PAIR OF LINES

SYNOPSIS AND FORMULAE

1. The equations $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ represent straight lines, the equation $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0$ is called joint equation of the two lines.
2. (i) If $h^{2}>a b$, then $a x^{2}+2 h x y+b y^{2}=0$ represents two real and different straight lines through the origin.
(ii) The equations of the separate lines are $a x+\left(h+\sqrt{h^{2}-a b}\right) y=0$; $a x+\left(h-\sqrt{h^{2}-a b}\right) y=0$.
(iii) The above lines are coincident if $h^{2}=a b$ and imaginary if $h^{2}<a b$.
(iv) If the slopes of the two lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are m_{1} and m_{2}, then $\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{-2 \mathrm{~h}}{\mathrm{~b}}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{a}}{\mathrm{b}}$ and $\left\lvert\, \mathrm{m}_{1}-\mathrm{m}_{2}=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{|\mathrm{b}|}\right.$. The equations of the two lines are $\mathrm{y}=$ $\mathrm{m}_{1} \mathrm{x}$ and $\mathrm{y}=\mathrm{m}_{2} \mathrm{x}$.
3. $a x^{2}+2 h x y+b y^{2}=0$ represents a pair of lines
(a) If the slopes of two lines are in the ratio $\mathrm{p}: \mathrm{q}$ then $\frac{(\mathrm{p}+\mathrm{q})^{2}}{\mathrm{pq}}=\frac{4 \mathrm{~h}^{2}}{\mathrm{ab}}$.
(b) If the slope of one line is square of the slope of the other line then

$$
a b(a+b)-6 a b h+8 h^{3}=0 .
$$

(c) If θ_{1}, θ_{2} are the inclinations of the two lines with x-axis then $\operatorname{Tan}\left(\theta_{1}+\theta_{2}\right)=\frac{2 h}{a-b}$.
4. If θ is the acute angle between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ then

$$
\theta=\tan ^{-1} \frac{2 \sqrt{h^{2}-a b}}{|a+b|}=\cos ^{-1} \frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}=\sin ^{-1} \frac{2 \sqrt{h^{2}-a b}}{\sqrt{(a-b)^{2}+4 h^{2}}} .
$$

Note: $a+b=0$. The lines are perpendicular.
5. The equation of the pair of lines through the origin and perpendicular to the two lines $a x^{2}+2 h x y+b y^{2}=0$ is $b x^{2}+2 b x y+a y^{2}=0$
6. The equation of the pair of lines bisecting the angle between the lines $a x^{2}+2 h x y+b y^{2}=0$ is $h\left(x^{2}-y^{2}\right)=(a-b) x y$.
7. If the two pair of lines have the same angular bisector lines, then they are said to be equally inclined to each other.
8. The pair of lines $a x^{2}+2 h x y+b y^{2}=0$ and $(a+d) x^{2}+2 h x y+(b+d) y^{2}=0$ are equally inclined for all values of d.
9. Area of the triangle formed by the line $1 x+m y+n=0$ and the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|b l^{2}-2 b l m+a m^{2}\right|}$.
10. The line $1 x+m y+n=0$ forms an equilateral triangle with the pair of lines $(1 x+m y)^{2}-3(m x-l y)^{2}=0$ its area $=\frac{p^{2}}{\sqrt{3}}=\frac{n^{2}}{\sqrt{3}\left(1^{2}+m^{2}\right)}$ where p is the perpendicular distance from the origin to the lines $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$.
11. Let $S=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c ; S=0$ represents a pair of lines if $\Delta=a b c+2 f g h-a f^{2}-\mathrm{bg}^{2}-\mathrm{ch}^{2}=0$ and $g^{2} \geq a c, h^{2} \geq a b, f^{2} \geq b c$.
12. If $S=o$ represents two intersecting lines, their point of intersection is $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$
13. Lengths of the intercepts made by the pair of lines represented by

$$
a x^{2}+2 h x y+b y^{2}+2 g h+2 f y+c=0 \text { on the coordinate axes are } \frac{2 \sqrt{\mathrm{~g}^{2}-\mathrm{ac}}}{|\mathrm{a}|} \text { and } \frac{2 \sqrt{\mathrm{f}^{2}-\mathrm{bc}}}{|\mathrm{~b}|}
$$

14. $S=0$ represents two parallel lines if $\Delta=0, f^{2} \geq b c, g^{2} \geq$ ac and $h^{2}=a b, \frac{a}{h}=\frac{h}{b}=\frac{g}{f}, f^{2}=b^{2}$.

