LIMITS

SYNOPSIS

LIMIT OF A REAL FUNCTION:

$\mathrm{f}(\mathrm{x})$ be a function defined in a deleted nbd of ' a ' and $l \in \mathrm{R}$, for each $\in>0$, there exists $\delta>0$ such that $0<|\mathrm{xa}|<\mathrm{a}<\mathrm{x}<\mathrm{a}+\delta \Rightarrow \mid \mathrm{f}(\mathrm{x})-l\} \mathrm{k}<\in$ then l is called the limit of $\mathrm{f}(\mathrm{x})$ at ' a ' then we write it as $\underset{x \rightarrow a}{L t} \mathrm{f}(\mathrm{x})=l$

RIGHT LIMIT OF ' F ' AT 'A':

For each $. \in>0$, there exist $\delta>0$ such that $\mathrm{a}<\mathrm{x}<\mathrm{a}+\delta \Rightarrow|\mathrm{f}(\mathrm{x})-l|<\epsilon$, then l is called right limit of $\mathrm{f}(\mathrm{x})$ at ' a '. Then we write it $\underset{x \rightarrow a+}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=l$.

LEFT LIMIT OF ' F ' AT ' A ':
for each $\in>0$, there exists a $\delta>0$ such that $\mathrm{a}-\delta<\mathrm{x}<\mathrm{a} \Rightarrow|\mathrm{f}(\mathrm{x})-l|<\epsilon$ then l is called left limit of ' f ' at ' a '. Then we write it is $\underset{x \rightarrow a-}{L t} \mathrm{f}(\mathrm{x})=l$.

Note: if $\underset{x \rightarrow a-}{L t} \mathrm{f}(\mathrm{x})=\underset{x \rightarrow a+}{L t} \mathrm{f}(\mathrm{x})=l$, then we say that limit of $\mathrm{f}(\mathrm{x})$ exists at $\mathrm{x}=\mathrm{a}$ in this case limit is denoted by $\underset{x \rightarrow a}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}): \underset{x \rightarrow a}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=l$.

InFINITE LIMIT:

Let ' f ' be a function defined in a deleted nbd of ' a '. If for every $\mathrm{k}>0$ (how ever larger) $\exists \delta>$ 0 such that $0<|\mathrm{x}-\mathrm{a}|<\delta \Rightarrow \mathrm{f}(\mathrm{x})>\mathrm{k}$ then we write $\underset{x \rightarrow a}{L t} \mathrm{f}(\mathrm{x})=\propto$.

1. $\operatorname{Lt}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=$ n. $a^{n-1}, n \in Q$
2. $\operatorname{Lt}_{x \rightarrow 0} \frac{e^{x}-1}{x}=1, \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{m x}-1}{x}=m, \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{m x}-1}{e^{n x}-1}=\frac{m}{n}$.
3. $\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-1}{x}=\log _{e} a($ or $\log a)$.
4. $\operatorname{Lt}_{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}=\log \left(\frac{a}{b}\right)$
5. $\operatorname{Lt}_{x \rightarrow 0}(1+x)^{\frac{1}{x}}=e, \operatorname{Lt}_{x \rightarrow 0}^{\operatorname{Lt}}(1+a x)^{\frac{1}{x}}=e^{a}$
6. $\operatorname{Lt}_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e, \operatorname{Lt}_{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}$,

$$
\operatorname{Lt}_{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{\mathrm{an}+\mathrm{b}}\right)^{\mathrm{cn+d}}=\mathrm{e}^{\mathrm{c} / \mathrm{a}}
$$

$$
\operatorname{Lt}_{x \rightarrow \infty}\left(\frac{x+p}{x+q}\right)^{x+n}=e^{p-q}
$$

