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Logic Gates 

The Logic Gate is the most basic building block of any digital system, including 

computers. Each one of the basic logic gates is a piece of hardware or an electronic 

circuit that can be used to implement some basic logic expression. While laws of 

Boolean algebra could be used to do manipulation with binary variables and 

simplify logic expressions, these are actually implemented in a digital system with 

the help of electronic circuits called logic gates. The three basic logic gates are the 

OR gate, the AND gate and the NOT gate. 

OR Gate 

A logic gate used to perform the operation of logical addition is called an OR 

gate. An OR gate performs an OR operation on two or more than two logic 

variables. The OR operation on two independent logic variables A and B is written 

as Y = A+B and reads as Y equals A OR B. An OR gate is a logic circuit with two 

or more inputs and one output. The output of an OR gate is LOW only when all 

of its inputs are LOW. For all other possible input combinations, the output is 

HIGH. A truth table lists all possible combinations of input binary variables and 

the corresponding outputs of a logic system. Figure shows the circuit symbol and 

the truth table of a two-input OR gate. The operation of a two-input OR gate is 

explained by the logic expression  

         Y = A+B  

                         

                                                Two input OR Gate 

 



 

AND Gate 

A logic gate used to perform logical multiplication is known as AND gate. An 

AND gate is a logic circuit having two or more inputs and one output. The output 

of an AND gate is HIGH only when all of its inputs are in the HIGH state. In all 

other cases, the output is LOW. The logic symbol and truth table of a two-input 

AND gate is shown in figure.  The AND operation on two independent logic 

variables A and B is written as Y = A.B and reads as Y equals A AND B. The 

operation of a two-input AND gate is explained by the logic expression                                      

                                                               Y = A.B  

                               

Two input AND Gate 

 

NOT Gate 

A logic gate used to perform logical inversion is known as a NOT gate. A NOT 

gate is a one-input, one-output logic circuit whose output is always the 

complement of the input. That is, a LOW input produces a HIGH output, and 

vice versa. If ܺ is the input to a NOT circuit, then its output Y is given by Y = ܺ ഥ  

or ܺ′ and reads as Y equals NOT ܺ. The logic symbol and truth table of a NOT 

gate is shown in figure. The operation of a NOT gate is explained by the logic 

expression                                      

  Y = ܺ ഥ  

  



      NOT Gate 

NAND Gate 
 
NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it 

a NAND gate.  The output of a NAND gate is logic ‘0’ when all its inputs are logic 

‘1’. For all other input combinations, the output is logic ‘1’. The symbol and truth 

table of a NAND gate is as shown.  NAND gate operation is logically expressed as  

                                                          ܻ ൌ  ܤܣ

                                

  Two input NAND Gate 

NAND Gate is known as Universal gate as it can be used alone to implement any 

gate operation. Hence it is said to be functionally complete. 

NOR Gate 
 
NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a 

NOR gate. The output of a NOR gate is logic ‘1’ when all its inputs are logic ‘0’. 

For all other input combinations, the output is logic ‘0’. The symbol and truth table 

of a NOR gate is as shown. The output of a two-input NOR gate is logically 

expressed as  

     ܻ ൌ ሺܣ ൅  ሻܤ

                                    

  Two input NOR Gate 



NOR gate is also known as Universal gate as it is used alone to implement any gate 

operation and hence it is also functionally complete. 

EXCLUSIVE-OR Gate 

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input, 

one-output gate. The output of an EX-OR gate is logic ‘1’ when the inputs are 

unlike and logic ‘0’ when the inputs are like. Although EX-OR gates are available 

in integrated circuit form only as two-input gates, unlike other gates which are 

available in multiple inputs also, multiple-input EX-OR logic functions can be 

implemented using more than one two-input gates. The output of a multiple-input 

EX-OR logic function is logic ‘1’ when the number of 1s in the input sequence is 

odd and logic ‘0’ when the number of 1s in the input sequence is even, including 

zero. The symbol and truth table of an EX-OR gate is shown in figure. The output 

of a two-input EX-OR gate is logically expressed as 

ܻ ൌ ܣ ْ ܤ ൌ ܤ′ܣ ൅  ′ܤܣ

                                       

