Connected Bodies

1. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be

1) $20 \mathrm{~kg}-\mathrm{wt}$
2) $10 \mathrm{~kg}-\mathrm{wt}$
3) Zero
4) $5 \mathrm{~kg}-\mathrm{wt}$
2. In the given arrangement, for the system to remain under equilibrium, the " should be (IIT 2001)

1) 0^{0}
2) 30^{0}
3) 45^{0}
4) 60^{0}
3. Two blocks of masses 10 kg and 20 kg are connected by a mass less spring and are placed on a smooth horizontal surface. A force of 200 N is applied on 20 kg mass as shown in the diagram. At the instant, the acceleration of $\mathbf{1 0} \mathbf{~ k g}$ mass is $12 \mathrm{~ms}^{-2}$, the acceleration of 20 kg mass is

1) $4 \mathrm{~ms}^{-2}$
2) $12 \mathrm{~ms}^{-2}$
3) $20 \mathrm{~ms}^{-2}$
4) $8 \mathrm{~ms}^{-2}$
4. A block of mass 10 kg lying on a smooth horizontal surface is being pulled by means of a rope of mass 2 kg . If a force of 36 N is applied at the end of the rope, the tension at the midpoint of the rope is
1) 33 N
2) 30 N
3) 24 N
4) 12 N
5. Ten coins each of mass $10 \mathbf{g m}$ are placed one above the other. The reaction force exerted by $7^{\text {th }}$ coin from the bottom on the $8^{\text {th }} \operatorname{coin}$ is $\left(g=10 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}\right.$)
1) 0.3 N
2) 0.2 N
3) 0.4 N
4) 0.7 N
6. A block of mass $m_{1}=4 \mathrm{~kg}$ lying on a plane inclined at an angle of $30^{\mathbf{0}}$, is connected to another freely suspended block of mass $\mathbf{m}_{2}=6 \mathrm{~kg}$ with the help of a string passing over a smooth pulley as shown in the figure. The acceleration of each block is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

1) $8 \mathrm{~m} / \mathrm{s}^{2}$
2) $5 \mathrm{~m} / \mathrm{s}^{2}$
3) $4 \mathrm{~m} / \mathrm{s}^{2}$
4) $1 \mathrm{~m} / \mathrm{s}^{2}$
7. A dynamometer D is attached to two blocks of masses $\mathbf{6 ~ k g}$ and 4 kg . Forces of 20 N and 10 N are applied on the blocks as shown in Fig. The dynamometer reads

1) 10 N
2) 20 N
3) 6 N
4) 14 N
8. In the arrangement shown in the figure, the ratio of tensions $T_{1}: T_{2}: T_{3}$ is,

$$
\xrightarrow[40 \mathrm{~kg}]{\mathrm{T}_{1}} \sqrt{30 \mathrm{~kg}} \stackrel{\mathrm{~T}_{2}}{20 \mathrm{~kg}} \cdot \sqrt{\mathrm{~T}_{3}} \xrightarrow{10 \mathrm{~kg}} \xrightarrow{\mathrm{~F}}
$$

1) $2: 3: 4$
2) $4: 3: 2$
3) $9: 7: 4$
4) $4: 7: 9$

9 . The monkey B shown in figure is holding on to the tail of the monkey A which is climbing up a rope. The masses of the monkeys A and B are $5 \mathbf{k g}$ and $2 \mathbf{~ k g}$ respectively. If A can tolerate a tension of 30 N in its tail, what force should it apply on the rope in order to carry the monkey B with it? [Take $g=10 \mathrm{~ms}^{-2}$].

