STATISTICS
 MEASURES OF CENTRAL TENDENCY AND DISPERSION CONCEPTUAL QUESTIONS

1. Which one of the following measures is the most suitable one of central location for computing intelligence of students?
a. Mode
b. A.M.
c. G.M.
d. Median

Ans. d
2. Which of the following is not a measure of central tendency.
a. Mean
b. Median
c. Range
d. Mode

Ans. c
3. Which of the following is not a measure of dispersion?
a. Variance
b. Mean Deviation
c. Mode
d. Standard Deviation

Ans. c
4. Classification is the process of arranging data in
a. different columns
b. different rows
c. different columns and rows
d. grouping of related facts in different classes

Ans: d
5. The diagram used to estimate mode graphically is
a. Histogram
b. Frequency curve
c. Ogive
d. Bar diagram

Ans. Ogive
6. Which of the following would you regard as discrete variable
a. height
b. weight
c. time
d. number of persons in family

Ans. d
7. Diagram and graphs are tools of
a. collection of data
b. analysis
c. presentation
d. summarization

Ans. b
8. Each term of data is divided by non-zero number a. In order to obtain the mean of the new data, the original mean is to be \qquad
a. diminished by a
b. increased by a
c. multiplied by a
d. divided by a

Ans. d
9. Adding ' a ' to every term of a series, the arithmetic mean of the series
a. does not change
b. is increased by ' a '
c. is diminished by ' a '
d. none of these

Ans. a
10. Median can be graphically determined from
a. Ogive
b. Histogram
c. Frequency curve
d. Frequency Polygon

Ans c
11. If we draw a perpendicular on the x-axis from the point where both less than and more than curves meet, we get,
a. median
b. mode
c. arithmetic mean
d. quartiles

Ans. a
12. In a histogram with equal class intervals, heights of bars are proportional to \qquad
a. Mid-value of the classes
b. Frequencies of respective classes
c. Cumulative frequencies of the classes
d. Class interval of the classes

Ans. b
13. If a variate x is expressed as a linear function of two variates v and v in the form $x=a u+b v$, then mean \bar{x} of x is
a. $a \bar{u}+b \bar{v}$
b. $\overline{\mathrm{u}}+\overline{\mathrm{v}}$
c. $\mathrm{b} \overline{\mathrm{v}}+\mathrm{a} \overline{\mathrm{u}}$
d. $u+v$

Ans. a
14. In any discrete series (when all the values are not same) the relationship between M.D. about mean and S.D. is
a. M.D. = S.D.
b. M.D. > S.D.
c. M.D. < S.D.
d. M.D. \leq S.D.

Ans. b
15. Sum of absolute deviations about median is
a. least
b. greatest
c. zero
d. equal to median

Ans. a
16. In a symmetrical distribution with a central peak-
a. mean is smaller than median
b. median is smaller than mean
c. mean and median are the same
d. mode is 1

Ans. c
17. If we draw a perpendicular on the x-axis from the point where both less than and more than curves meet, we get,
a. median
b. mode
c. arithmetic mean
d. quartiles

Ans. a
18. If a set of data has zero as an observation, then which one of the following is NOT an appropriate measure of central tendency?
a. arithmetic mean
b. geometric mean
c. median
d. mode

Ans. b
19. The standard deviation is not affected by the change of
a. origin
b. scale
c. origin and scale
d. x-axis

Ans. a
20. Quartile deviation is based on
a. Highest 25% of items
b. Lowest 25% of the items
c. The highest 25% of items
d. Middle 50% of the items

Ans. d
21. The sum of squares of deviations of a set of values is minimum when taken about
a. A.M.
b. Median
c. Mode
d. H.M.

