STRAIGHT LINE

SYNOPSIS AND FORMULAE

1. Inclination of a Line

i. The angle between the line and the positive direction of x-axis is called the inclination of the line.
ii. If ' θ ' is the inclination of a ling the $\theta \pm \frac{\pi}{2}$ is the inclination of its perpendicular line according at θ is acute or obtuse.
iii. Inclination of parallel lines are equal.

2. Slope of Line

i. If ' θ ' is the inclination of a line, then ' $\tan \theta$ ' is called its 'slope' and is denoted by ' m '.
ii. The slope of a horizontal line (i.e. a line parallel to x-axis) is zero.
iii. The slope of a vertical line (i.e. a line perpendicular to x-axis) is not defined.
iv. The slopes of parallel line are equal.
v. If m_{1}, m_{2} are the slopes of two mutually perpendicular lines, then $m_{1} m_{2}=-1$ (non vertical).
vi. The slope of a line passing through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$, when $\mathrm{x}_{1} \neq \mathrm{x}_{2}$.
vii. If a line cuts x-axis at $A(a, 0)$ and y-axis at $B(0, b)$,then the slope of $A B$ is $\frac{-b}{a}$, where
' a ' is the x-intercept and ' b ' is the y-intercept.

3. Different forms of a Straight Line

i. Slope-intercept Form: equation of the line having slope ' m ' and y-intercept ' c is

$$
\mathrm{y}=\mathrm{mx}+\mathrm{c} .
$$

ii. Point-Slope Form : equation of the line having slope ' m ' and passing through the point

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { is } \mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

iii. Two-point Form: Equation of the line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2} y_{2}\right)$ is

$$
\mathrm{y}-\mathrm{y}_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(\mathrm{x}-\mathrm{x}_{1}\right)
$$

iv. Intercept Form: Equation of the line which has x-intercept 'a and y-intercept 'b' is

$$
\frac{x}{a}+\frac{y}{b}=1 .
$$

v. Normal or perpendicular form: Equation of the line having ' p ' as its perpendicular distance from the origin and ' α ' as the inclination of its normal from the origin, is $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p},(0 \leq \alpha<360)$.
vi. Symmetric Form: Equation of the line passing through ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and having inclination ' θ ' with the x -axis is $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}= \pm \mathrm{r}$ where $\theta \pm \frac{n \Pi}{2}$ and ' r ' is the distance of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ from (x, y) along the lien. The parametric equations of symmetric form are $\mathrm{x}=\mathrm{x}_{1}+\mathrm{r} \cos \theta$, $y=y_{1}+r \sin \theta$, where $|r|$ is the distance between (x, y) and $\left(x_{1}, y_{1}\right)$.