1) Between 70 N and 105 N
2) Between 50 N and 69 N
3) Between 30 N and 50 N

4) Between 106 N and 116 N
10. If a_{1} and a_{2} are the accelerations in the first and second cases, the ratio $a_{1}: a_{2}$ is

1) $10: 1$
2) $20: 1$
3) $10: 3$
4) $1: 20$
11. A man of mass 60 kg is standing on a weighing machine kept in a box of mass 30 kg as shown in the diagram. If the man manages to keep the box stationary the reading in the weighing machine is

1) 100 N
2) 150 N
3) 200 N
4) 250 N
12. A uniform rod of length 60 cm and mass 6 kg is acted upon by two forces as shown in the diagram. The force exerted by 45 cm part of the rod on 15 cm part of the rod is

1) 10 N
2) 17 N
3) 27 N
4) 24 N
13. Three equal masses A, B and C each 2 kg connected by strings are arranged as shown in the figure. Assuming the pulley to be smooth and mass less, the tension in the string connecting B and C is nearly

1) 12 N
2) 17.7 N
3) 24.2 N
4) 13.3 N
14. In the arrangement shown in the figure, the acceleration of the mass is, (Ignore friction)

1) $a=\frac{F}{2 M}$
2) $a=\frac{F}{M}$
3) $a=\frac{3 F}{2 M}$
4) $a=\frac{2 F}{M}$
15. Two blocks of masses ' $3 m$ ' and ' $2 m$ ' are in contact on a smooth table. A force P is first applied horizontally on block of mass ' 3 m ' and then on mass ' 2 m '. The contact forces between the two blocks in the two cases are in the ratio
1) $1: 1$
2) $2: 1$
3) $1: 3$
4) $2: 3$
16. The block is placed in a frictionless surface in gravity free space. A heavy string of a mass \mathbf{m} is connected and force F is applied on the string, then the tension at the middle of rope is

17. $\frac{\left(\frac{m}{2}+M\right) \cdot F}{m+M}$
18. $\frac{\left(\frac{M}{2}+m\right) \cdot F}{m+M}$
19. zero
20. $\frac{M \cdot F}{m+M}$
21. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle should be

22. 0^{0}
23. 30^{0}
24. 45^{0}
25. 60^{0}
26. A string of negligible mass going over a clamped pulley of mass \boldsymbol{m} supports a block of mass M as shown in the figure. The force on the pulley by the clamp is given by

27. $\sqrt{2} \mathrm{Mg}$
28. $\sqrt{2} \mathrm{mg}$
29. $\sqrt{(M+m)^{2}+m^{2} g}$
30. $\left(\sqrt{(M+m)^{2}+M^{2}}\right) g$

Key

1) 2
2) 3
3) 1
4) 1
5) 1
6) 3
7) 4
8) 4
9) 1
10) 1
11) 2
12) 3
13) 4
14) 1
15) 4
16)1
16) 3
17) 4

Hints

1. As tension is same both will read same weight of 10 kgwt i.e.

$$
T=\frac{2 m_{1} m_{2}}{m_{1}+m_{2}} g
$$

2. $\mathrm{T}=\mathrm{Mg} \quad 2 T \cos \theta=\sqrt{2} \mathrm{Mg}$
$2(M g) \cos \theta=\sqrt{2} M g \quad \cos \theta=\frac{\sqrt{2}}{2}$
$\cos \theta=\frac{1}{\sqrt{2}}$
$\theta=45^{0}$
3. $\mathrm{T}=10 \mathrm{a}=10 \times 12$,
$\mathrm{T}=120 \mathrm{~N}$
$200-T=20 a$,
$200-120=20 \mathrm{a}$
$80=20 a$,
$\mathrm{a}=4 \mathrm{~ms}^{-2}$
4. $T=\left(M+\frac{m}{2}\right) a \quad \mathrm{a}=\frac{\mathrm{F}}{M+m}$

$$
T=\left(10+\frac{2}{2}\right) \cdot\left(\frac{36}{10+2}\right),=11 \times 3=33 \mathrm{~N}
$$

5. $=2 \mathrm{mg}+\mathrm{mg}$

$$
=3 \mathrm{mg}=3 \times 10^{-2} \times 10=0.3 \mathrm{~N}
$$

6.

