Horizontal projection

1. A): If a bomb is dropped from an aero plane moving horizontally with constant velocity then the bomb appears to move along a vertical straight line for the pilot of the plane.

R): Horizontal component of velocity of the bomb remains const and same as the velocity of the plane during the motion under gravity.

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.
- 2. A): Time taken by the bomb to reach the ground from a moving aero plane depends on height of aero plane only.

R): Horizontal component of velocity of bomb remains constant and vertical component of velocity of bomb changes due to gravity.

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
- 3) (A) is true but (R) is false.
- 4) (A) is false but (R) is true.
- 3. A): For a body projected horizontally from the top of a tower, the velocity on reaching the ground depends both on velocity of projection and height of the tower.
 - **R**): For a projectile velocity varies both in horizontal and vertical directions.
 - 1) Both (A) and (R) are true and (R) is the correct explanation of (A).
 - (2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
 - (3) (A) is true but (R) is false.
 - (4) (A) is false but (R) is true.

- 4. (A): For a horizontal projectile and freely falling body from same height time of flight is same but velocity on reaching the bottom are different.
 - (R): For both the horizontal projectile and freely falling body initial velocity in vertical direction are zero but they posses different initial horizontal velocities.
 - (1) Both (A) and (R) are true and (R) is the correct explanation of (A).
 - (2) Both (A) and (R) are true and (R) is not the correct explanation of (A).
 - (3) (A) is true but (R) is false.
 - (4) (A) is false but (R) is true.
- 5. A body is projected horizontally from a height of 78.4 m with a velocity 10 ms⁻¹
 . Its velocity after 3 seconds is _ [g = 10 ms⁻²] (Take direction of projection on i and vertically upward direction on j).
 - 1) $10\hat{i}-30\hat{j}$ 2) $10\hat{i}+30\hat{j}$ 3) $20\hat{i}-30\hat{j}$ 4) $10\hat{i}+10\sqrt{3}\hat{j}$
- 6. In the above problem angle made by velocity vector with x axis after 4 seconds is tan⁻¹
 - 1) 3
 2) 4
 3) 5
 4) 6
- 7. A stone is thrown horizontally with velocity g ms⁻¹ from the top of a tower of height g meter. The velocity with which it hits the ground is (in ms⁻¹)
 - 1) g 2) 2g 3) $\sqrt{3g}$ 4) 4g
- 8. A body is thrown horizontally from the top of a tower. It reaches the ground after 4s at an angle 45° to the ground. The velocity of projection is
 - 1) 9.8 ms⁻¹ 2) 19.6 ms⁻¹ 3) 29.4 ms⁻¹ 4) 39.2 ms⁻¹
- Two cliffs of heights 120m and 100.4m are separated by a horizontal distance of 16m. If a car has to reach from the first cliff to the second, the horizontal velocity of the car should be
 - 1) 16 ms⁻¹ 2) 4 ms⁻¹ 3) 2 ms⁻¹ 4) 8 ms⁻¹

10. An aero plane flying horizontally at an altitude of 490m with a speed of 180kmph drops a bomb. The horizontal distance at which it hits the ground is1) 500 m2) 1000 m3) 250 m4) 50 m

11. A ball is projected horizontally from the top of a building 19.6 m high. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° to the horizontal, the initial velocity of the ball is

```
1) 4.9 ms<sup>-1</sup> 2) 9.8 ms<sup>-1</sup> 3) 19.6 ms<sup>-1</sup> 4) 14.7 ms<sup>-1</sup>
```

12. At a certain height a body at rest explodes into two equal fragments with one fragment receiving a horizontal velocity of 10 ms⁻¹. The time interval after the explosion for which the velocity vectors of the two fragments become perpendicular to each other is $(g=10ms^{-2})$

1) 1s 2) 2 s 3) 1.5 s 4) 1.75 s

13. At a certain height a shell at rest explodes into two equal fragments. One of the fragments receives a horizontal velocity u. The time interval after which, the velocity vectors will be inclined at 120° to each other is

1)
$$\frac{u}{\sqrt{3}g}$$
 2) $\frac{\sqrt{3}u}{g}$ 3) $\frac{2u}{\sqrt{3}g}$ 4) $\frac{u}{2\sqrt{3}g}$

14. A bomb at rest at the summit of a cliff breaks into two equal fragments. One of the fragments attains a horizontal velocity of 20 $\sqrt{3}$ ms⁻¹. The horizontal distance between the two fragments, when their displacement vectors is inclined at 60° relative to each other is (g = 10ms⁻²)

1) $40\sqrt{3}m$ 2) $80\sqrt{3}m$ 3) $120\sqrt{3}m$ 4) $480\sqrt{3}m$

15. An aero plane is flying horizontally with a speed of 600km/hr at a height of 1960m. When it is vertically above the point A on the ground, a body is dropped from it. The body strikes the ground at point B. Calculate the distance AB

1) 3.33km 2) 33.3 km 3) 3.33m 4) 6.66 km

- 16. A body is thrown horizontally from the top of a tower of height 5 *m*. It touches the ground at a distance of 10 *m* from the foot of the tower. The initial velocity of the body is $(g = 10 m s^{-2})$
 - (1) $2.5 ms^{-1}$ (2) $5 ms^{-1}$
 - (3) $10 ms^{-1}$ (4) $20 ms^{-1}$
- 17. An aeroplane moving horizontally with a speed of 720 *km/h* drops a food pocket, while flying at a height of 396.9 *m*. The time taken by a food pocket to reach the ground and its horizontal range is (Take $g = 9.8 \text{ m/sec}^2$)
 - (1) 3 sec and 2000 m (2) 5 sec and 500 m
 - (3) 8 sec and 1500 m (4) 9 sec and 1800 m
- 18. A large number of bullets are fired in all directions with same speed v. What is the maximum area on the ground on which these bullets will spread?