Ans. a
22. The mean deviation from the median is
a. greater than that measured from any other value
b. less than that measured from any other value
c. equal to that measured from any other value
d. maximum if all observations are positive

Ans.b
23. The arithmetic mean of the squares of the first \mathbf{n} natural numbers is
a. $\frac{(\mathrm{n}+1)}{6}$
b. $\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
c. $\frac{\left(\mathrm{n}^{2}-1\right)}{6}$
d. $\frac{n(n+1)(2 n+1)}{6}$

Ans. d

$$
\frac{n(n+1)(2 n+1)}{6 n}=\frac{(n+1)(2 n+1)}{6}
$$

24. A car completes the first half of its journey with a velocity v_{1} and the rest half with velocity v_{2}. Then, the average velocity of the car for the whole journey is
a. $\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}$
b. $\sqrt{\mathrm{v}_{1} \mathrm{v}_{2}}$
c. $\frac{2 \mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{v}_{1}+\mathrm{v}_{2}}$
d. $\frac{v_{1} \times v_{2}}{2}$

Ans. c
25. The mean weight of 9 items is 15 . If one more item is added to the series the mean becomes 16 . The value of 10 th item is
a. 35
b. 30
c. 25
d. 20

Ans. c

$$
\frac{9.15+x}{10}=16 \Rightarrow 135+x=160 \Rightarrow x=25
$$

26. The mean of a set of observation is \bar{x}. If each observation is divided by a, $a_{\neq 1} 0$ and then is increased by 10 , then mean of the new set is
a. $\frac{\bar{x}}{\mathrm{a}}$
b. $\frac{\bar{x}+10}{a}$
c. $\frac{\bar{x}+10 a}{a}$
d. $a \bar{x}+b$

Ans. c
$\frac{\bar{x}}{a}+10=\frac{\bar{x}+10 a}{a}$
27. If the mean of the set of numbers $x_{1}, x_{2}, \ldots \ldots x_{n}$ is ${ }_{x}$, then the mean of the numbers $x_{i}+2 i, 1 \leq i \leq n$ is
a. $\overline{\mathrm{x}}+\mathrm{n}+1$
b. $\bar{x}+2 n$
c. $\bar{x}+2$
d. $\bar{x}+n$

Ans. a
$\frac{x_{1}+2+x_{2}+4 x_{3}+6+\ldots .+x_{n}+2 n}{n}$,

$$
=\frac{\Sigma x_{i}}{n}+\frac{2+4+6+\ldots . .2 n}{n}=\bar{x}+(n+1)
$$

28. If a variable takes the values $0,1,2, \ldots . . n$ with frequencies proportional to the binomial coefficients ${ }^{n} C_{0},{ }^{n} C_{1}, \ldots . . .{ }^{n} C_{n}$ then the mean of the distribution is
a. $\frac{\mathrm{n}(\mathrm{n}+1)}{4}$
b. $\frac{\mathrm{n}}{2}$
c. $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$
d. $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Ans. b

$$
\begin{aligned}
& =\frac{0 . n_{c o}+1 \cdot n_{c 1}+2 . n_{c 2}+3 \cdot n_{c 3}+\ldots \ldots \ldots \ldots \ldots .+n \cdot n_{c n}}{2^{n}}=\frac{n \cdot 2^{n-1}}{2^{n}}=\frac{n}{2} \\
& =\mathrm{n} / 2
\end{aligned}
$$

29. The arithmetic mean of the series ${ }^{n} C_{0},{ }^{n} C_{1},{ }^{n} C_{2}, \ldots . . .{ }^{n} C_{n}$ is
a. $\frac{2^{\mathrm{n}}}{(\mathrm{n}+1)}$
b. $\frac{2^{\mathrm{n}}}{\mathrm{n}}$
c. $\frac{2^{\mathrm{n}-1}}{(\mathrm{n}+1)}$
d. $\frac{2^{n}}{(n-1)}$

Ans. b

$$
\frac{n_{c_{0}}+n_{c_{1}}+n_{c_{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots n_{c_{n}}}{n}=\frac{2^{n}}{n}
$$

