

Variation of "g"

- A hydrogen balloon released on the moon 1.
 - 1) Climbs up with an acceleration of 6x9.8ms⁻²
 - 2) Falls down with an acceleration of 9.8x6ms⁻²
 - 3) Falls with acceleration of 9.8 ms⁻²
 - 4) Falls with an acceleration of $\frac{9.8}{6}$ ms⁻²
- The weight of an object in the coal mine, sea level and at the top of the 2. mountain are respectively W₁, W₂ and W₃, then
- 1) $W_1 < W_2 > W_3$ 2) $W_1 = W_2 = W_3$ 3) $W_1 < W_2 < W_3$ 4) $W_1 > W_2 > W_3$
- When a body is taken from the equator to the poles, its weight 3.
 - 1) Remains same
- 2) Increases
- 3) Decreases
- 4) Increases at N-pole and decreases at S-pole
- If the earth shrinks to half of its radius and mass remains constant, then the 4. weight of an object on earth will become
 - 1) Doubled
- 2) Halved
- 3) Four times
- 4) Same
- 5. If R is radius of the earth, the height above the surface of the earth where the weight of a body is 36% less than its weight on the surface of the earth is
 - 1) 4R/5
- 2) R/5

- 3) R/6
- 4) R/4
- Assume earth to be a uniform sphere of mass M and radius R. Which of the following graphs represents the variation of acceleration due to gravity (g) with distance (r) from the centre of the earth?

akshieducation.com

7. If the earth were to rotate faster than its present speed, the weight of an object

will

	1) Increase at the equator but remain unchanged at the poles					
	2) Decrease at the equator but remain unchanged at the poles					
	3) Remain unchanged at the equator but decrease at the poles					
	4) Remain unchanged at the e	equator but increase at t	he poles			
8.	If earth suddenly shrinks to half of its present value, mass remaining unchanged,					
	and then acceleration due to gravity at its surface with compare to the original					
	will be			1.		
	1) The same	2) Half	•.0			
	3) Double	4) Quadruple				
9.	If R is radius of the earth, g is mean acceleration due to gravity on its surface,					
	mean density of the earth w	ould be				
	1) $\frac{3g}{4\pi RG}$ 2) $\frac{4g}{3\pi RG}$	$\frac{1}{2}$ 3) $\frac{4G}{2R}$		4) $\frac{3G}{4\pi Rg}$		
	4πRG 3πRC	3πκg		4πRg		
10.	0. The change in the value of 'g' at a height 'h' above the surface of the earth is					
	the same as at a depth 'd' below the surface of the earth. When both d & h are					
	very much smaller than the radius of the earth, then which one of the following					
	is correct?					
	1) d=h 2) d=	2h 3) d=	$=\frac{3h}{2}$	$A \setminus d = h$		
	. The mass and diameter of a planet are two times those of earth. If a second's					
11	The mass and diameter of	f a nlanet are two tim	2	2		
11.		_	es those of	earth. If a second's		
11.	pendulum is taken to it, the	e time period of the pe	es those of cendulum in s	earth. If a second's econds is		
11.		e time period of the pe	es those of	earth. If a second's econds is		
11.	pendulum is taken to it, the 1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{2}$	e time period of the pe	es those of $\frac{2}{2}$	earth. If a second's econds is 4) $\sqrt{2}$		
	pendulum is taken to it, the 1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{2}$ A person can jump safely	e time period of the period of 2m of 2	tes those of condulum in so $\sqrt{2}$ on the earth.	earth. If a second's econds is 4) $\sqrt{2}$ On a planet where		
	pendulum is taken to it, the 1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{2}$ A person can jump safely acceleration due to gravity	e time period of the period of 2m of 2	tes those of condulum in so $\sqrt{2}$ on the earth.	earth. If a second's econds is 4) $\sqrt{2}$ On a planet where		
	pendulum is taken to it, the 1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{2}$ A person can jump safely	e time period of the period of	es those of $\sqrt{2}$ on the earth.	earth. If a second's econds is 4) $\sqrt{2}$ On a planet where		
	pendulum is taken to it, the 1) $\frac{1}{\sqrt{2}}$ 2) $\frac{1}{2}$ A person can jump safely acceleration due to gravity jump safely 1) 8m 2) 4m	e time period of the period of	tes those of $\sqrt{2}$ on the earth. mum height	earth. If a second's econds is 4) $\sqrt{2}$ On a planet where from which he can		

