Inclined Plane

1. A given object takes n times as much time to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth 450 incline. The coefficient of kinetic friction between the object and the incline is

(1)
$$1 - \frac{1}{n^2}$$

(2)
$$\frac{1}{1-n^2}$$

(2)
$$\frac{1}{1-n^2}$$
 (3) $\sqrt{1-\frac{1}{n^2}}$

(4)
$$\sqrt{\frac{1}{1-n^2}}$$

A block of mass M is resting on an inclined plane. When the angle of inclination is gradually increased to θ , the block just begins to slide down the plane. What minimum force applied parallel to the plane on the block would just make the block move up the plane?

(1)
$$Mg \sin \theta$$

(2)
$$Mg\cos\theta$$

(3)
$$2 Mg \cos \theta$$
 (4) $2 Mg \sin \theta$

(4)
$$2 Mg \sin \theta$$

3. A cylinder rolls up an inclined plane, reaches some height and then rolls down (without slipping through out these motions). The directions of frictional force acting on the cylinder are

- 1) Up the incline while ascending and down the incline while descending
- 2) Up the incline while ascending as well as descending
- 3) Down the incline while ascending and up the incline while descending
- 4) Down the incline while ascending as well as descending

4. Consider the following A and B, and identify the correct choice in the given answers.

A) For a body resting on a rough horizontal table, it is easier to pull at angle that pushes at the same angle to cause motion.

B) A body sliding down a rough inclined plane of inclination equal to angle of friction has non-zero acceleration.

1) Both A and B are true.

5. (A): The time of ascent for a body projected to move up a rough inclined plane

2) A is true but B is false.

3) A is false but B is true.

4) Both A and B are false.

is less than the time of descent.

	(R): The retarda	tion for upward	motion is more tha	an the acceleration for	
	downward mot	ion.			
	(1) Both (A) and (R) are true and (R) is the correct explanation of (A).				
	(2) Both (A) and (R) are true and (R) is not the correct explanation of (A).				
	(3) (A) is true by	ut (R) is false.			
	(4) (A) is false b	out (R) is true.			
6.	A block is pushe	d up a rough incl	ined plane of 45°. l	If the time of descent is	
	twice the time of	ascent, the coeffici	ent of friction is		
	1) 0.6	2) 0.4	3) 0.5	4) 0.2	
7.	The minimum for	ce required to mov	ve a body up an incli	ned plane is three times	
	the minimum for	ce required to pre	vent it from sliding	down the plane. If co-	
	efficient of friction between the body and inclined plane is $\frac{1}{2\sqrt{3}}$, the angle of				
	inclined plane is				
	1) 60°	2) 45°	3) 30°	4) 15°	
8.	A block slides d	own a rough inc	clined plane of slop	oe angle with constant	
	velocity. It is then projected up the same plane with an initial velocity v. The				
	distance travelled by the block up the plane before coming to rest is,				
4	$1. \frac{v^2}{4g\sin\theta}$	$2. \frac{v^2}{2g\sin\theta}$	$3. \frac{v^2}{g \sin \theta}$	$4. \ \frac{4gv^2}{\sin\theta}$	
		www.sakshi	education.com		

9.	Sand is piled up on a horizontal ground in the form of a regular cone of a fixed			
	base radius R. The coefficient of static friction between sand layers is $\boldsymbol{\mu}.$ The			
	maximum volume of sand that can be piled up, without the sand slipping on the			
	surface is			
	$1) \frac{\mu R^3}{3\pi}$	2) $\frac{\mu R^3}{3}$	$3) \frac{\pi R^3}{3\mu}$	$4) \frac{\mu \pi R^3}{3}$
10.	A body is moving	up an inclined	plane of angle θ with a	an initial kinetic energy
	E. The coefficient	of friction bet	ween the plane and bod	ly is m. The work done
	against friction bef	fore the body o	comes to rest is (2002 E)	
	$1) \frac{\mu \cos \theta}{E \cos \theta + \sin \theta}$	$2) 2\mu E\cos\theta$	$3) \frac{\mu E \cos \theta}{\mu \cos \theta - \sin \theta}$	$4) \frac{\mu E \cos \theta}{\mu \cos \theta + \sin \theta}$
11.	A block of mass 2	kg is lying on	an inclined plane at ar	n angle of 300 with the
	horizontal the coefficient of friction between the block and the plane is 0.7 th			and the plane is 0.7 the
	frictional force act	ing on the incl	ined plane will be	
	(1) Zero	(2) 9.8N	(3) $9.8 \times \sqrt{3} \text{ N}$	(4) $9.8 \times 0.7 \times \sqrt{3} \text{ N}$
12.	An object of mass	2kg slides do	wn an inclined plane w	hich makes an angle of
	30^{0} with the horiz	contal. The co	efficient of friction betw	veen the object and the
	surface is $\sqrt{\frac{3}{2}}$ the	force applied	to the object so that the	object moves down on
	the surface with a	uniform speed	is	
	(1) 11.2N	(2) 15N	(3) 5N	(4) None
13.	A particle is project	cted up a 450 ı	rough incline with a velo	city 'v'. The coefficient
•	of friction is 0.5 th	e speed with v	which it returns back to	the straight point is v^1

