1. A shower of rain appears to fall vertically down wards with a velocity12 $\mathbf{k m p h}$ on a person walking West wards with a velocity of $5 \mathbf{k m p h}$. The actual velocity and direction of the rain is
2. 8.5 kmph clock-wise to vertical
3. 13kmph, anticlock-wise to vertical
4. 13 kmph , clock-wise to vertical
5. 8.5 kmph , vertically downwards
6. A car starting from a point travels towards East with a velocity of $\mathbf{3 6} \mathbf{~ k m p h}$. Another car starting from the same point travels towards North with a velocity of $24 \mathbf{k m p h}$. The relative velocity of one with respect to another is
1) $12 \sqrt{13} \mathrm{Kmph}$
2) 30 kmph
3) 12 kmph
4) 20 kmph
3. An aero plane starting from a point travels towards North-East with a velocity of 400 kmph. Another aero plane starting from the same point travels towards North West with a velocity of 300 kmph . The relative velocity of one aero plane w.r.t. other is
1) 350 kmph
2) 500 kmph
3) 100 kmph
4) 200 kmph
4. A man is going due east with a velocity of $5 \mathbf{~ m s}^{-1}$. It is vertically raining downwards with a velocity of $4 \mathrm{~ms}^{-1}$. At what angle should he hold the umbrella to the vertical so as to protect himself from the rain?
1) $\tan ^{-1}\left(\frac{5}{4}\right)$ in anti-clockwise direction
2) $\tan ^{-1}\left(\frac{5}{4}\right)$ in clock-wise direction
3) $\tan ^{-1}\left(\frac{4}{5}\right)$ North of East
4) $\tan ^{-1}\left(\frac{4}{5}\right)$ East of North
5. A man is going in a topless car with a velocity of $\mathbf{1 0 . 8} \mathbf{~ k m p h}$. It is raining vertically downwards. He has to hold the umbrella at angle 530 to the vertical to protect him from rain. The actual velocity of the rain is $\left(\operatorname{Cos} 53^{\circ}=\frac{3}{5}\right)$
1) $2.25 \mathrm{~ms}^{-1}$
2) $3.75 \mathrm{~ms}^{-1}$
3) $0.75 \mathrm{~ms}^{-1}$
4) $2.75 \mathrm{~ms}^{-1}$
6. Wind is blowing from West to East along two parallel tracks. Two trains moving with the same speed in opposite directions have the stream track of one double that of the other. The speed of each train is
7. Equal to that of wind
8. Double that of wind
9. Three times that of wind
10. Half of that of wind
11. A ship moves at $\mathbf{4 0} \mathbf{k m p h}$ due North and suddenly moves towards East through 90^{0} and continues to move with the same speed. Then the change in velocity is
1) Zero
2) 40 kmph North East
3) 40 kmph South West
4) $40 \sqrt{2} \mathrm{kmph}$ South East
8. Two particles having position vectors $\vec{r}_{1}=(3 \vec{i}+5 \vec{j}) m$ and $\overrightarrow{r_{2}}=(-5 \vec{i}+3 \vec{j}) m$ are moving with velocities $\vec{V}_{1}=(4 \vec{i}+3 \vec{j}) m s^{-1}$ and. If they collide after 2 seconds, the value of ' \mathbf{a} ' is
1) -2
2) -4
3) -6
4) -8
9. A particle is moving eastwards with a velocity $5 \mathrm{~ms}^{-1}$, changes its direction northwards in 10 seconds and moves with same magnitude of velocity. The average acceleration is
1) Zero
2) $\frac{1}{\sqrt{2}} m s^{-2}$ towards N-E
3) $\frac{1}{\sqrt{2}} m s^{-2}$ towards S-E
4) $\frac{1}{\sqrt{2}} m s^{-2}$ towards $\mathrm{N}-\mathrm{W}$
10. A particle is moving eastward with a velocity $5 \mathrm{~ms}^{\mathbf{- 1}}$. In $\mathbf{1 0}$ seconds the velocity changes to $5 \mathrm{~ms}^{-1}$ northwards. The average acceleration in this time is.
1) $\frac{1}{\sqrt{2}} m s^{-2}$ north-west
2) $\frac{1}{2} \mathrm{~ms}^{-2}$ north-west
3) $\frac{1}{\sqrt{2}} \mathrm{~ms}^{-2}$ north -east
4) $\frac{1}{2} m s^{-2}$ north-east
11. An aero plane is moving a circular path with a speed $250 \mathrm{~km} / \mathrm{hr}$. The change in velocity in half the revolution is
1) $500 \mathrm{~km} / \mathrm{hr}$
2) $250 \mathrm{~km} / \mathrm{hr}$
3) $125 \mathrm{~km} / \mathrm{hr}$
4) zero
12. A man is walking due East at the rate of 2 Kmph . The rain appears to him to come down vertically at the rate of $\mathbf{2 k m p h}$. The actual velocity and direction of rainfall with the vertical respectively are
1) $2 \sqrt{2} \mathrm{kmph}, 45^{0}$
2) $\frac{1}{\sqrt{2}} \mathrm{kmph}, 30^{0}$
3) $2 \mathrm{kmph}, 0^{0}$
4) $1 \mathrm{kmph}, 90^{0}$
13. When a man is standing, rain drops appear to him falling at $\mathbf{6 0}{ }^{\mathbf{0}}$ from the horizontal from his front side. When he is travelling at 5 km per hour on a horizontal road they appear to him falling at $30^{\mathbf{0}}$, from the horizontal from his front side. The actual speed of the rain is (in km per hour):
1) 3
2) 4
3) 5
4) 6

Key

1) 3
2) 1
3)2
3) 2
4) 1
5) 3
7)4
6) 4
7) 4
8) 1
9) 1
10) 1
11) 3

Hints

1. $\tan \theta=\frac{v_{m}}{v_{r}}$
2. $\Delta V=\sqrt{(36)^{2}+(24)^{2}}=12 \sqrt{13} \mathrm{kmph}$
3. $\Delta V=\sqrt{(400)^{2}+(300)^{2}}=500 \mathrm{kmph}$
4. $\operatorname{Tan} \theta=\frac{5}{4}$ (Clockwise)
5. $\operatorname{Tan} \theta=\frac{V_{m}}{V_{r}}$
6. $2(V-W)=(V+W)$
$\therefore V=3 W$
7. $\Delta V=\sqrt{(40)^{2}+(40)^{2}}=40 \sqrt{2} \mathrm{kmph}$ south east
8. Final position vectors must be same

$$
\vec{r}=\vec{r}_{1}+\vec{v}_{1} t=\vec{r}_{2}+\vec{v}_{2} t
$$

9. $\quad a=\frac{\Delta V}{t}=\frac{1}{\sqrt{2}} m^{-2}(N-W)$
10. $\quad a=\frac{\Delta V}{t}=\frac{1}{\sqrt{2}} m^{-2}(N-W)$
11. $\vec{V}=\vec{V}_{2}+\vec{V}_{1}=500 \mathrm{~km} / \mathrm{h}$
12. $V_{R}=\sqrt{V^{2}+V_{m}^{2}}=2 \sqrt{2} \mathrm{~km} / \mathrm{h}$
$\operatorname{Tan} \theta=\frac{V_{m}}{V} \Rightarrow \theta=45^{\circ}$
13. $\operatorname{Tan} \theta=\frac{V_{m}}{V_{r}}$