  Two input EX-OR Gate 

EXCLUSIVE-NOR Gate 
 
EXCLUSIVE-NOR, commonly written as EX-NOR, means NOT of EX-OR, i.e., 

the logic gate that we get by complementing the output of an EX-OR gate. The 

truth table of an EX-NOR gate is obtained from the truth table of an EX-OR gate 

by complementing the output entries as shown in figure. Logically, 

                                                ܻ ൌ ܣ ْ ܤ ൌ ′ܤ′ܣ ൅   ܤܣ

                              



  Two input EX-NOR Gate 

The output of a two-input EX-NOR gate is logic ‘1’ when the inputs are like and 

logic ‘0’ when they are unlike. In general, the output of a multiple-input EX-NOR 

logic function is logic ‘0’ when the number of 1s in the input sequence is odd and a 

logic ‘1’ when the number of 1s in the input sequence is even including zero. 

Boolean algebra: 

Boolean algebra is an algebraic structure defined on a set of elements B together 

with two binary operators + and · provided the following postulates are satisfied: 

1. a) Closure with respect to the operator +. 

b) Closure with respect to the operator ·. 

2. a) An identity element with respect to +, designated by 0: ݔ ൅ 0 ൌ 0 ൅ ݔ ൌ  .ݔ

      b) An identity element with respect to ·, designated by 1:ݔ · 1 ൌ 1 · ݔ ൌ  .ݔ

3. a) Commutative with respect to +: ݔ ൅ ݕ ൌ ݕ ൅  .ݔ

      b) Commutative with respect to ·: ݔ · ݕ ൌ ݕ ·  .ݔ

4. a) · is distributive over +: ݔ · ሺݕ ൅ ሻݖ ൌ ሺݔ · ሻݕ ൅ ሺݔ ·  .ሻݖ

b) + is distributive over ·: ݔ ൅ ሺݕ · ሻݖ ൌ ሺݔ ൅ ሻݕ · ሺݔ ൅  .ሻݖ

5. For every element ݔ א ᇱݔ there exists an element ,ܤ א  (ݔ complement of) ܤ

such that  

ݔ                 ൅ ᇱݔ ൌ 1 and ݔ · ᇱݔ ൌ 0. 

 

Boolean Laws & Theorems: 

Duality Principle: 

It states that every algebraic expression deducible from the postulates of Boolean 

algebra remains valid if the operators and identity elements are interchanged. If the 



dual of an algebraic expression is desired, OR and AND operators are 

interchanged and 1’s are replaced by 0’s and 0’s by 1’s. 

1. ܽሻ ݔ ൅ 0 ൌ ݔ ሻܾ             ݔ · 1 ൌ  ݔ

2. ܽሻ ݔ ൅ ݔ ′ ൌ 1            ܾሻ ݔ · ݔ ′ ൌ 0 

3. ܽሻ ݔ ൅ ݔ ൌ ݔ ሻܾ             ݔ · ݔ ൌ  ݔ

4. ܽሻ ݔ ൅ 1 ൌ 1             ܾሻ ݔ · 0 ൌ 0 

5. DeMorgan’s Theorem: ܽሻ ሺݔ ൅ ′ሻݕ ൌ ݔ ݕ′ ′              ܾሻ ሺݕݔሻ′ ൌ ݔ ′ ൅  ′ݕ

6. Absorption Theorem:   ܽሻ ݔ ൅ ݕݔ ൌ ݔሺݔ ሻܾ                       ݔ ൅ ሻݕ ൌ  ݔ

Simplification using Boolean Laws & Theorems: 

The Boolean functions can be simplified by using appropriate Boolean laws and 

theorems.  