30. If a variable takes values $0,1,2, \ldots . ., n$ with frequencies proportional to $\mathrm{q}^{\mathrm{n}},{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{pq}^{\mathrm{n}-1},{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}^{\mathrm{n}-2}, \ldots \ldots . \mathrm{p}^{\mathrm{n}}$ where $\mathbf{p}+\mathrm{q}=1$ then the mean is
a. np
b. nq
c. npq
d. $n p^{2}$

Ans. b
31. Mean of $\mathbf{1 0 0}$ items is 49 . It was discovered that three items which should have been $60,70,80$ were wrongly read as $40,20,50$ respectively. The correct mean is.
a. 48
b. $82 \frac{1}{2}$
c. 80
d. 50

Ans. d

$$
\frac{4900-40-20-50+60+70+80}{100}=\frac{5000}{100}=50
$$

32. If the arithmetic and harmonic means of two numbers are 4.5 and 4 respectively, then one of the number is
a. 5
b. 6
c. 7
d. 4

Ans. b

$$
\frac{a+b}{2}=4.5, \frac{2 a b}{a+b}=4, a+b=9, \mathrm{ab}=18 \Rightarrow \mathrm{a}=6
$$

33. If the median of 21 observations is 40 and if the observations greater than the median are increased by 6 then the median of the new data will be
a. 40
b. 46
c. $46+\frac{40}{21}$
d. $46-\frac{40}{21}$

Ans. a. (no change)
34. In a moderately asymmetrical series, the values of arithmetic mean and mode are at 20.6 and 34.1 respectively. The value of the median is
a. 25.1
b. 28.0
c. 23.4
d. 35.3

Ans. a
Mode $=3$ median -2 mean,
$34.1=3$ median -2 (20.6)
$\Rightarrow 34.1=3$ median -41.2 ,
Median $=\frac{75.3}{3}=25.1$
35. The range of the following set of observations $2,3,5,9,8,7,6,5,7,4,3$ is
a. 11
b. 7
c. 5.5
d. 6

Ans. b
36. In an arranged series of an even number \mathbf{n} of terms, the median is
a. $\left(\frac{\mathrm{n}}{2}\right)$ th term
b. $\left(\frac{\mathrm{n}}{2}+1\right)$ th term
c. the mean of $\left(\frac{\mathrm{n}}{2}\right)$ th and $\left(\frac{\mathrm{n}}{2}+1\right)$ th term
d. $\left(\frac{n}{2}+2\right)$ th term

Ans. c
37. The median of the set of observations $\mathbf{1 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7}$ is
a. 1
b. 7
c. 9
d. 17

Ans. b
$1,3,5,7,11,13,17$
Median $=4^{\text {th }}$ variant in the array ie 7
38. In any discrete series (when all the values are not the same) the relationship between M.D. about mean and S.D. is
a. M.D. = S.D.
b. M.D. \geq S.D.
c. M.D. < S.D.
d. M.D. \leq S.D.

Ans. d
39. The mode of the data $3,2,5,1,3,2,2,7,1,5,4,5,6,5,9,5,3,5$ is
a. 5
b. 3
c. 7
d. 9

Ans. a

$$
3,3,3, \quad 2,2,2, \quad 5,5,5,5,5,5, \quad 1,1,7,4,6,9, \text { mode }=5
$$

40. The standard deviation of the data given by
Variate (x)
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$

Frequency (f)
${ }^{n} C_{0}{ }^{n} C_{1}{ }^{n} C_{2}{ }^{n} C_{3} \ldots{ }^{n} C_{n}$
a. $\sqrt{\frac{(\mathrm{n}+1)}{2}}$
b. $\sqrt{\frac{\mathrm{n}}{2}}$
c. $\frac{2^{\mathrm{n}}}{\mathrm{n}}$
d. $\frac{\sqrt{n}}{2}$