The distance between the parallel lines $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}=2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}$.
15. Let $S=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represent two straight lines
(i) Pair of lines through origin and parallel to $S=0$ is $a x^{2}+2 h x y+b y^{2}=0$
(ii) Pair of lines through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and parallel to
$\mathrm{S}=0$ is $\mathrm{a}\left(\mathrm{x}-\mathrm{x}_{1}\right)^{2}+2 \mathrm{~h}\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{y}-\mathrm{y}_{1}\right)+\mathrm{b}\left(\mathrm{y}-\mathrm{y}_{1}\right)^{2}=0$.
(iii) Pair of lines through origin and perpendicular to $S=0$ is $b x^{2}-2 h x y+a y^{2}=0$.
(iv) Pair of liens through $\left(x_{1}, y_{1}\right)$ and perpendicular to
$S=0$ is $b\left(x-x_{1}\right)^{2}-2 h\left(x-x_{1}\right)\left(y-y_{1}\right)+a\left(y-y_{1}\right)^{2}=0$.
16. Equation of the pair of lines through the origin and which are at a distance of d units from $\left(x_{1}, y_{1}\right)$ is $d^{2}\left(x^{2}+y^{2}\right)=\left(y_{1} x-x_{1} y\right)^{2}$.
17. Let $\left(x_{1}, y_{1}\right)$ be a point of intersection of the pair of lines $S=0$. Then the equation of the pair of angular bisectors of $S=0$ is $\frac{\left(x-x_{1}\right)^{2}-\left(y-y_{1}\right)^{2}}{a-b}=\frac{\left(x-x_{1}\right)\left(y-y_{1}\right)}{h}$
18. If one of the angular bisectors of $a x^{2}+2 h x y+b y^{2}=0$ passes through the point of intersection of lines $a_{1} x^{2}+2 h_{1} x y+b_{1} y^{2}+2 g x+2 f y+c=0$ then $(a-b) f g+h\left(f^{2}-g^{2}\right)=0$.
19. In the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y+n=0$.
(i) Orthocenter $=\mathrm{P}=(\mathrm{kl}, \mathrm{km})$, where $\mathrm{k}=\frac{-\mathrm{n}(\mathrm{a}+\mathrm{b})}{\mathrm{am}^{2}-2 \mathrm{hlm}+\mathrm{bl}^{2}}$.
(ii) $\mathrm{op}=|\mathrm{k}| \sqrt{1^{2}+\mathrm{m}^{2}}$.
(iii) If $a x^{2}+2 h x y+b y^{2}=0$ represents two sides of $\Delta A B C$ and the orthocenter is (c, d), then the $3^{\text {rd }}$ side is $(a+b)(c x+d y)=a d^{2}-2 h c d+b c^{2}$.
20. (i) To find the centroid of the triangle formed by $a x^{2}+2 h x+b y^{2}=0$ and $l x+m y+n=0$, let