(1)
$$\pi \frac{v^2}{g}$$
 (2) $\pi \frac{v^4}{g^2}$
(3) $\pi^2 \frac{v^4}{g^2}$ (4) $\pi^2 \frac{v^2}{g^2}$

19. A ball is projected horizontally with a speed 'v' from the top of a plane inclined at an angle with the horizontal. How far from the point of projection will be ball strike the plane?

1)
$$\frac{v^2}{g}$$
 2) $\sqrt{2}\frac{v^2}{g}$ 3) $\frac{2v^2}{g}$ 4) $\sqrt{2}\left[\frac{2v^2}{g}\right]$

20. An inclined plane is making an angle with horizontal. A projectile is projected from the bottom of the plane with a speed u at an angle with horizontal then its range on the inclined plane is

1)
$$R = \frac{2u^{2} \sin(\alpha - \beta) \cos \alpha}{g \cos^{2} \beta}$$

2)
$$R = \frac{u^{2} \sin(\alpha - \beta) \cos \alpha}{g \cos^{2} \beta}$$

3)
$$R = \frac{2u^{2} \sin(\alpha + \beta) \cos \alpha}{g \cos^{2} \beta}$$

4)
$$R = \frac{u^{2} \sin(\alpha + \beta) \cos \alpha}{g \cos^{2} \beta}$$

Key

	1) 1	2) 2	3) 3	4) 1	5) 2	6) 2	7) 3	8) 3	9)4
	10) 1	11) 2	12) 1	13) 1	14) 4	15) 1	16)3	17)4	18)2
	19) 4	20) 1							
								C	
					Hints			· · ·	
)	
5.	$\vec{v} = \vec{u} + \vec{a}$	$t = 10\vec{i} + 1$	$0\vec{j} \times 3 = 10$	$D\vec{i} + 30\vec{j}$					
6.	$Tan\theta = \frac{g}{u}$	$\frac{t}{t}$.C	0		
	$\tan \theta = \frac{40}{10}$	$\frac{0}{0}$	$\theta = \tan^{-1}$	¹ 4	5		~		
7.	$v_y = \sqrt{2g}$	h	$V_y = \sqrt{2}$	$\overline{g \times g} =$	g√2	·			
	$v = \sqrt{g^2 + g^2}$	$-2g^2$	$=\sqrt{3}$ g	2					
8.	$\mathbf{v}_{y} = \mathbf{v}_{x}$								
	$= 9.8 \times 4$	= u	=39.2 n	n/s					
9.	$19.6 = \frac{1}{2}9$	9.8t ²	t = 2						
	$\mathbf{x} = \mathbf{u} \mathbf{t}$		16 = u.	2 u = 8	m /s				
10.	$t = \sqrt{\frac{2 \times 2}{9}}.$	$\frac{190}{8} = 10 \text{ s}$							
11.	$\tan \theta = g$	t / 2u							
	gt = 2u	u = 9.8 r	m/s						
12.	$t = \frac{\sqrt{u_1 u_2}}{g}$	-	$t = \frac{\sqrt{10}}{10}$	$\frac{10}{10}$ t =	1 sec				

13.
$$Tan\alpha_{1} = \frac{V_{y}}{V_{x}} = \frac{gt}{u} \qquad Tan\alpha_{2} = \frac{V_{y}}{V_{x}} = \frac{gt}{u}$$

$$Tan30^{0} = \frac{gt}{u} \qquad \frac{1}{\sqrt{3}} = \frac{gt}{u}$$

$$t = \frac{u}{\sqrt{3}g}$$
a)
$$t = \frac{\sqrt{u_{1}u_{2}}}{g} \cot\left(\frac{\theta}{2}\right) = \frac{\sqrt{u^{2}}}{g} \cot\left(\frac{120}{2}\right)$$

$$= \frac{u}{g} \cot 60$$

$$t = \frac{u}{\sqrt{3}g}$$
14.
$$Tan60 = \frac{h}{R} \qquad \sqrt{3} = \frac{1}{2}\frac{gt^{2}}{ut}$$

$$t = \frac{2\sqrt{3}u}{g} = \frac{2\sqrt{3} \times 20 \times \sqrt{3}}{10} \qquad t = 12$$

$$R = ut - 20\sqrt{3} \times 12 = 240\sqrt{3}$$
2*R* = 480\sqrt{3}
15. The time taken by the body to reach the ground is

$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 1960}{9.8}} = 20 \operatorname{sec.}$$
Distance AB = $600 \times \frac{5}{18} \times 20 = 3.33 km$
16.
$$s = u \times \sqrt{\frac{2h}{g}} \Rightarrow 10 = u\sqrt{2 \times \frac{5}{10}} \Rightarrow u = 10 m/s$$

17. $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 396.9}{9.8}} \approx 9 \sec \text{ and } u = 720 \text{ km/hr} = 200 \text{ m/s}$

:
$$R = u \times t = 200 \times 9 = 1800 \ m$$

