rd }} \ldots \ldots . \mathrm{n}^{\text {th }}$ unit of distances is

$$
1: \sqrt{2}-1: \sqrt{3}-\sqrt{2} \ldots \ldots(\sqrt{n}-\sqrt{n-1})
$$

f) The ratio of times taken to travel first, first two, first three ...first n units of distances is $1: \sqrt{2}: \sqrt{3}:$ \qquad \sqrt{n}
g) If x is the distance traveled in the $\mathrm{n}^{\text {th }}$ second, then the distance traveled in the $(\mathrm{n}+1)^{\text {th }}$ second is $\left(\frac{2 n+1}{2 n-1}\right) x$ (or) $x+g$.
h) If x is the distance traveled in the $n^{\text {th }}$ second, then distance traveled in the $(n-1)^{\text {th }}$ second is $\left(\frac{2 n-3}{2 n-1}\right) x$ (or) $\mathrm{x}-\mathrm{g}$
i) The ratio of distances covered in the nth second and the distance traveled in n seconds is $\frac{s_{n}}{s}=\frac{2}{n}-\frac{1}{n^{2}}=\frac{2 n-1}{n^{2}}$
j) $\mathbf{S}_{\mathrm{n}+1}-\mathbf{s}_{\mathrm{n}}=\mathbf{g}$
k) If a body travels $\frac{1}{n}$ th of the total distance in the last second the total time of fall $T=\lfloor n+\sqrt{n(n-1)}\rfloor$
1)If a particle takes x seconds less and acquires a velocity $\mathrm{y} \mathrm{ms}^{-1}$ more at one place than at another in falling through the same distance. If g_{1} and g_{2} are accelerations due to gravity at these two places, then $\mathrm{x}: \mathrm{y}$ is $\left(1 / \sqrt{g_{1} g_{2}}\right)$.
m) The acceleration of a body in a medium is given by $g^{I}=g\left(\frac{1-d_{m}}{d_{b}}\right)=g\left(1-\frac{d_{m}}{d_{b}}\right)$

Where $\mathrm{d}_{\mathrm{m}}=$ density of the medium and $\mathrm{d}_{\mathrm{b}}=$ density of the body
n) If a body is dropped into a well of depth h the time taken to hear the sound from start (v is the velocity of sound) T is given by

$$
T=\sqrt{\frac{2 h}{g}}+\frac{h}{v}
$$

2. Body thrown vertically upwards

a) The equations of motion
a) $v=u+a t$
b) $s=u t+1 / 2 a t^{2}$
$\mathrm{v}=\mathrm{u}-\mathrm{gt}$
$\mathrm{h}=\mathrm{ut}-1 / 2 \mathrm{gt}^{2}$
c) $V^{2}=u^{2}+2 a s$
d) $\mathrm{S}_{\mathrm{n}}=\mathrm{u}+\frac{a}{2}(2 n-1)$
$u=\sqrt{2 g h}$
$\mathrm{h}_{\mathrm{n}}=\mathrm{u}-\frac{g}{2}(2 n-1)$
b) Maximum height reached $=\mathrm{H}=\frac{u^{2}}{2 g}$
c) Time of ascent $=$ Time of descent $=\frac{u}{g}$

Time of flight $=\frac{2 u}{g}$
d) Maximum height $\mathrm{H}=\frac{1}{2 g}\left(\frac{g T}{2}\right)^{2}=\frac{g T^{2}}{8}$
e) The velocity of the body at the half of the maximum height is $\sqrt{g h}$ (or) $\sqrt{\frac{u^{2}}{2}}$
f) A body projected vertically up from the top of a tower of height h reaches the ground in a time t , then $h=-u t+\frac{1}{2} g t^{2}$ and $\mathrm{h}=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2 \mathrm{~g}}$
g) A body is projected up with a velocity u and another body is also projected up from the same point with same velocity but after t sec. Then they will meet after a time

$$
T=\frac{u}{g}+\frac{t}{2}
$$

h) A body projected up from the top of a tower with a velocity u reaches the ground in a time t_{1}. Another body projected down with same velocity reaches the ground in time t_{2}
i) The time difference $\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)=\frac{2 u}{g}$
ii) Time take by the freely falling body to reach the ground is $\sqrt{t_{1} t_{2}}$
iii) Height of the tower is $h=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2}$
iv) Velocity of projection is $u=\frac{g}{2}\left(t_{1}-t_{2}\right)$
i) If air resistance is considered, time of ascent < time of descent.

