PAIR OF LINES

SYNOPSIS AND FORMULAE

- 1. The equations $a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ represent straight lines, the equation $(a_1x + b_1y + c_1)(a_2x + b_2y + c_2) = 0$ is called joint equation of the two lines.
- 2. (i) If $h^2 > ab$, then $ax^2 + 2hxy + by^2 = 0$ represents two real and different straight lines through the origin.
 - (ii) The equations of the separate lines are $ax + (h + \sqrt{h^2 ab})y = 0$; $ax + (h \sqrt{h^2 ab})y = 0$.
 - (iii) The above lines are coincident if $h^2 = ab$ and imaginary if $h^2 < ab$.
 - (iv) If the slopes of the two lines represented by $ax^2 + 2hxy + by^2 = 0$ are m_1 and m_2 , then $m_1 + m_2 = \frac{-2h}{b}$, $m_1m_2 = \frac{a}{b}$ and $|m_1 m_2 = \frac{2\sqrt{h^2 ab}}{|b|}$. The equations of the two lines are $y = m_1x$ and $y = m_2x$.
- 3. $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines
 - (a) If the slopes of two lines are in the ratio p : q then $\frac{(p+q)^2}{pq} = \frac{4h^2}{ab}$.
 - (b) If the slope of one line is square of the slope of the other line then
 - $ab(a+b) 6abh + 8h^3 = 0.$

(c) If θ_1 , θ_2 are the inclinations of the two lines with x-axis then $Tan(\theta_1 + \theta_2) = \frac{2h}{a-b}$.

If θ is the acute angle between the pair of lines $ax^2 + 2hxy + by^2 = 0$ then

$$\theta = \tan^{-1} \frac{2\sqrt{h^2 - ab}}{|a+b|} = \cos^{-1} \frac{|a+b|}{\sqrt{(a-b)^2 + 4h^2}} = \sin^{-1} \frac{2\sqrt{h^2 - ab}}{\sqrt{(a-b)^2 + 4h^2}}.$$

Note: a + b = 0. The lines are perpendicular.

- 5. The equation of the pair of lines through the origin and perpendicular to the two lines $ax^{2} + 2hxy + by^{2} = 0$ is $bx^{2} + 2bxy + ay^{2} = 0$
- 6. The equation of the pair of lines bisecting the angle between the lines $ax^2 + 2hxy + by^2 = 0$ is $h(x^2 - y^2) = (a - b)xy.$
- 7. If the two pair of lines have the same angular bisector lines, then they are said to be equally inclined to each other.
- 8. The pair of lines $ax^2 + 2hxy + by^2 = 0$ and $(a + d)x^2 + 2hxy + (b + d)y^2 = 0$ are equally inclined for all values of d.
- 9. Area of the triangle formed by the line lx + my + n = 0 and the pair of lines $ax^{2} + 2hxy + by^{2} = 0$ is $\frac{n^{2}\sqrt{h^{2} - ab}}{|bl^{2} - 2blm + am^{2}|}$.
- 10. The line lx + my + n = 0 forms an equilateral triangle with the pair of lines $(lx + my)^2 - 3(mx - ly)^2 = 0$ its area $= \frac{p^2}{\sqrt{3}} = \frac{n^2}{\sqrt{3}(l^2 + m^2)}$ where p is the perpendicular distance from the origin to the lines lx + my + n = 0.
- 11. Let $S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$; S = 0 represents a pair of lines if $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ and $g^2 \ge ac$, $h^2 \ge ab$, $f^2 \ge bc$.
- 12. If S = 0 represents two intersecting lines, their point of intersection is $\left(\frac{hf bg}{ab h^2}, \frac{gh af}{ab h^2}\right)$
- 13. Lengths of the intercepts made by the pair of lines represented by

$$ax^{2} + 2hxy + by^{2} + 2gh + 2fy + c = 0$$
 on the coordinate axes are $\frac{2\sqrt{g^{2} - ac}}{|a|}$ and $\frac{2\sqrt{f^{2} - bc}}{|b|}$.

14. S = 0 represents two parallel lines if $\Delta = 0$, $f^2 \ge bc$, $g^2 \ge ac$ and $h^2 = ab$, $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$, $af^2 = bg^2$.

The distance between the parallel lines = $2\sqrt{\frac{g^2 - ac}{a(a+b)}} = 2\sqrt{\frac{f^2 - bc}{b(a+b)}}$.

15. Let $S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represent two straight lines

(i) Pair of lines through origin and parallel to S = 0 is $ax^2 + 2hxy + by^2 = 0$

(ii) Pair of lines through (x_1, y_1) and parallel to

$$S = 0 \text{ is } a(x - x_1)^2 + 2h(x - x_1) (y - y_1) + b(y - y_1)^2 = 0.$$

(iii) Pair of lines through origin and perpendicular to S = 0 is $bx^2 - 2hxy + ay^2 = 0$.

(iv) Pair of liens through (x_1, y_1) and perpendicular to S = 0 is $b(x - x_1)^2 - 2h(x - x_1) (y - y_1) + a(y - y_1)^2 = 0$.

- 16. Equation of the pair of lines through the origin and which are at a distance of d units from (x_1, y_1) is $d^2(x^2 + y^2) = (y_1x x_1y)^2$.
- 17. Let (x_1, y_1) be a point of intersection of the pair of lines S = 0. Then the equation of the pair of angular bisectors of S = 0 is $\frac{(x x_1)^2 (y y_1)^2}{a b} = \frac{(x x_1)(y y_1)}{h}$
- 18. If one of the angular bisectors of $ax^2 + 2hxy + by^2 = 0$ passes through the point of intersection of lines $a_1x^2 + 2h_1xy + b_1y^2 + 2gx + 2fy + c = 0$ then $(a b)fg + h(f^2 g^2) = 0$.
- 19. In the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0.

