www.sakshieducation.com Dynamics-Connected Bodies

1. Atwood's machine

www.sakshieducation.com

For the body at B, $T = m_1 a$

:
$$a = \frac{m_2 g}{(m_1 + m_2)}$$
 and $T = \frac{m_1 m_2 g}{(m_1 + m_2)}$

Thrust on the pulley is $\sqrt{2}T$

b) If the coefficient of friction between table and the mass is ' μ ' then

For the body at A,
$$m_2g - T = m_2a$$

For the body at B, $T - \mu m_1g - m_1a$
 $a = \frac{(m_2 - \mu m_1)g}{(m_1 + m_2)}$ And $T = \frac{m_1m_2(1+\mu)g}{(m_1 + m_2)}$
For the body at A, $m_1g - T_1 = m_1a$
For the body at A, $T_2 - m_2g = m_2a$
For the body at C, $T_1 - T_2 = Ma$
 $a = \frac{(m_1 - m_2)g}{(m_1 + m_2 + M)}$ and $T_2 = \frac{m_2[2m_1 + M]g}{m_1 + m_2 + M}$

5. Two masses m_1 and m_2 connected by a string pass over a pulley. m_2 is suspended and m_1 slides up over a frictionless inclined plane of angle θ

$$T - m_1 g \sin \alpha = m_1 a$$

$$m_2 g - T_1 = m_2 a$$
Acceleration, $a = \frac{(m_2 - m_1 \sin \theta)g}{m_1 + m_2}$
and

Tension in the string $T = m_2 g - m_2 a_{=} \frac{m_1 m_2 [1 + sin \theta]g}{(m_1 + m_2)}$

6. $m_1 g \sin \alpha - T = m_1 a$

4.

$$T - m_2 g \sin \beta = m_2 a$$

Tension (T) =
$$\frac{m_1m_2(\sin \alpha + \sin \beta)g}{m_1 + m_2}$$

www.sakshieducation.com

Acceleration (a) = $\frac{g(m_1 \sin \alpha - m_2 \sin \beta)}{m_1 + m_2}$

Force on the pulley $F = 2T \cos\left(\frac{90-\theta}{2}\right)$

7. The acceleration in the following case

a)
$$a = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)g = \left(\frac{m}{3m}\right)g = \frac{g}{3}$$

b) T= pulling force F = 2mg
T - mg = ma'
mg = ma'
a' = g
8. Consider the following system
a) $a = \left(\frac{m_2 - m_1}{m_1 + m_2}\right)g = \left(\frac{2M - M}{2M + M}\right)g = \frac{g}{3}$
b) Tension in the string AB is
T - Mg = Ma
 $T = Mg + Ma = \frac{4Mg}{3}$
c) Tension in the string BC is
Mg - T_1 = Ma
T_1 = Mg - Ma
Or T_1 = $\frac{2Mg}{3}$

-

Two weights w₁ and w₂ are suspended as shown. When the pulley is pulled up with an acceleration g, the tension in the string is

$$T = \frac{2m_1m_2}{(m_1 + m_2)} (g + g)$$

Or $T = \frac{4m_1m_2g}{(m_1 + m_2)} = \frac{4w_1w_2}{(w_1 + w_2)}$

www.sakshieducation.com

- 10. Bodies in contact:
 - a. Consider two bodies m and M which are in contact and placed on a horizontal smooth surface. Let a force f is applied on the system as shown. Let R be the contact force between the two bodies

a)
$$a = \frac{F}{mL}$$

b) $T = \left(\frac{L-l}{L}\right)F$

12. A block of mass M is pulled by a rope of mass m by a force P on a smooth horizontal plane.

- a) Acceleration of the block $a = \frac{p}{M+m}$
- b) Force exerted by the rope on the block

$$\mathsf{F} = \frac{\mathsf{M}\mathsf{p}}{(\mathsf{M} + \mathsf{m})}$$

13. Consider the following system

If the force (F) acts on m_3 , then

$$T_2 = \frac{(m_1 + m_2)F}{(m_1 + m_2 + m_3)} \text{And}_{T_1} = \frac{m_1F}{(m_1 + m_2 + m_3)}$$

14. Masses m_1 , m_2 , m_3 are inter connected by light string and are pulled with a string with tension T_3 on a smooth table.

$$\begin{array}{c|c} T_1 & T_2 & T_3 \\ \hline m_1 & m_2 & m_3 \\ \hline \end{array}$$

a) Acceleration of the system

$$a = \frac{\mathsf{T}_3}{(\mathsf{m}_1 + \mathsf{m}_2 + \mathsf{m}_3)}$$

b) Tension in the string

$$T_1 = m_1 \ a = \frac{m_1 T_3}{m_1 + m_2 + m_3}$$

www.sakshieducation.com $T_2 = (m_1 + m_2)a = \frac{(m_1 + m_2)T_3}{m_1 + m_2 + m_3}$

 $T_3 = (m_1 + m_2 + m_3) a$

www.saksheducation.com