STRAIGHT LINE

SYNOPSIS AND FORMULAE

1. Inclination of a Line

i. The angle between the line and the positive direction of x-axis is called the inclination of the line.

ii. If ' θ ' is the inclination of a ling the $\theta \pm \frac{\pi}{2}$ is the inclination of its perpendicular line according at θ is acute or obtuse.

iii. Inclination of parallel lines are equal.

2. Slope of Line

- i. If ' θ ' is the inclination of a line, then 'tan θ ' is called its 'slope' and is denoted by 'm'.
- ii. The slope of a horizontal line (i.e. a line parallel to x-axis) is zero.
- iii. The slope of a vertical line (i.e. a line perpendicular to x-axis) is not defined.
- iv. The slopes of parallel line are equal.
- v. If m_1 , m_2 are the slopes of two mutually perpendicular lines, then $m_1m_2 = -1$ (non vertical).

vi. The slope of a line passing through A(x₁, y₁), B(x₂, y₂) is $\frac{y_1 - y_2}{x_1 - x_2}$, when x₁ \neq x₂.

vii. If a line cuts x-axis at A (a, 0) and y-axis at B (0, b), then the slope of AB is $\frac{-b}{a}$, where

'a' is the x-intercept and 'b' is the y-intercept.

3. Different forms of a Straight Line

i. Slope-intercept Form: equation of the line having slope 'm' and y-intercept 'c is

y = mx + c.

ii. Point-Slope Form : equation of the line having slope 'm' and passing through the point

$$(x_1, y_1)$$
 is $y - y_1 = m(x - x_1)$

iii. Two-point Form: Equation of the line passing through points (x_1, y_1) and (x_2, y_2) is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1).$$

iv. Intercept Form: Equation of the line which has x-intercept 'a and y-intercept 'b' is

$$\frac{x}{a} + \frac{y}{b} = 1.$$

v. Normal or perpendicular form: Equation of the line having 'p' as its perpendicular distance from the origin and ' α ' as the inclination of its normal from the origin, is $x \cos \alpha + y \sin \alpha = p$, ($0 \le \alpha < 360$).

vi. Symmetric Form: Equation of the line passing through (x_1, y_1) and having inclination ' θ ' with the x-axis is $\frac{x-x_1}{\cos\theta} = \frac{y-y_1}{\sin\theta} = \pm r$ where $\theta \pm \frac{n\prod}{2}$ and 'r' is the distance of (x_1, y_1) from (x, y) along the lien. The parametric equations of symmetric form are $x = x_1 + r \cos \theta$, $y = y_1 + r \sin \theta$, where $|\mathbf{r}|$ is the distance between (x, y) and (x_1, y_1) .

4. General form of Straight Line:

Every first degree equation in x and y is ax + by + c = 0, $(a, b) \neq (0, 0)$ represents a straight line.

i. Slope of the line $= \frac{-a}{b}$ ii. X-intercept $= \frac{-c}{a}$. iii. y-intercept $= \frac{-c}{b}$.

iv. Area of the triangle formed by this line and the coordinate axes = $\frac{c^2}{2|ab|}$.

www.sakshieducation.com

v. Length of the perpendicular from the origin is $\frac{|c|}{\sqrt{a^2+b^2}}$

vi. Length of the perpendicular from (x_1, y_1) is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

vii. The distance between the parallel lines $ax + by + c_1 = 0$, $ax + by + c_1 = 0$ is $\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$.

5. Equation of the line passing though (x_1, y_1) :

i. And parallel to ax + by + c = 0 is $a(x - x_1) + b(y - y_1) = 0$.

ii. And perpendicular to ax + by + c = 0 is $b(x - x_1) - a(y - y_1) = 0$.

- 6. If slopes of two lines are m₁, m₂ and θ is the acute angle between them, then $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|.$
- 7. Equation of any line passing through (x_1, y_1) and making an angle α with the line ax + by + c = 0 is $y y_1 = \tan(\theta \pm \alpha) (x x_1)$, where $\tan \theta = \frac{-b}{a}$.