7. $\operatorname{Lt}_{x \rightarrow \infty}\left(\frac{x^{2}+p x+r}{x^{2}+q x+d}\right)^{c x+d}=e^{c(p-q)}$
8. $\underset{x \rightarrow-\infty}{\operatorname{Lt}}\left(1-\frac{1}{x}\right)^{x}=\mathrm{e}^{-1}$
9. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\log (1+p x)}{x}=p$
10. $\operatorname{Ltt}_{x \rightarrow 0}\left(\frac{a_{1}^{x}+a_{2}^{x}+\ldots . a_{n}^{x}}{n}\right)^{\frac{1}{x}}=\sqrt[n]{a_{1} a_{2} a_{3} \ldots a_{n}}$
11. $\operatorname{Lt}_{x \rightarrow \infty}\left(\sqrt{x^{2}+a x+b}-x\right)=\frac{a}{2}$
12. If $\mathrm{a}>\mathrm{b}$, then $\underset{\mathrm{x} \rightarrow \infty}{\operatorname{Lt}}\left(\mathrm{a}^{\mathrm{x}}+\mathrm{b}^{\mathrm{x}}\right)^{1 / \mathrm{x}}=\mathrm{a}$
(ii) $\underset{\mathrm{x} \rightarrow \infty}{\mathrm{Lt}} \frac{[\mathrm{ax}+\mathrm{b}]}{\mathrm{x}}=\mathrm{a}$
13. (i) $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{\sum \mathrm{n}^{2}}{\mathrm{n}^{3}}=\frac{1}{3}$
(ii) $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{\sum_{r=1}^{n} r^{\lambda}(\lambda+1)}{n}=\frac{1}{\lambda+1}$
(iii) $\underset{n \rightarrow \infty}{\operatorname{Lt}_{n \rightarrow 1}^{n}\left[r^{\lambda} x\right]}{ }_{n} \lambda+1 \quad=\frac{x}{\lambda+1}$
14. $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\sin \theta}{\theta}=1, \underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\tan \theta}{\theta}=1 \quad(\theta$ is measured in radians)
15. $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\sin a \theta}{\theta}=a, \underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\tan \mathrm{a} \theta}{\theta}=\mathrm{a}$.
16. $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\sin \mathrm{a} \theta}{\sin \mathrm{b} \theta}=\frac{\mathrm{a}}{\mathrm{b}}, \underset{\theta \rightarrow 0}{\mathrm{Lt}} \frac{\tan \mathrm{a} \theta}{\tan \mathrm{b} \theta}=\frac{\mathrm{a}}{\mathrm{b}}$
17. $\underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\sin \theta^{0}}{\theta}=\frac{\pi}{180}, \underset{\theta \rightarrow 0}{\operatorname{Lt}} \frac{\sin \mathrm{a} \theta^{0}}{\theta}=\frac{\mathrm{a} \pi}{180}$.
18. If $\theta \rightarrow \infty, \frac{\sin \theta}{\theta} \rightarrow 0$.

If $\theta \rightarrow \infty, \frac{\cos \theta}{\theta} \rightarrow 0$.
19. i) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\cos a x-\cos b x}{x^{2}}=\frac{b^{2}-a^{2}}{2}$.
ii) $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan ^{n} x-\sin ^{n} x}{x^{n+2}}=\frac{n}{2}$
20. $\operatorname{Lt}_{x \rightarrow 0} \frac{\cos a x-\cos b x}{\cos c x-\cos d x}=\frac{b^{2}-a^{2}}{d^{2}-c^{2}}=\frac{a^{2}-b^{2}}{c^{2}-d^{2}}$.
21. $\operatorname{Lt}_{x \rightarrow 0} \frac{\sin ^{-1} x}{x}=1, \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\tan ^{-1} x}{x}=1$.
22. $\operatorname{Lt}_{x \rightarrow 0} \log _{\text {sinqx }} \sin p x=1$
23. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos m x}{x^{2}}=\frac{m^{2}}{2}, \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos m x}{1-\cos n x}=\frac{m^{2}}{n^{2}}$.
24. If $|r|<1$ then $r^{n} \rightarrow 0$ as $n \rightarrow \infty$.
25.(i) If $\mathrm{r}>1, \mathrm{r}^{\mathrm{n}} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$.
(ii) $\underset{\mathrm{L}_{\mathrm{x} \rightarrow \infty}}{ } \frac{\mathrm{a}_{0} \mathrm{x}^{m}+\mathrm{a}_{1} \mathrm{x}^{\mathrm{m}-1}+\ldots .+\mathrm{a}_{\mathrm{n}}}{\mathrm{b}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{b}_{1} \mathrm{x}^{\mathrm{n}-1}+\ldots . .+\mathrm{b}_{\mathrm{n}}}=\frac{\mathrm{a}_{0}}{\mathrm{~b}_{\mathrm{o}}}(\mathrm{m}=\mathrm{n})$

$$
\begin{aligned}
& =0(\mathrm{~m}<\mathrm{n}) \\
& =\infty\left(\mathrm{m}>\mathrm{n}, \mathrm{a}_{0}>0\right) \\
& =-\infty\left(\mathrm{m}>\mathrm{n}, \mathrm{a}_{0}<0\right)
\end{aligned}
$$

