Dynamics-Connected Bodies

1. Atwood's machine

a) For body A,

$$
m_{1} g-T=m_{1} a
$$

For body B,
$T-m_{2} g=m_{2} a$
\therefore Acceleration and tension of the system respectively
$a=\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}\right)} \quad$ And $\quad T=\frac{2 m_{1} m_{2} g}{\left(m_{1}+m_{2}\right)}$

b) $a_{C M}=\frac{\left(m_{1} a_{1}-m_{2} a_{2}\right)}{\left(m_{1}+m_{2}\right)}=\frac{\left(m_{1}-m_{2}\right) a}{\left(m_{1}+m_{2}\right)}=\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)} \frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)} g$
$\therefore a=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right)^{2} g$
c) The reaction at the pulley, $\mathrm{R}=2 \mathrm{~T} \Rightarrow R=\frac{4 m_{1} m_{2} g}{\left(m_{1}+m_{2}\right)}$
2. If the mass of the pulley is also taken into consideration, then

For body A,

$$
m_{1} g-T_{1}=m_{1} a
$$

For body B,

$$
\begin{equation*}
T_{2}-m_{2} g=m_{2} a \tag{2}
\end{equation*}
$$

For the pulley, $\left(T_{1}-T_{2}\right) R=I \alpha$, where R is the radius of the pulley.

$$
\begin{align*}
& \left(T_{1}-T_{2}\right) R=\frac{1}{2} M R^{2} \frac{a}{R} \\
& T_{1}-T_{2}=\frac{1}{2} M a \tag{3}
\end{align*}
$$

From equations (1), (2) and (3)

$$
a=\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}+\frac{m}{2}\right)}, \quad T_{1}=\frac{m_{1}\left[2 m_{2}+\frac{M}{2}\right] g}{m_{1}+m_{2}+\frac{M}{2}} \quad \text { and } \quad T_{2}=\frac{m_{2}\left[2 m_{1}+\frac{M}{2}\right] g}{m_{1}+m_{2}+\frac{M}{2}}
$$

3. One object having horizontal motion and other having vertical motion:
a) For the body at A, $\quad m_{2} g-T=m_{2} a$

www.sakshieducation.com

For the body at B,

$$
T=m_{1} a
$$

$\therefore a=\frac{m_{2} g}{\left(m_{1}+m_{2}\right)} \quad$ and $T=\frac{m_{1} m_{2} g}{\left(m_{1}+m_{2}\right)}$
Thrust on the pulley is $\sqrt{2} T$
b) If the coefficient of friction between table and the mass is ' μ ' then

For the body at A, $\quad m_{2} g-T=m_{2} a$
For the body at B, $\quad T-\mu m_{1} g-=m_{1} a$

$$
a=\frac{\left(m_{2}-\mu m_{1}\right) g}{\left(m_{1}+m_{2}\right)} \quad \text { And } \quad T=\frac{m_{1} m_{2}(1+\mu) g}{\left(m_{1}+m_{2}\right)}
$$

4. For the body at A, $\quad m_{1} g-T_{1}=m_{1} a$

For the body at A, $\quad T_{2}-m_{2} g=m_{2} a$
For the body at C, $\quad T_{1}-T_{2}=M a$

$$
\begin{aligned}
a & =\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}+M\right)} \quad \text { and } \\
T_{1} & =\frac{m_{1}\left[2 m_{2}+M\right] g}{m_{1}+m_{2}+M} \quad \text { and } \quad T_{2}=\frac{m_{2}\left[2 m_{1}+M\right] g}{m_{1}+m_{2}+M}
\end{aligned}
$$

5. Two masses m_{1} and m_{2} connected by a string pass over a pulley. m_{2} is suspended and m_{1} slides up over a frictionless inclined plane of angle θ

$$
\begin{gathered}
T-m_{1} g \operatorname{Sin} \alpha=m_{1} a \\
m_{2} g-T_{1}=m_{2} a
\end{gathered}
$$

Acceleration, $a=\frac{\left(m_{2}-m_{1} \sin \theta\right) g}{m_{1}+m_{2}}$

and
Tension in the string $T=m_{2} g-m_{2} a_{=} \frac{m_{1} m_{2}[1+\sin \theta] g}{\left(m_{1}+m_{2}\right)}$
6. $m_{1} g \operatorname{Sin} \alpha-T=m_{1} a$

$$
T-m_{2} g \operatorname{Sin} \beta=m_{2} a
$$

$\operatorname{Tension}(T)=\frac{m_{1} m_{2}(\sin \alpha+\sin \beta) g}{m_{1}+m_{2}}$

Acceleration $(\mathrm{a})=\frac{g\left(m_{1} \sin \alpha-m_{2} \sin \beta\right)}{m_{1}+m_{2}}$