8. Let the equations of two lines be L₁ = a₁x + b₁y + c₁ = 0 and L₂ = a₂x + b₂y + c₂ = 0.
i. any line passing through the intersection of L₁ = 0 and L₂ = 0 is L₁ + λL₂ = 0.

ii. The point of intersection of $L_1 = 0$, $L_2 = 0$ is $\left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \frac{c_1a_2 - c_2a_1}{a_{1b_2 - a_2b_1}}\right)$.

iii. If θ is the acute angle between $L_1 = 0$, $L_2 = 0$ then $\cos \theta = \frac{|a_1a_2 + b_1b_2|}{\sqrt{a_1^2 + b_1^2}\sqrt{a_2^2 + b_2^2}}$,

$$\tan \theta = \left| \frac{a_1 b_2 - a_2 b_1}{a_1 a_2 + b_1 b_2} \right| \text{ and } \sin \theta = \frac{\left| a_1 b_2 - a_2 b_1 \right|}{\sqrt{a_1^2 + b_1^2} \sqrt{a_2^2 + b_2^2}}.$$

iv. Condition for L₁ = 0, L₂ = 0 to be parallel is $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

v. Condition for $L_1 = 0$, $L_2 = 0$ to be perpendicular is $a_1a_2 + b_1b_2 = 0$.

vi. Condition for $L_1 = 0$, $L_2 = 0$ to be coincident is $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

- 9. The ration in which L = ax + by + c = 0 divides the line segment joining (x_1, y_1) and (x_2, y_2) is $\frac{-L_{11}}{L_{22}}$ Where $L_{11} = ax_1 + by_1 + c$; $L_{22} = ax_2 + by_2 + c$.
- 10. The points (x_1, y_1) and (x_2, y_2) are on the same side or on the opposite sides of L = 0 according as the signs of L_{11} , L_{22} are the same or different.
- 11. Equation of the angular bisectors of the two lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$.
- 12. i. If c_1 , c_2 are positive, then $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}$ is the bisector of the angle containing the origin.

ii. If c_1 , c_2 are positive, then $\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = -\left(\frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}\right)$ is the bisector of the angle not containing the origin.

iii. In the case of the bisector of the angle containing the origin, the angle between $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_1 = 0$, is acute or obtuse according as $a_1a_2 + b_1b_2 < 0$ or > 0.

- 13. Area of the triangle formed by $y = m_1 x + c_1$, $y = m_2 x + c_2$, $y = m_3 x + c_3$ is $\frac{1}{2} \left| \sum \frac{|c_1 c_2|^2}{m_1 m_2} \right|$.
- 14. Area of the parallelogram ABCD is $\frac{P_1P_2}{\sin\theta}$ where P₁, P₂ are the distance between the parallel sides and θ is the angle between the adjacent sides of the parallelogram.
- 15. Area of the parallelogram flowed by the lines $a_1x + b_1y + c_1 = 0$, $a_1x + b_1y + d_1 = 0$, $a_2x + b_2y + c_2 = 0$, $a_2x + b_2y + d_2 = 0$ is $\left|\frac{(c_1 - d_1)(c_2 - d_2)}{a_1b_2 - a_2b_1}\right|$.

www.sakshieducation.com

- 16. The foot of the perpendicular from (x_1, y_1) on to the line ax + by + c = 0 is $(x_1 + a\lambda, y_1 + b\lambda)$, where $\lambda = -\left(\frac{ax_1 + by_1 + c}{a^2 + b^2}\right)$
- 17. The image of the point (x_1, y_1) w.r.t. the line ax + by + c = 0 is $(x_1 + a\lambda, y_1 + b\lambda)$, where $\lambda = -2\left(\frac{ax_1 + by_1 + c}{a^2 + b^2}\right)$.
- **18.** The distance of the point P(x₁, y₁) from the line ax + by + c = 0 in the direction making an angle θ with x-axis is $\left| \frac{ax_1 + by_1 + c}{a\cos\theta + b\sin\theta} \right|$.
- **19.** Let (x_1, y_1) divide the segment AB between the coordinate axes in the ratio $\lambda : \mu$.

The equation of AB is
$$\frac{\lambda x}{x_1} + \frac{\mu y}{y_1} = \lambda + \mu$$
.

20. In-centre of the triangle formed by lx + my + n = 0 and two coordinate axis is

$$\left(\frac{a|b|}{|a|+|b|+\sqrt{a^2+b^2}}, \frac{b|a|}{|a|+|b|b|+\sqrt{a^2+b^2}}\right)$$
 Where 'a' and 'b' are the intercepts made by the

line on the axis.