(iii) If m and n are positive integers then $\operatorname{Lt}_{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}}=1(m=n)$

$$
\begin{aligned}
& \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin x^{n}}{(\sin x)^{m}}=0(n>m) \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{\sin x^{n}}{(\sin x)^{m}}=\infty(n<m)
\end{aligned}
$$

26. As $\mathrm{x} \rightarrow \infty, \mathrm{e}^{\mathrm{x}} \rightarrow \infty$ and $\mathrm{e}^{-\mathrm{x}} \rightarrow 0$.
27. $\operatorname{Lt}_{x \rightarrow a}^{\operatorname{Lt}} f(x)$ exists if $\underset{x \rightarrow a^{-}}{\operatorname{Lt}} f(x)=\operatorname{Lt}_{x \rightarrow a^{+}} f(x)$.
28. $\underset{x \rightarrow 0-}{\operatorname{Lt}} \frac{1}{x}=-\infty, \underset{x \rightarrow 0+}{\operatorname{Lt}} \frac{1}{x}=\infty$. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1}{x}$ does not exist.
29. $\underset{x \rightarrow 0-}{\operatorname{Lt}} e^{\frac{1}{x}}=0, \underset{x \rightarrow 0+}{\operatorname{Lt}} e^{\frac{1}{x}}=\infty$.
$\operatorname{Lt}_{x \rightarrow 0} \mathrm{e}^{\frac{1}{x}}$ does not exist.
30. $\underset{\mathrm{x} \rightarrow 0}{\mathrm{Lt}} \frac{|\mathrm{x}|}{\mathrm{x}}$ does not exist. $\underset{\mathrm{x} \rightarrow 0^{+}}{\mathrm{Lt}} \frac{|\mathrm{x}|}{\mathrm{x}}=1, \underset{\mathrm{x} \rightarrow 0^{-}}{\mathrm{Lt}} \frac{|\mathrm{x}|}{\mathrm{x}}=-1$
31. $\underset{x \rightarrow 0}{\operatorname{Lt}} x \sin \frac{1}{x}=0$ while $\underset{x \rightarrow 0}{\operatorname{Lt}} \sin \frac{1}{x}$ does not exist.
32. $\operatorname{Lt}_{x \rightarrow n}[x]$ does not exist if n is an integer and $\underset{x \rightarrow n}{\operatorname{Lt}}[x]$ exists if n is not an integer.
33. Indeterminate forms

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \times \infty, \infty-\infty, 0^{0}, 1^{\infty}, 0^{\infty}
$$

34. L. Hospital rule

If $\frac{f(a)}{g(a)}$ is of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$; then
$\operatorname{Lt}_{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{1}(a)}{g^{1}(a)}, g^{1}(a) \neq 0$
Suppose $\frac{\mathrm{f}^{1}(\mathrm{a})}{\mathrm{g}^{1}(\mathrm{a})}$ is also of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then
$\underset{x \rightarrow a}{\operatorname{Lt}} \frac{f(x)}{g(x)}=\frac{f^{11}(a)}{g^{11}(a)}$ and so on till we get the limit
35. The indeterminate form $0 . \infty$: -

Let $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=0, \underset{x \rightarrow a}{\operatorname{Lt}} g(x)=\infty$, then
$\operatorname{Lt}_{x \rightarrow a}[f(x) \cdot g(x)]=\underset{x \rightarrow a}{\operatorname{Lt}} \frac{f(x)}{[g(x)]^{-1}}$; which is in the form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Now the limit easily can be found.
36. The indeterminate forms:- $0^{0}, 0^{\infty}, \infty^{0}, 1^{\infty}$

The limit of above indeterminate forms can be found as given below

$$
\operatorname{Lt}_{x \rightarrow a}[f(x)]^{g(x)}=e^{k} \text {, where } k \text { is given by } k=\operatorname{Lt}_{x \rightarrow a} g(x) \cdot \log f(x)
$$

37. If $\operatorname{lt}_{x \rightarrow a} f(x)=1$ and $\operatorname{lt}_{x \rightarrow a} g(x)=\infty$, then $\operatorname{lt}_{x \rightarrow a}[f(x)]^{g(x)}=e^{\operatorname{lt}_{x \rightarrow a} g(x)[f(x)-1]}$