4. General form of Straight Line:

Every first degree equation in x and y is $a x+b y+c=0,(a, b) \neq(0,0)$ represents a straight line.
i. Slope of the line $=\frac{-a}{b}$
ii. X -intercept $=\frac{-c}{a}$.
iii. y -intercept $=\frac{-c}{b}$.
iv. Area of the triangle formed by this line and the coordinate axes $=\frac{c^{2}}{2|a b|}$.
v. Length of the perpendicular from the origin is $\frac{|c|}{\sqrt{a^{2}+b^{2}}}$
vi. Length of the perpendicular from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$.
vii. The distance between the parallel lines $a x+b y+c_{1}=0, a x+b y+c_{1}=0$ is $\frac{\left|c_{1}-c_{2}\right|}{\sqrt{a^{2}+b^{2}}}$.
5. Equation of the line passing though $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$:
i. And parallel to $a x+b y+c=0$ is $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)=0$.
ii. And perpendicular to $a x+b y+c=0$ is $b\left(x-x_{1}\right)-a\left(y-y_{1}\right)=0$.
6. If slopes of two lines are m_{1}, m_{2} and θ is the acute angle between them, then $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$.
7. Equation of any line passing through $\left(x_{1}, y_{1}\right)$ and making an angle α with the line $a x+b y+c=0$ is $y-y_{1}=\tan (\theta \pm \alpha)\left(x-x_{1}\right)$, where $\tan \theta=\frac{-b}{a}$.
8. Let the equations of two lines be $L_{1}=a_{1} x+b_{1} y+c_{1}=0$ and $L_{2}=a_{2} x+b_{2} y+c_{2}=0$.
i. any line passing through the intersection of $L_{1}=0$ and $L_{2}=0$ is $L_{1}+\lambda L_{2}=0$.
ii. The point of intersection of $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0$ is $\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} \cdot \frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1 b_{2}-a_{2} b_{1}}}\right)$.
iii. If θ is the acute angle between $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0$ then $\cos \theta=\frac{\left|a_{1} a_{2}+b_{1} b_{2}\right|}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}}$,
$\tan \theta=\left|\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1} a_{2}+b_{1} b_{2}}\right|$ and $\sin \theta=\frac{\left|a_{1} b_{2}-a_{2} b_{1}\right|}{\sqrt{a_{1}{ }^{2}+b_{1}^{2}} \sqrt{a_{2}{ }^{2}+b_{2}^{2}}}$.
iv. Condition for $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0$ to be parallel is $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
v. Condition for $L_{1}=0, L_{2}=0$ to be perpendicular is $a_{1} a_{2}+b_{1} b_{2}=0$.
vi. Condition for $\mathrm{L}_{1}=0, \mathrm{~L}_{2}=0$ to be coincident is $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$.
9. The ration in which $\mathrm{L}=\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ divides the line segment joining $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $\frac{-L_{11}}{L_{22}}$ Where $L_{11}=a x_{1}+b y_{1}+c ; L_{22}=a x_{2}+b y_{2}+c$.
10. The points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are on the same side or on the opposite sides of $\mathrm{L}=0$ according as the signs of $\mathrm{L}_{11}, \mathrm{~L}_{22}$ are the same or different.
11. Equation of the angular bisectors of the two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=\mathbf{0}$ are $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}}$.
12. i. If $\mathrm{c}_{1}, \mathrm{c}_{2}$ are positive, then $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}=\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}^{2}}}$ is the bisector of the angle containing the origin.
ii. If $\mathrm{c}_{1}, \mathrm{c}_{2}$ are positive, then $\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}^{2}}}=-\left(\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}^{2}}}\right)$ is the bisector of the angle not containing the origin.
iii. In the case of the bisector of the angle containing the origin, the angle between $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{1}=0$, is acute or obtuse according as $a_{1} a_{2}+b_{1} b_{2}<0$ or >0.
13. Area of the triangle formed by $\mathrm{y}=\mathrm{m}_{1} \mathrm{x}+\mathrm{c}_{1}, \mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\mathrm{c}_{2}, \mathrm{y}=\mathrm{m}_{3} \mathrm{x}+\mathrm{c}_{3}$ is $\frac{1}{2}\left|\sum \frac{\left|c_{1}-c_{2}\right|^{2}}{m_{1}-m_{2}}\right|$.
14. Area of the parallelogram ABCD is $\frac{P_{1} P_{2}}{\sin \theta}$ where $\mathrm{P}_{1}, \mathrm{P}_{2}$ are the distance between the parallel sides and θ is the angle between the adjacent sides of the parallelogram.
15. Area of the parallelogram flowed by the lines $a_{1} x+b_{1} y+c_{1}=0, a_{1} x+b_{1} y+d_{1}=0$, $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0, \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{d}_{2}=0$ is $\left|\frac{\left(c_{1}-d_{1}\right)\left(c_{2}-d_{2}\right)}{a_{1} b_{2}-a_{2} b_{1}}\right|$.
16. The foot of the perpendicular from $\left(x_{1}, y_{1}\right)$ on to the line $a x+b y+c=0$ is $\left(\mathrm{x}_{1}+\mathrm{a} \lambda, \mathrm{y}_{1}+\mathrm{b} \lambda\right)$, where $\lambda=-\left(\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}\right)$
17. The image of the point $\left(x_{1}, y_{1}\right)$ w.r.t. the line $a x+b y+c=0$ is $\left(x_{1}+a \lambda, y_{1}+b \lambda\right)$, where $\quad \lambda=-2\left(\frac{a x_{1}+b y_{1}+c}{a^{2}+b^{2}}\right)$.
18. The distance of the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ from the line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ in the direction making an angle θ with x -axis is $\left|\frac{a x_{1}+b y_{1}+c}{a \cos \theta+b \sin \theta}\right|$.
19. Let $\left(x_{1}, y_{1}\right)$ divide the segment $A B$ between the coordinate axes in the ratio $\lambda: \mu$.

The equation of AB is $\frac{\lambda x}{x_{1}}+\frac{\mu y}{y_{1}}=\lambda+\mu$.
20. In-centre of the triangle formed by $l x+m y+n=0$ and two coordinate axis is $\left(\frac{a|b|}{|a|+|b|+\sqrt{a^{2}+b^{2}}}, \frac{b|a|}{|a|+|b| b \mid+\sqrt{a^{2}+b^{2}}}\right)$ Where 'a' and 'b' are the intercepts made by the line on the axis.