Examples: 

Simplify the following functions using Boolean laws and theorems: 

ܨ .1 ൌ ܦܥܤܣ ൅ ܥܤܣ ′ܦ′ ൅ ′ܦܥܤܣ ൅ ܥܤܣ ܦ′ ൅ ܧܦܥܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൅

 ܧܦ′ܥܤܣ

Sol: ܨ ൌ ܦܥܤܣ ൅ ܥܤܣ ′ܦ′ ൅ ′ܦܥܤܣ ൅ ܥܤܣ ܦ′ ൅ ܧܦܥܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൅

 ܧܦ′ܥܤܣ

ൌ ܦሺܥܤܣ ൅ ሻ′ܦ ൅ ܥܤܣ ′ሺܦ ൅ ሻ′ܦ ൅ ܥሺܧܦܤܣ ൅ ܥ ′ሻ ൅ ܥܤܣ  ′ܧ′ܦ′

ൌ ܥሺܤܣ ൅ ܥ ′ሻ ൅ ܧܦܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൌ ሺ1ܤܣ ൅ ܧܦ ൅ ܥ ሻ′ܧ′ܦ′ ൌ  ܤܣ

ܨ .2 ൌ ݕݔ ൅ ݔ ݖ′ ൅  ݖݕ

Sol:                      ܨ ൌ ݕݔ ൅ ݔ ݖ′ ൅  ݖݕ

   ൌ ݕݔ ൅ ݔ ݖ′ ൅ ݔሺݖݕ ൅ ݔ ′ሻ ൌ ሺ1ݕݔ ൅ ሻݖ ൅ ݔ ሺ1ݖ′ ൅  ሻݕ

ൌ ݕݔ ൅  ݖ′ݔ

ܨ .3 ൌ ܥܤܣ ൅ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ൅ ܥܤܣ ′ ൅  ′ܥ′ܤ′ܣ



Sol:  ܨ ൌ ܥܤܣ ൅ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ൅ ܥܤܣ ′ ൅  ′ܥ′ܤ′ܣ

  ൌ ܥܤ ൅ ′ܤ′ܣ ൅ ܥܤܣ ′ ൌ ܥሺܤ ൅ ܥܣ ′ሻ ൅ ′ܤ′ܣ ൌ ܤܣ ൅ ܥܤ ൅  ′ܤ′ܣ

Universal Gates 

OR, AND and NOT gates are the three basic logic gates as they together can be 

used to construct the logic circuit for any given Boolean expression. NOR and 

NAND gates have the property that they individually can be used to hardware-

implement a logic circuit corresponding to any given Boolean expression. That is, 

it is possible to use either only NAND gates or only NOR gates to implement any 

Boolean expression. This is so because a combination of NAND gates or a 

combination of NOR gates can be used to perform functions of any of the basic 

logic gates. It is for this reason that NAND and NOR gates are universal gates. 

Implementation of gates using NAND gates 

a) NOT gate:             

                                

b) AND gate: 

                           

c) OR gate: 

                            

d) NOR gate: 

                      

 



 

e) Ex-OR gate: 

                             

f) Ex-NOR gate: 

                             

 

Implementation of gates using NOR gates 

a) NOT gate: 

                           

b) AND gate: 

                     

c) OR gate: 

                     

 



 

d) NAND gate: 

                   

e) Ex-OR gate: 

                   

f) Ex-NOR gate: 

                    

IEEE/ANSI Symbols: 

                         

                            

                           

                         



                          

                           

                          

Boolean Expressions: 

A Boolean expression or a function is an expression which consists of binary 

variables joined by the Boolean connectives AND and OR along with NOT 

operation. 

Any Boolean expression can be expressed in two forms: 

a) Canonical form 

b) Standard form 

Canonical Form: 

An expanded form of Boolean expression, where each term contains all Boolean 

variables in their true or complemented form, is known as the canonical form of 

the expression.  

a) Sum of minterms: Any Boolean function can be expressed as a sum of 

minterms expression. A minterm is a standard product which consists of all 

variables in either complemented or un-complemented form for which the 

output is 1. For example, 

                                 ܻ ൌ ܥܤ′ܣ ൅ ܥ′ܤܣ ′ ൅  ܥܤܣ

    ൌ  ∑ ݉ሺ3,4,7ሻ 

is a sum of minterms expression with three variables. 

b) Product of maxterms: Any Boolean function can be expressed as a 

product of maxterms expression. A maxterm is a standard sum which 



consists of all variables in either complemented or un-complemented form 

for which the output is 0. For example, 

                        ܻ ൌ ሺܣ′ ൅ ′ܤ ൅ ܣሻሺܥ ൅ ܤ ൅ ܥ ′ሻሺܣ ൅ ܤ ൅  ሻܥ

   ൌ  ∏  ሺ0,1,6ሻ ܯ

is a product of maxterms expression with three variables. 