$$
\mathrm{f}=\mathrm{bx} \mathrm{x}^{2}-2 \mathrm{hxy}+a \mathrm{y}^{2}
$$

$\mathrm{G}=\frac{-\mathrm{n}}{3 \mathrm{f}}\left[\frac{\partial \mathrm{f}}{\partial \mathrm{x}}, \frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right]$ at $\mathrm{x}=1, \mathrm{y}=\mathrm{m}$.
(ii) To find the $3^{\text {rd }}$ side when G of $\triangle \mathrm{OAB}$ is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and OA, OB combined equation is $a x^{2}+2 h x y+b y^{2}=0$. Midpoint of $A B=\left(\frac{3 x_{1}}{2}, \frac{3 y_{1}}{2}\right)$ and the slope of $A B$ is $\left(\frac{a x_{1}+b y_{1}}{h x_{1}+b y_{1}}\right)$.
Equation of AB is $\mathrm{y}=\frac{3 y_{1}}{2}=-\left(\frac{a x_{1}+b y_{1}}{h x_{1}+b y_{1}}\right)\left(x-\frac{3 x_{1}}{2}\right)$.
21. The lines $a x^{2}+2 h x y+b y^{2}=0$ and $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ form a
(i) Rhombus $\Leftrightarrow \frac{\mathrm{g}^{2}-\mathrm{f}^{2}}{\mathrm{a}-\mathrm{b}}=\frac{\mathrm{fg}}{\mathrm{h}}$ and $\mathrm{a}+\mathrm{b} \neq 0$.
(ii) Square $\Leftrightarrow \frac{\mathrm{g}^{2}-\mathrm{f}^{2}}{\mathrm{a}-\mathrm{b}}=\frac{\mathrm{fg}}{\mathrm{h}}$ and $\mathrm{a}+\mathrm{b}=0$.
(iii) Rectangle $\Leftrightarrow \frac{g^{2}-f^{2}}{a-b} \neq \frac{f g}{h}$ and $a+b=0$.
(iv) Parallelogram $\Leftrightarrow \frac{g^{2}-f^{2}}{a-b} \neq \frac{f g}{h}$ and $a+b \neq=0$.
22. The lines $a x^{2}+2 h x y+b y^{2}=0$ and $1 x+m y+n=0$ represent an isosceles triangle of $\frac{1^{2}-m^{2}}{l m}=\frac{a-b}{h}$.
23. (a) The two pairs of lines $a_{1} x^{2}+2 h_{1} x y+b_{1} y_{2}=0$ and $a_{2} x^{2}+2 h_{2} x y+b_{2} y^{2}=0$ have one line in common then $\left|\begin{array}{ll}a_{1} & 2 h_{1} \\ b_{2} & 2 h_{2}\end{array}\right|\left|\begin{array}{cc}2 h_{1} & b_{1} \\ -2 h_{2} & a_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|^{2}$
(b) One line in the first pair is perpendicular to one line in he second pair then
$\left|\begin{array}{ll}\mathrm{a}_{1} & 2 \mathrm{~h}_{1} \\ \mathrm{~b}_{2} & 2 \mathrm{~h}_{2}\end{array}\right| \begin{array}{cc}2 \mathrm{~h}_{1} & \mathrm{~b}_{1} \\ -2 \mathrm{~h}_{2} & \mathrm{a}_{2}\end{array}\left|=\left|\begin{array}{ll}\mathrm{a}_{1} & \mathrm{~b}_{1} \\ \mathrm{~b}_{2} & \mathrm{a}_{2}\end{array}\right|^{2}\right.$.
24. (a) The product of the perpendicular distances from $\left(x_{1}, y_{1}\right)$ to the pair of lines represented by $a x^{2}+2 h x y+b y=0$ is $\frac{\left|\mathrm{ax}_{1}{ }^{2}+2 h x_{1} y_{1}+b y_{1}{ }^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$
(b) The product of the perpendicular distances from $\left(x_{1} y_{1}\right)$ to the pair of lines represented by $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $\frac{\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}{ }^{2}+2 g x_{1}+2 f y_{1}+c\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}$.
(c) $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ are two lines which are at equidistance from the origin then $f^{4}-g^{4}=\left(b f^{2}-a g^{2}\right)$.
25. Equation of the pair of lines through the origin and making an angle ' α ' with the line $1 x+m y+n=0$ is $(1 x+m y)^{2}-\tan ^{2} \alpha(m x-l y)^{2}=0$ and the area of the triangle is $\frac{\mathrm{n}^{2}}{\tan \left(\mathrm{l}^{2}+\mathrm{m}^{2}\right)}$.
26. (a) One of the lines of $S \equiv 0$ is parallel to $l x+m y+n=0$ then $b l^{2}-2 h l m+a m^{2}=0$.
(b) One of the lines of $\mathrm{S} \equiv 0$ is perpendicular to $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ then $\mathrm{al}^{2}+2 \mathrm{hlm}+\mathrm{bm}^{2}=0$.
27. (a) The area of the parallelogram formed by $S \equiv a x^{2}+2 h x y+b y^{2}=0$ and $S^{1}=a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ is $\frac{|c|}{2 \sqrt{h^{2}-a b}}$.
(b) Equation of the diagonal not passing through the origin is $2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$.
(c) Equation of the diagonal passing through the origin is $(\mathrm{hf}-\mathrm{bg}) \mathrm{y}=(\mathrm{gh}-\mathrm{af}) \mathrm{x}$.
28. Area of parallelogram is $\frac{p_{1} p_{2}}{\sin \alpha}$ where p_{1}, p_{2} is product of perpendicular distances between parallel lines and α is angle between non parallel lines.
29. Point of intersection of diagonals of a rectangle formed by the pairs $a_{1} x^{2}+b_{1} x+c_{1}=0$ and $a_{2} y^{2}+b_{2} y+c_{2}=0$ is $\left(\frac{-b_{1}}{2 a_{1}}, \frac{-b_{2}}{2 a_{2}}\right)$.
30. The condition that one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the coordinate axes is $(a+b)^{2}=4 h^{2}$.