$$
\begin{array}{ll}
6 \mathrm{a}=6 \mathrm{~g}-\mathrm{T}-1 & 4 \mathrm{a}=\mathrm{T}-4 \mathrm{~g} \times \frac{1}{2} \\
4 \mathrm{a}=\mathrm{T}-2 \mathrm{~g}-2 & 10 \mathrm{a}=4 g \\
a=\frac{4 g}{10}=4 m s^{-2}
\end{array}
$$

www.sakshieducation.com

7. $20-\mathrm{D}=6 \mathrm{a}, \quad \mathrm{D}-10=4 \mathrm{a}$

$$
\begin{array}{ll}
10=10 a & a=1 \mathrm{~ms}^{-2} \\
D-10=4(1) & D=14 N
\end{array}
$$

8. $\quad T_{1}=\frac{40}{100} F \quad T_{2}=\frac{70}{100} F \quad T_{3}=\frac{90}{100} F$

$$
\mathrm{T}_{1}: \mathrm{T}_{2}: \mathrm{T}_{3}=4: 7: 9
$$

9., $\mathrm{T}=2 \mathrm{~g}$

But given $T=30 \mathrm{~N}$ ' A ' is climbing with acc ' a '
$T-2 g=2 a$
$30-20=2 \mathrm{a}, \mathrm{a}=5 \mathrm{~ms}^{-2}$
$\mathrm{T}^{1}-\mathrm{T}-5 \mathrm{~g}=5 \mathrm{a} \quad \mathrm{T}^{1}=\mathrm{T}+5 \mathrm{~g}+5 \mathrm{a}$
$\mathrm{T}^{1}=30+50+5(5) \quad \mathrm{T}^{1}=105 \mathrm{~N}$
10. $3 m g-m g=m\left(a_{1}\right), a_{1}=2 g$

$$
\begin{aligned}
& a_{2}=\left(\frac{3 m-2 m}{3 m+2 m}\right) g \\
& a_{2}=\frac{g}{5} \quad \frac{a_{1}}{a_{2}}=\frac{10}{1}
\end{aligned}
$$

11. $\mathrm{T}=\mathrm{R}+30 \mathrm{~g}, \mathrm{~T}+\mathrm{R}=60 \mathrm{~g}$

$$
\begin{aligned}
& 2 \mathrm{~T}=90 \mathrm{~g}, \\
& \mathrm{R}=\mathrm{T}-30 \mathrm{~g}, \quad \mathrm{R}=45 \mathrm{~g}-30 \mathrm{~g}=15 \mathrm{~g} \\
& \mathrm{R}=150 \mathrm{~N}
\end{aligned}
$$

12. $F=F_{1}+\frac{l_{1}}{L}\left(F_{2}-F_{1}\right)=45+\frac{45}{60}(21-45)$

$$
=45+\frac{3}{4}(-24)=45-18=27 \mathrm{~N}
$$

13. $a=\frac{2 m g-m g}{3 m}=\frac{g}{3} \quad \mathrm{mg}-\mathrm{T}_{2}=\mathrm{ma}$

$$
m g-m\left(\frac{g}{3}\right)=T_{2} \quad \frac{2 m g}{3}=T_{2}
$$

$$
\frac{2 \times 2 \times 10}{3}=T_{2} \rightarrow T_{2}=\frac{40}{3}=13.3 \mathrm{~N}
$$

14. $2 \mathrm{~T}=\mathrm{F} \quad T=\frac{F}{2}$
$\mathrm{T}=\mathrm{Ma} \quad \frac{F}{2}=M a$
$a=\frac{F}{2 M}$
15. $\quad F_{1}=\left(\frac{2 m}{5 m}\right) p \quad F_{2}=\left(\frac{3 m}{5 m}\right) p$
$F_{1}=\frac{2}{5} P \quad F_{2}=\frac{3}{5} P$
$\frac{F_{1}}{F_{2}}=\frac{2}{3}$
16. $a=\frac{F}{M+m}$
$T=\left(\frac{m}{2}+M\right) a$
17. $\mathrm{T}=\mathrm{mg} \quad 2 T \cos \theta=\sqrt{2} \mathrm{mg}$
18. $\mathrm{F}=$ Resultant of three forces