13.	The acceleration due to gravity at the latitude 45° on the earth becomes zero if						
	the angular velocity of rotation of earth is equal to						
	1) $\sqrt{\frac{2}{gR}}$	$2) \sqrt{2gR}$	3) $\sqrt{\frac{2g}{R}}$	4) $\sqrt{\frac{5R}{2}}$			
14.	At what height, the value of 'g' is half that on the surface of the earth of radius						
	R?						
	1) R	2) 2R	3) 0.414F	R 4) 0.75R			
15.	The masses of two	planets are in tl	ne ratio 1: 2. Thei	radii are in the ratio 1: 2.			
	The acceleration due to gravity on the planets is in the ratio						
	1)1: 2	2) 2:1	3)3: 5	4)5: 3			
16.	If earth is supposed	d to be a sphere	of radius R, if g ₃₀	is value of acceleration due			
to gravity at latitude of 30° and g at the equator, the value of $g - g_{30^o}$ is							
	$1) \frac{1}{4}\omega^2 R$	$2) \frac{3}{4}\omega^2 R$	$3)\omega^2R$ 4)	$\frac{1}{2}\omega^2 R$			
17. If the density of a small planet is the same as that of earth, while the radius of							
the planet is 0.2 times that of the earth, the gravitational acceleration on the							
\$	surface of that plane	et is					
	1) 0.2 g	2) 0.4 g	3)2 g	4)4 g			
18. Acceleration due to gravity on moon is 1/6 of the acceleration due to gravity							
on earth. If the ratio of densities of earth (ρ_e) and moon (ρ_m) is $\left(\frac{\rho_e}{\rho_m}\right) = \frac{5}{3}$ then							
radius of moon R_m in terms of R_e will be							
	1) $\frac{5}{18}R_e$	2) $\frac{1}{6}R_e$	$3)\frac{3}{18}$ K	$4)\frac{1}{2\sqrt{3}}R_e$			
19. If the value of 'g' acceleration due to gravity, at earth surface is $10 m/s^2$, its value							
	in m/s^2 at the centre of the earth, which is assumed to be a sphere of radius 'R'						

3)10/2R

4) Zero

meter and uniform mass density is

2) 10/R

1) 5

- 20. A research satellite of mass 200 kg circles the earth in an orbit of average radius 3R/2 where R is the radius of the earth. Assuming the gravitational pull on a mass of 1 kg on the earth's surface to be 10 N, the pull on the satellite will be
 - 1) 880 N
- 2) 889 N
- 3) 890 N
- 4) 892 N

Key

- 1) 4
- 2) 1
- 3) 2 4) 3 5) 4

- 9) 1 10)2

- 11) 4
- 12) 1
- 13) 3
- 14) 3 15) 2

- 18) 1

5.
$$g^1 = g \left(\frac{R}{R+h}\right)^2 \implies w^1 = W \left(\frac{R}{R+h}\right)^2$$

$$\frac{64}{100} = \left(\frac{R}{R+h}\right)^2 \Rightarrow h = \frac{R}{4}$$

10.
$$h < R$$
, $d < R$
If $g_h = g_d$, then $g\left(1 - \frac{2h}{R}\right) = g\left(1 - \frac{d}{R}\right)$

$$d = 2h$$

11.
$$g \propto \frac{M}{R^2}$$
, $g_p = g \left(\frac{M_p}{M_e}\right) \times \left(\frac{R_e}{R_p}\right)^2 = g \times 2 \times \frac{1}{4} = \frac{g}{2}$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

12.
$$h \propto \frac{1}{g}$$

$$\frac{h_p}{h_e} = \frac{g_e}{g_p} \Rightarrow h_p = 2\frac{(9.8)}{2.45} = 8m$$

13.
$$g_p = \mathbf{g} = \mathbf{r} \omega^2 \cos^2 \theta$$

$$g_{45^0} = g - R\omega^2 \cos^2 45^0 = 0$$

$$g - \frac{R\omega^2}{2} = \mathbf{0} \implies \omega = \sqrt{\frac{2g}{R}}$$

$$14. \quad \frac{g_h}{g} = \frac{R^2}{\left(R+h\right)^2}$$

15.
$$\frac{g'}{g} = \frac{M'}{M} \times \frac{R^2}{R'^2} = \frac{1}{2} \times \frac{4}{1} = \frac{2}{1}$$

Acceleration due to gravity at latitude λ is given by 16.

$$g' = g - R\omega^2 \cos^2 \lambda$$

At 30°,
$$g_{30^{\circ}} = g - R\omega^2 \cos^2 30^{\circ} = g - \frac{3}{4}R\omega^2$$

$$\therefore g - g_{30} = \frac{3}{4}\omega^2 R.$$

17. $g = \frac{4}{3}\pi GR\rho$ and $g' = \frac{4}{3}\pi GR'\rho$

$$\therefore \frac{g'}{g} = \frac{R'}{R} = 0.2 \implies g' = 0.2 g$$

18.
$$g = \frac{4}{3}\pi G \rho R \implies g \propto \rho R \Rightarrow \frac{g_e}{g_m} = \frac{\rho_e}{\rho_m} \times \frac{R_e}{R_m}$$

$$\Rightarrow \frac{6}{1} = \frac{5}{3} \times \frac{R_e}{R_m} \Rightarrow R_m = \frac{5}{18}R$$

$$\Rightarrow \frac{6}{1} = \frac{5}{3} \times \frac{R_e}{R_m} \Rightarrow R_m = \frac{5}{18} R_e$$

$$20. \qquad g' = g \left(\frac{R}{R+h}\right)^2 = g \left(\frac{R}{3R/2}\right)^2 = \frac{4}{9} g$$

$$\therefore W' = \frac{4}{9} \times mg = \frac{4 \times 200 \times 9.8}{9} = 880 \ N$$