Ans. d

$$
\begin{aligned}
& \text { Mean }=n \hat{p}=\frac{n}{2} \\
& \frac{n_{c 1}+2 \cdot n_{c 2}+3 \cdot n_{c 3}+\ldots \ldots \ldots+n \cdot n_{c n}}{2^{n}},
\end{aligned}
$$

Variance $=\frac{n}{4}$, S.D. $=\frac{\sqrt{n}}{2}$
41. If each observation of a raw data whose variance is σ^{2}, is increased by λ, then the variance of the new set is
a. σ^{2}
b. $\sigma^{2}+\lambda^{2}$
c. $\sigma^{2} \lambda^{2}$
d. $\sigma^{3} \lambda^{3}$

Ans. a
42. If each observation of a raw data, whose variance is σ^{2}, is multiplied by λ, then the variance of the new set is
a. σ^{2}
b. $\sigma^{2} \lambda^{2}$
c. $\sigma^{2}+\lambda$
d. $\sigma^{2}+\lambda^{2}$

Ans.b
43. If \bar{x} is the mean of a distribution, then $\sum_{i}\left(x_{i}-\bar{x}\right)=$
a. 0
b. M.D.
c. S.D.
d. A.M.

Ans.a
44. Variance of the data $2,4,6,8,10$ is
a. 6
b. 7
c. 8
d. 9

Ans. c

$$
\sigma^{2}=\frac{\sum x i^{2}}{n}-\left(\frac{\sum x i}{n}\right)^{2}=\frac{4+16+36+64+100}{5}-\left(\frac{30}{2}\right)^{2}=\frac{44}{5}-36=8
$$

45. If the standard deviation of $0,1,2,3 \ldots . .9$ is K, then the standard deviation of $10,11,12,13 \ldots 19$ is
a. $\mathrm{K}+10$
b. K
c. $\sqrt{10}+\mathrm{K}$
d. 10 K

Ans.b
46. If the mean of a set of observations
$x_{1}, x_{2}, \ldots ., x_{10}$ is 20 then the mean of
$x_{1}+4, x_{2}+8, x_{3}+12, \ldots ., x_{10}+40$ is
a. 34
b. 42
c. 38
d. 40

Ans. b

$$
\begin{aligned}
& \frac{\sum_{i=1}^{10} x_{i}=20}{10} \\
& \frac{x_{1}+4+x_{2}+8+x_{3}+12+\ldots \ldots \ldots+x_{10}+40}{10} \\
& =\sum_{i=1}^{10} x i+\frac{4+8+12 \ldots \ldots \ldots \ldots \ldots \ldots .+40}{10} \\
& =20+\frac{4(1+2+3+\ldots \ldots \ldots \ldots .+10)}{10}=20+\frac{4(10)(11)}{2.10}=42
\end{aligned}
$$

47. When 10 is subtracted from all the observations, the mean is reduced to $\mathbf{6 0 \%}$ of its value. If 5 is added to all the observations, then the mean will be
a. 25
b. 30
c. 60
d. 65

Ans. b
$(\bar{x}-10)=\frac{3}{5} \bar{x} \Rightarrow \bar{x}=25$.
The mean required $=25+5=30$
48. The following table given, the average score of the students is Marks(x)

No. of students (f)
208

3012
$40 \quad 20$
$50 \quad 10$
$60 \quad 6$
$70 \quad 4$
a. 41
b. 42
c. 40
d. 39

Ans.a
49. In the frequency distribution of discrete data given below, the frequency \mathbf{x} against value 0 is missing.