Force on the pulley $F=2 T \operatorname{Cos}\left(\frac{90-\theta}{2}\right)$
7. The acceleration in the following case
a) $a=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g=\left(\frac{m}{3 m}\right) g=\frac{g}{3}$
b) $\mathrm{T}=$ pulling force $\mathrm{F}=2 \mathrm{mg}$
$\mathrm{T}-\mathrm{mg}=\mathrm{ma}{ }^{\prime}$

$\mathrm{mg}=\mathrm{ma}$,
$a^{\prime}=g$
8. Consider the following system
a) $a=\left(\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right) g=\left(\frac{2 M-M}{2 M+M}\right) g=\frac{g}{3}$
b) Tension in the string $A B$ is

$$
\begin{aligned}
& \mathrm{T}-\mathrm{Mg}=\mathrm{Ma} \\
& T=M g+M a=\frac{4 M g}{3}
\end{aligned}
$$

c) Tension in the string BC is

$$
\begin{aligned}
& \mathrm{Mg}-\mathrm{T}_{1}=\mathrm{Ma} \\
& \mathrm{~T}_{1}=\mathrm{Mg}-\mathrm{Ma} \\
& \text { Or } \mathrm{T}_{1}=\frac{2 M g}{3}
\end{aligned}
$$

9. Two weights w_{1} and w_{2} are suspended as shown. When the pulley is pulled up with an acceleration g , the tension in the string is

$$
\begin{aligned}
& T=\frac{2 m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}(g+g) \\
& \text { Or } T=\frac{4 m_{1} m_{2} g}{\left(m_{1}+m_{2}\right)}=\frac{4 w_{1} w_{2}}{\left(w_{1}+w_{2}\right)}
\end{aligned}
$$

www.sakshieducation.com

10. Bodies in contact:
a. Consider two bodies m and M which are in contact and placed on a horizontal smooth surface. Let a force f is applied on the system as shown. Let R be the contact force between the two bodies

1) $a=\frac{f}{M+m}$
2) $f-R=M a$ and $R=m a$

b.

3) $a=\frac{f}{M+m}$
4) $f-R=m a$
and
$R=M a$
11. A uniform rope of length L is surface and pulled with a

placed on a horizontal smooth be the mass per unit length of the rope. The tension in the rope at a distance 1 force the end where force is applied is given by
a) $\quad a=\frac{F}{m L}$
b) $T=\left(\frac{L-l}{L}\right) F$
12. A block of mass M is pulled by a rope of mass m by a force P on a smooth horizontal plane.
$\xrightarrow{2} \xrightarrow{\mathrm{M}} \xrightarrow{\mathrm{m}} \mathrm{P}$

www.sakshieducation.com

a) Acceleration of the block $a=\frac{p}{M+m}$
b) Force exerted by the rope on the block

$$
F=\frac{M p}{(M+m)}
$$

13. Consider the following system

For the 1st body,

$$
F-T_{1}=m_{1} a
$$

For the second body,

$$
T_{1}-T_{2}=m_{2} a
$$

For the third body, $\quad \mathrm{T}_{2}=\mathrm{m}_{3} \mathrm{a}$
\therefore Acceleration of the system

$$
\begin{aligned}
& a=\frac{F}{m_{1}+m_{2}+m_{3}} \quad \text { And } \quad T_{1}=\frac{\left(m_{2}+m_{3}\right) F}{m_{1}+m_{2}+m_{3}} \\
& T_{2}=\frac{m_{3} F}{\left(m_{1}+m_{2}+m_{3}\right)}
\end{aligned}
$$

If the force (F) acts on m_{3}, then

$$
T_{2}=\frac{\left(m_{1}+m_{2}\right) F}{\left(m_{1}+m_{2}+m_{3}\right)} \text { And }_{T_{1}}=\frac{m_{1} F}{\left(m_{1}+m_{2}+m_{3}\right)}
$$

14. Masses m_{1}, m_{2}, m_{3} are inter connected by light string and are pulled with a string with tension T_{3} on a smooth table.
$\xrightarrow{\mathrm{m}_{1}} \stackrel{\mathrm{~T}_{1}}{\rightarrow}+\mathrm{m}_{2} \xrightarrow{\mathrm{~T}_{2}} \mathrm{~m}_{3} \xrightarrow{\mathrm{~T}_{3}}$
a) Acceleration of the system

$$
a=\frac{T_{3}}{\left(m_{1}+m_{2}+m_{3}\right)}
$$

b) Tension in the string

$$
\mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}=\frac{\mathrm{m}_{1} \mathrm{~T}_{3}}{\mathrm{~m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}}
$$

www.sakshieducation.com
$T_{2}=\left(m_{1}+m_{2}\right) a=\frac{\left(m_{1}+m_{2}\right) T_{3}}{m_{1}+m_{2}+m_{3}}$
$\mathrm{T}_{3}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}\right) \mathrm{a}$