(1) $\frac{1}{\sqrt{2}}$ (2) $\frac{1}{2}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{1}{3}$

then $\frac{v^1}{v}$ is

14.	A body slides do	wn a rough inclin	ed plane of angle o	f inclination 30° and takes
	times twice as great as the time taken in slipping down a similar frictionless			
	plane. The coefficient of friction between the body and the plane is			
	(1) $\frac{\sqrt{3}}{4}$	(2) $\sqrt{3}$	(3) $\frac{4}{3}$	$(4) \frac{3}{4}$
15.	A body slides	down a rough i	nclined plane of a	ingle of inclination 30° and
	takes time twi	ce as great as tl	he time taken in	slipping down a identical
	frictionless plan	ne. The coefficient	t of friction betwee	n the body and the plane is
	1. $\sqrt{3}/4$	2. $\sqrt{3}$	3. 4/3	4. 3/4
16.	A body slides	down a smooth	n inclined plane	of height h and angle of
	inclination 30°	reacting the botte	om with a velocit	y v. Without changing the
	height, if the an	ngle of inclination	is doubled, the vel	ocity with which it reaches
	the bottom of th	ne plane is	10	
	1. Vv	2. v/2	3. 2v	4. $\sqrt{2} v$
17.	A particle is p	rojected up along	g a rough plane o	of inclination 45° with the
	horizontal. If	the coefficient	of friction is 0.5,	the retardation is $(g =$
	acceleration du	e to gravity)	•	
	1. $\frac{g}{2}$	$2. \frac{g}{2\sqrt{2}}$	$3. \ \frac{3g}{2\sqrt{2}}$	4. $\frac{g}{\sqrt{2}}$
18.	The minimum	force required	to move a body	up an inclined plane of
	inclination 30°	is found to be th	rice the minimum	force required to prevent
	it from sliding	down the plane.	The coefficient of	f friction between the body
	and the plane is	1		
	$1. 1/\sqrt{3}$	2. $1/2\sqrt{3}$	3. $1/3\sqrt{3}$	4. $1/4\sqrt{3}$
19.	A block takes to	wice as much time	to slide down a ro	ugh 45° inclined plane as it
	takes to slide d	own an identical s	smooth 45° incline	d plane. The coefficient of
	kinetic friction between the block and the rough inclined plane is			
	1) 0.25	2) 0.5	3) 0.75	4) 1.0

20.	A body of mass m_1 projected vertically upwards with an initial velocity 'u'
	reaches a maximum height h. Another body of mass m2 is projected along
	an inclined plane making an angle 30° with the horizontal and with speed
	'u'. The maximum distance travelled along the incline is

3. $\frac{h}{2}$ 1. 2h 2. h

A body is sliding down an inclined plane having coefficient of friction 0.5. If the normal reaction is twice that of the resultant downward force along the incline, the angle between the inclined plane and horizontal is

3. 45° 4. 60° 1. 15° 2. 30°

A body takes four-third times as much time to slide down rough inclined plane as it takes to side down an identical but smooth inclined plane if the angle of inclined plane is 45°. The coefficient of friction is

3. 7/9 1. 7/16 2.9/16 $4^{3/4}$

A 30kg box has to move up an inclined slope of 30° to horizontal at a uniform velocity of 5 m/sec. If the frictional force retarding the motion is 250N the horizontal force to move up is $(g=10 \text{ m/sec}^2)$

1. $300\sqrt{2}$ N 2. 300N 3. $300\sqrt{3}$ N/2 4. $300 \times 2/\sqrt{3}$ N

A body is released from the top of a smooth inclined plane at height h above the ground. Simultaneously another body is pushed up with a velocity V from the bottom. If they meet after time t, inclination of that inclined plane to the horizontal is

1. $\sin^{-1}\left(\frac{t}{hu}\right)$ 2. $\cos^{-1}\left(\frac{t}{hu}\right)$ 3. $\sin^{-1}\left(\frac{h}{ut}\right)$ 4. $\cos^{-1}\left(\frac{hu}{t}\right)$

An insect crawls up a hemispherical surface. The coefficient of friction between the insect and the surface is 1/3. If the line joining the centre of the hemispherical surface to the insect makes an angle with the vertical, the maximum possible value of α is given by