Variable $x:$	0	1	2	3	4	5
Frequency $f:$	x	20	40	40	20	4

If the mean is 2.5 , then the missing frequency x will be \qquad
a. 0
b. 1
c. 3
d. 4

Ans. d
50. Let G_{1}, G_{2} be the geometric means of two series $x_{1}, x_{2}, \ldots . ., x_{n} ; y_{1}, y_{2}, \ldots .$. , $y_{\mathbf{n}}$. If G is the geometric mean of $\frac{x_{i}}{y_{i}}, i=1,2, \ldots \ldots n$, then G is equal to
a. $\mathrm{G}_{1}-\mathrm{G}_{2}$
b. $\frac{\log \mathrm{G}_{1}}{\log \mathrm{G}_{2}}$
c. $\frac{G_{1}}{G_{2}}$
d. $G_{1}+G_{2}$

Ans. c
51. The mean of two samples of sizes 200 and 300 were found to be 25,10 respectively. Their standard deviations were 3 and 4 respectively. The variance of combined sample of size 500 is
a. 64
b. 65.2
c. 67.2
d. 64.2

Ans. c
52. If the s.d. of n observations $x_{1}, x_{2}, \ldots . ., x_{n}$ is 4 and another set of n observations $y_{1}, y_{2}, \ldots \ldots, y_{n}$ is 3 the s.d. of n observations $x_{1}-y_{1}, x_{2}-y_{2}, \ldots \ldots$, $x_{n}-y_{n}$ is
a. 1
b. $2 / \sqrt{3}$
c. 5
d. 7

Ans.d

$$
\sigma 1=4, \sigma_{2}=3, \frac{\Sigma x_{i}^{2}}{n}-\frac{\Sigma x_{i}}{n}=16, \quad \frac{\Sigma y_{i}^{2}}{n}-\frac{\Sigma y_{i}}{n}=9,\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2} .
$$

53. If $M_{g x}$ is the G.M. Nx's and $M_{g y}$ is the G.M. of Ny's then G.M. of $2 N$ values is given by
a. $\mathrm{M}_{\mathrm{gx}} \mathrm{M}_{\mathrm{gy}}$
b. $\sqrt{\mathrm{M}_{\mathrm{gx}} \mathrm{M}_{\mathrm{gy}}}$
c. $\mathrm{M}_{\mathrm{gx}}+\mathrm{M}_{\mathrm{gy}}$
d. $\mathrm{M}_{\mathrm{gx}}-\mathrm{M}_{\mathrm{gy}}$

Ans.b

$$
\begin{aligned}
& \sqrt[n]{x_{1} x_{2} x_{3} \ldots \ldots \ldots \ldots x_{n}}=M_{g 7}, \sqrt[n]{y_{1} y_{2} y_{3} \ldots \ldots \ldots . y_{n n}}=M_{g v} \\
& \sqrt[2 n]{x_{1} x_{2} x_{3} \ldots \ldots \ldots x_{n}, y_{1} y_{2} y_{3} \ldots y_{n}}=\left(M_{g u} M_{g v}\right)^{1 / 2}=\sqrt{M_{g 7} M_{g v}}
\end{aligned}
$$

54. The mean of five observations is $\mathbf{4}$ and their variance is 5.2. If three of these observations are 1,2 , and 6 . Then the other two are
a. 2 and 9
b. 3 and 8
c. 4 and 7
d. 5 and 6

Ans.c

$$
\begin{aligned}
& x+y=11, \frac{\sum x_{i}^{2}}{5}-16=5.2, \sum x_{i}^{2}=106, x^{2}+y^{2}=65, \\
& x+y=11, x^{2}+y^{2}=65 \Rightarrow x y=28, \therefore x=7, y=4
\end{aligned}
$$

55. Mean deviation of numbers $3,4,5,6,7$ is
a. 0
b. 1.2
c. 5
d. 25

Ans. b
56. The mean and S.D. of $1,2,3,4,5,6$ is
a. 3, 3
b. $\frac{7}{2}, \sqrt{\frac{35}{12}}$
c. $\frac{7}{2}, \sqrt{3}$
d. $\frac{35}{12}$

Ans.b
57. Mean deviation of the series $a, a+d, a+2 d, a+2$ nd from its mean is
a. $\frac{(\mathrm{n}+1) \mathrm{d}}{(2 \mathrm{n}+1)}$
b. $\frac{\mathrm{nd}}{2 \mathrm{n}+1}$
c. $\frac{(2 n+1) d}{n(n+1)}$
d. $\frac{\mathrm{n}(\mathrm{n}+1) \mathrm{d}}{2 \mathrm{n}+1}$

