## www.sakshieducation.com <a href="Centre of Mass">Centre of Mass</a>

- 1. Centre of mass is the imaginary point at which the total mass of the system is supposed to be concentrated.
- 2. There need not be any mass at the centre of mass. Ex.: Hollow sphere, ring etc
- 3. Internal forces, however strong they are, cannot produce acceleration in centre of mass.
- **4.** When a force is applied along a line passing through the centre of mass, the entire system moves in linear motion.
- 5. If no external force acts on a system, the acceleration of centre of mass is zero, the velocity and momentum of the centre of mass remains constant, though velocity and momentum of individual particles vary.
- **6.** The motion of the centre of mass can be studied using Newton's laws of motion.
- 7. The algebraic sum of moments of masses of all the particles about the centre of mass is always zero.
- **8.** Couple cannot change the position of centre of mass.
- **9.** An imaginary point at which the total weight of the system is supposed to be concentrated is known as centre of gravity.
- **10.** For small objects c.m. and c.g. coincide but for large or extended objects like hills, buildings they do not coincide.
- 11. At the centre of the earth there is no centre of gravity  $(\because g = 0)$
- 12. The position of center of mass depends on the shape of the body and distribution of mass.
- 13. The location of the centre of mass is independent of the reference frame used to locate it.
- **14.** The centre of mass of a system of particles depends only on the masses of the particles and their relative positions.
- 15. Centre of mass of a system is unaffected, with the change of the co-ordinate system.
- **16.** If the system consists of n particles CM is given by  $x_{cm} = \frac{m_1 x_1 + m_2 x_2 + ... + m_n x_n}{m_1 + m_2 + ... + m_n}$
- 17. If the system of particles lies along y-axis then  $y_{cm} = \frac{m_1 y_1 + m_2 y_2 + ... + m_n y_n}{m_1 + m_2 + ... + m_n}$
- 18. If the system of particles lies along z-axis then  $z_{cm} = \frac{m_1 z_1 + m_2 z_2 + ... + m_n z_n}{m_1 + m_2 + .... + m_n}$
- **19.** Velocity of centre of mass is  $V_{cm} = \frac{m_1 V_1 + m_2 V_2 + ...}{m_1 + m_2 + ...}$

www.sakshieducation.com

- **20.** Acceleration of CM  $a_{cm} = \frac{m_1 a_1 + m_2 a_2 + ....}{m_1 + m_2 + ....}$
- **21.** Two particles of masses  $m_1$ ,  $m_2$  are separated by a distance r, then distance of centre of mass is



$$r_1 = \frac{m_2 r}{m_1 + m_2}$$
 and  $r_2 = \frac{m_1 r}{m_1 + m_2}$ 

The centre of mass will be nearer to the particle of more mass. If  $m_1 = m_2$ , then  $r_1 = r_2$ .

22. Two spheres of same material  $r_1$  and  $r_2$  are kept in contact, distance of C.M from the centre of Ist sphere is equal to  $d_1 = \left(\frac{r_2^3}{r_1^3 + r_2^3}\right)(r_1 + r_2)$  and  $d_2 = \frac{r_1^3}{r_1^3 + r_2^3}(r_1 + r_2)$ 

 $[d_2$  – distance of C.M from centre of second sphere]

23. In the above case, instead of spheres they are circular discs then

$$d_1 = \left(\frac{r_2^2}{r_1^2 + r_2^2}\right) (r_1 + r_2)$$
 and 
$$d_2 = \frac{r_1^2 (r_1 + r_2)}{(r_1^2 + r_2^2)}$$

**24.** When a portion of  $m_2$  is removed from a body of mass  $m_1$  then shift in the position of center of

mass 
$$(x) = \frac{\begin{bmatrix} dis \ tan \ ce \ between \ cm \ of \\ the \ body \ and \ removed \ part \end{bmatrix} \times mass \ of \ removed \ part}{mass \ of \ remaining \ part}$$

- 25. From a disc of radius R, a disc of radius r is removed from one end then shift in centre of mass is  $x = \frac{r^2(R-r)}{(R^2-r^2)}$ .
- **26.** From a uniform solid sphere of radius R, a sphere of radius r is removed from one end, and then the shift in CM is  $x = \frac{r^3(R-r)}{(R^3-r^3)}$ .
- 27. When a person walks on a boat in still water, centre of mass of person, boat system is not displaced.
  - If the man walks a distance L on the boat, the boat is displaced in the opposite direction relative to shore or water by a distance  $x = \frac{mL}{M+m}$ .
  - Distance walked by the mass relative to shore or water is (L x).