1. Cot
$$\alpha = 3$$

2. Tan
$$\alpha = 3$$

3. Sec
$$\alpha = 3$$

2. Tan
$$\alpha = 3$$
 3. Sec $\alpha = 3$ 4. Cosec $\alpha = 3$

KEY

6.
$$t_{\alpha} = 2t_{\alpha}$$

$$\mu = Tan \theta \left\lceil \frac{n^2 - 1}{n^2 + 1} \right\rceil \Rightarrow \mu = Tan 45 \left\lceil \frac{2^2 - 1}{2^2 + 1} \right\rceil$$

$$\mu = 0.6$$

$$\mu = Tan \theta \left[\frac{n^2 - 1}{n^2 + 1} \right] \Rightarrow \mu = Tan 45 \left[\frac{2^2 - 1}{2^2 + 1} \right]$$

$$\mu = 0.6$$
7.
$$\mu = Tan \theta \left(\frac{n - 1}{n + 1} \right) \Rightarrow \frac{1}{2\sqrt{3}} = Tan \theta \left(\frac{3 - 1}{3 + 1} \right)$$

$$\frac{1}{2\sqrt{3}}$$
= $Tan\theta + \frac{2}{4}$

$$Tan \theta = \frac{1}{\sqrt{3}} \Rightarrow \theta = 30$$

8.
$$\mu = Tan \theta$$

$$s = \frac{V^2}{2g \left(\sin \theta + \mu \cos \theta\right)}$$

$$s = \frac{V^2}{2g(\sin\theta + \tan\theta\cos\theta)}$$

$$s = \frac{V^2}{4g\sin\theta}$$

9.
$$\mu = Tan \theta$$

$$\mu = \frac{h}{R} \Rightarrow h = \mu R$$

Volume of the cube

$$v = \frac{1}{3}\pi R^2 h = \frac{1}{3}\pi R^2 . \mu R = \frac{\mu \pi R^3}{3}$$

10. Work = f x s

$$W = \mu \, mg \cos \theta \times \frac{u^2}{2 \, a}$$

$$W = \mu mg \cos \theta \times \left(\frac{u^2}{2g (\sin \theta + \mu \cos \theta)} \right)$$

$$W = \frac{\mu E \cos \theta}{(\sin \theta + \mu \cos \theta)}$$

11. Frictional force = μ mg $\cos \theta$

$$F = 0.7 \times 2 \times 9.8 \times \frac{\sqrt{3}}{2} = 0.7 \times 9.8 \times \sqrt{3} \text{ N}$$

12.
$$F_r = mg \sin \theta + F$$

$$R = mg \cos \theta$$

$$F_1 = \mu mg \cos \theta - mg \sin \theta$$

$$= \sqrt{\frac{3}{2}} \times 2 \times 10 \times \frac{\sqrt{3}}{2} - 2 \times 10 \times \frac{1}{2}$$

$$= \frac{30}{\sqrt{2}} - 10 = 11.21 \text{ N}$$

15.
$$\mu = \tan \theta \left(1 - \frac{1}{n^2} \right)$$

16.
$$V = \sqrt{2gh}$$

And V does not depends on when h=constant

17.
$$a = g (\sin \theta + \mu_k \cos \theta)$$

18.
$$mg(\sin\theta + \mu\cos\theta) = 3mg(\sin\theta - \mu\cos\theta)$$

19.
$$a_1 = g \sin 45 = \frac{g}{\sqrt{2}}$$

$$a_2 = g(\sin 45 - \mu_k \cos 45^\circ) = \frac{g}{\sqrt{2}} (1 - \mu_k)$$

$$\because t^2 \alpha \frac{1}{a}$$

$$\frac{t_2^2}{t_1^2} = \frac{a_1}{a_2} \qquad ; \quad t_2 = 2t_1$$

Substituting $\mu_k = 0.75$

20.
$$u^2 = 2gh$$

 $u^2 = 2g l \sin \theta$

21.
$$mg \cos \theta x 2 = mg \sin \theta$$

22.
$$t_s = \sqrt{\frac{2l}{g\sin\theta}}; t_r = \sqrt{\frac{2l}{g(\sin\theta - \mu\cos\theta)}}$$

23.
$$F = mg \sin \theta + mg \cos \theta$$

Horizontal component of force = $F \cos \theta$

$$24. \quad S_1 = \frac{1}{2}g\sin\theta t$$

$$S_2 = ut - \frac{1}{2}g\sin\theta t$$

$$S = S_1 + S_2 = ut$$

$$\theta = \sin^{-1}\left(\frac{h}{ut}\right)$$

25.
$$\tan \alpha = \frac{1}{3}$$

25.
$$\tan \alpha = \frac{1}{3}$$
 $\cot \alpha = 3$