Ans.d
Mean $\bar{x}=a+n d$ M.D. $=\frac{1}{(2 n+1)}\left|x_{i}-\bar{x}\right|=\frac{n(n+1)}{(2 n+1)} d$
58. The A.M. of the observations
1.3.5, 3.5.7, 5.7.9, \qquad $(2 n-1)(2 n+1)(2 n+3)$ is
a. $2 n^{3}+6 n^{2}+7 n-2$
b. $n^{3}+8 n^{2}+7 n-2$
c. $2 n^{3}+5 n^{2}+6 n-1$
d. $2 n^{3}+8 n^{2}+7 n-2$

Ans. d

$$
\frac{\Sigma(2 n-1)(2 n+1)(2 n+3)}{n}=\frac{\Sigma\left(4 n^{2}-1\right)(2 n+3)}{n}=\frac{\Sigma\left(8 n^{3}+12 n^{2}-2 n-3\right)}{n}=2 n^{3}+8 n^{2}+7 n-2
$$

59. The value of the mode given below is

Mark F
$0-10 \quad 5$
10-20 15
$20-30-20$
$30-40 \quad 20$
40-50 32
50-60 14
60-70 14
a. 43
b. 42
c. 41
d. 44

Ans. d
Mode $=l+\frac{\left(f_{0}-f_{1}\right)}{2 f_{0}-\left(f_{1}+f_{2}\right)} \times C, \quad l=40, f_{0}=32, f_{1}=20, f_{2}=14, c=10$,
60. The mean of following frequency table is 50 .

Class	Frequency
$\mathbf{0 - 2 0}$	17

20-40 f_{1}

40-60 32
60-80 f_{2}
80-100 19
Total 120
The missing frequencies are
a. 28,24
b. 24,36
c. 36,28
d. 28,34

Ans.a

$$
f_{1}+f_{2}=52, \text { use } \bar{x}=\frac{\Sigma f_{i} x_{i}}{N}, 3 f_{1}+7 f_{2}=252, N=\Sigma f_{i}, f_{1}=28, f_{2}=24
$$

61. The median wage of the worker in the following table is

Wages/ Week
(Rs.) F

50-59 15
60-69
70-79
80-89
90-99
100-109
110-119
a. Rs. 80.08
c. 84.08

Ans.c
Median $=l+\left(\frac{\frac{N}{2}-m}{f}\right) \times C, l=79.5, N=265, m=105, f=60, c=10$, Median $=84.08$
62. If x_{1}, x_{2}, x_{3} are three non zero real numbers such that then the G.M. of x_{1}, x_{2}, x_{3} is
a. X_{1}
b. x_{2}
c. X_{3}
d. $x_{1} x_{3}$

Ans. d
$\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{2}^{2}+x_{3}^{2}\right) \leq\left(x_{1} x_{2}+x_{2} x_{3}\right)^{2}$ on expanding $\left(x_{1} x_{3}-x_{2}^{2}\right)^{2} \leq 0, \Rightarrow x_{2}^{2}=x_{1} x_{3}$
63. The mean square deviation of n observations $x_{1}, x_{2}, \ldots ., x_{n}$ about -2 and 2are 18 and 10 respectively. Then S.D. of the given set is
a. 1
b. 2
c. 3
d. 4

Ans.c
$\frac{1}{n} \Sigma\left(x_{i}+2\right)^{2}=18 \longrightarrow$ (1), $\frac{1}{n} \Sigma\left(x_{i}-2\right)^{2}=10$
adding equation $1 \& 2, \quad \frac{1}{2} \Sigma x_{i}^{2}=10$, subtracting 2 from $1, \frac{1}{n} \Sigma x_{i}=1$,
\therefore S.D. $=\sigma=3$