(i) Orthocenter = P = (kl, km), where $k = \frac{-n(a+b)}{am^2 - 2hlm + bl^2}$.

(ii) op = $|k| \sqrt{l^2 + m^2}$.

(iii) If $ax^2 + 2hxy + by^2 = 0$ represents two sides of $\triangle ABC$ and the orthocenter is (c, d), then the 3rd side is (a + b) (cx + dy) = ad² - 2hcd + bc².

20. (i) To find the centroid of the triangle formed by $ax^2 + 2hx + by^2 = 0$ and lx + my + n = 0, let $f = bx^2 - 2hxy + ay^2$.

$$\mathbf{G} = \frac{-\mathbf{n}}{3\mathbf{f}} \left[\frac{\partial \mathbf{f}}{\partial \mathbf{x}}, \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \right] \text{ at } \mathbf{x} = \mathbf{l}, \ \mathbf{y} = \mathbf{m}.$$

(ii) To find the 3rd side when G of $\triangle OAB$ is (x_1, y_1) and OA, OB combined equation is $ax^2 + 2hxy + by^2 = 0$. Midpoint of $AB = \left(\frac{3x_1}{2}, \frac{3y_1}{2}\right)$ and the slope of AB is $\left(\frac{ax_1 + by_1}{hx_1 + by_1}\right)$. Equation of AB is $y = \frac{3y_1}{2} = -\left(\frac{ax_1 + by_1}{hx_1 + by_1}\right)\left(x - \frac{3x_1}{2}\right)$. 21. The lines $ax^2 + 2hxy + by^2 = 0$ and $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ form a (i) Rhombus $\Leftrightarrow \frac{g^2 - f^2}{a - b} = \frac{fg}{h}$ and $a + b \neq 0$. (ii) Square $\Leftrightarrow \frac{g^2 - f^2}{a - b} = \frac{fg}{h}$ and a + b = 0. (iii) Rectangle $\Leftrightarrow \frac{g^2 - f^2}{a - b} \neq \frac{fg}{h}$ and a + b = 0. (iv) Parallelogram $\Leftrightarrow \frac{g^2 - f^2}{a - b} \neq \frac{fg}{h}$ and $a + b \neq 0$. 22. The lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 represent an isosceles triangle of

$$\frac{l^2 - m^2}{lm} = \frac{a - b}{h}$$

23. (a) The two pairs of lines $a_1x^2 + 2h_1xy + b_1y_2 = 0$ and $a_2x^2 + 2h_2xy + b_2y^2 = 0$ have one line in common then $\begin{vmatrix} a_1 & 2h_1 \\ b_2 & 2h_2 \end{vmatrix} \begin{vmatrix} 2h_1 & b_1 \\ -2h_2 & a_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}^2$

(b) One line in the first pair is perpendicular to one line in he second pair then

$$\begin{vmatrix} a_1 & 2h_1 \\ b_2 & 2h_2 \end{vmatrix} \begin{vmatrix} 2h_1 & b_1 \\ -2h_2 & a_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ b_2 & a_2 \end{vmatrix}^2.$$

24. (a) The product of the perpendicular distances from (x_1, y_1) to the pair of lines represented by

$$ax^{2} + 2hxy + by = 0$$
 is $\frac{|ax_{1}^{2} + 2hx_{1}y_{1} + by_{1}^{2}|}{\sqrt{(a-b)^{2} + 4h^{2}}}$

(b) The product of the perpendicular distances from $(x_1 y_1)$ to the pair of lines represented by

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0 \text{ is } \frac{\left|ax_{1}^{2} + 2hx_{1}y_{1} + by_{1}^{2} + 2gx_{1} + 2fy_{1} + c\right|}{\sqrt{(a-b)^{2} + 4h^{2}}}.$$

(c) $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are two lines which are at equidistance from the origin then $f^4 - g^4 = (bf^2 - ag^2)$.

- 25. Equation of the pair of lines through the origin and making an angle ' α ' with the line lx + my + n = 0 is $(lx + my)^2 \tan^2 \alpha (mx ly)^2 = 0$ and the area of the triangle is $\frac{n^2}{\tan \alpha (l^2 + m^2)}$.
- 26. (a) One of the lines of $S \equiv 0$ is parallel to lx + my + n = 0 then $bl^2 2hlm + am^2 = 0$.
 - (b) One of the lines of $S \equiv 0$ is perpendicular to lx + my + n = 0 then $al^2 + 2hlm + bm^2 = 0$.
- 27. (a) The area of the parallelogram formed by $S \equiv ax^2 + 2hxy + by^2 = 0$ and $S^1 = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ is $\frac{|c|}{2\sqrt{h^2 - ab}}$.
 - (b) Equation of the diagonal not passing through the origin is 2gx + 2fy + c = 0.
 - (c) Equation of the diagonal passing through the origin is (hf bg)y = (gh af)x.
- 28. Area of parallelogram is $\frac{p_1p_2}{\sin\alpha}$ where p_1 , p_2 is product of perpendicular distances between parallel lines and α is angle between non parallel lines.
- 29. Point of intersection of diagonals of a rectangle formed by the pairs $a_1x^2 + b_1x + c_1 = 0$ and $a_2y^2 + b_2y + c_2 = 0$ is $\left(\frac{-b_1}{2a_1}, \frac{-b_2}{2a_2}\right)$.
- **30.** The condition that one of the lines represented by $ax^2 + 2hxy + by^2 = 0$ bisects the angle between the coordinate axes is $(a + b)^2 = 4h^2$.