Standard Form: 

A simplified form of a Boolean expression which may consist of one or more 

number of variables in each term in either complemented or un-complemented 

form is known as Standard form of the expression. 

a) Sum of Products (SOP):  The sum of products is a Boolean expression 

containing AND terms, called Product terms, of one or more literals each; 

the sum denotes the ORing of these terms. For example,  

                 ܻ ൌ ܤ′ܣ ൅ ܥܤ ′ ൅  ܥܣ

is a SOP expression with three variables. 

b) Product of Sums (POS): It is a Boolean expression containing OR terms 

called Sum terms and the product denotes the ANDing of these terms. 

    ܻ ൌ ܣሺܣ ൅ ܤሻሺ′ܤ ൅ ܥ ′ሻ  

is a POS expression with three variables. 

 

** Canonical form is obtained when a function is taken from a truth 

table. When implementing a Boolean function with gates, standard 

form is preferred. 

Simplification of Boolean expressions: 

The primary objective of all simplification procedures is to obtain an expression 

that has the minimum number of terms. Obtaining an expression with the 

minimum number of literals is usually the secondary objective. The Boolean 

functions can be simplified by using  



a) Boolean Laws and theorems 

b) K maps 

c) Quine Mc-Cluskey or Tabulation Method 

Simplification using K-maps: 

A Karnaugh map is a graphical representation of the logic system. It can be drawn 

directly from either minterm (sum-of-products) or maxterm (product-of-sums) 

Boolean expressions. Drawing a Karnaugh map from the truth table involves an 

additional step of writing the minterm or maxterm expression depending upon 

whether it is desired to have a minimized sum-of-products or a minimized product 

of sums expression. 

An n-variable Karnaugh map has 2n squares, and each possible input is allotted a 

square. In the case of a minterm Karnaugh map, ‘1’ is placed in all those squares 

for which the output is ‘1’, and ‘0’ is placed in all those squares for which the 

output is ‘0’. 0s are omitted for simplicity. An ‘X’ is placed in squares 

corresponding to ‘don’t care’ conditions. 

a) Two Variable K-map: 

                  

i) Sum of minterms representation           

ii) Product of maxterms representation 

 

 

 

 



b) Three Variable K-map: 

                                   

                       
i) Sum of minterms representation                   ii) Product of 

maxterms representation 

 

c) Four Variable K-map:                   

 

i) Sum of minterms representation                       ii) Product of maxterms 

representation 

d) Five Variable K-map: 

 



Simplification Algorithm: 

Simplification of logical functions using K-maps is based on the principle of 

combining terms in adjacent cells. Two cells are said to be adjacent if they differ in 

only one variable. 

1. Identify the ones which cannot be combined with any other ones and 

encircle them. These are called essential prime implicants. 

2. Identify the ones that can be combined in groups of two in only one way. 

Encircle them. 

3. Identify the ones that can be combined with three other ones, to make a 

group of four adjacent ones, in only one way. Encircle such group of ones. 

4. Identify the ones that can be combined with seven other ones, to make a 

group of eight adjacent ones, in only one way. Encircle them. 

5. After identifying the essential groups of 2, 4, and 8 ones, if there still remain 

some ones which have not been encircled, then these are to be combined 

with each other or with other already encircled ones. 

Examples: 

1. Simplify the Boolean function ܨ ൌ ܥ′ܣ ൅ ܤ′ܣ ൅ ܥ′ܤܣ ൅  ܥܤ

   Sol:  ܨ ൌ ܥ′ܣ ൅ ܤ′ܣ ൅ ܥ′ܤܣ ൅ ܥܤ ൌ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ′ ൅ ܥܤ′ܣ ൅ ܥ′ܤܣ ൅  ܥ′ܤܣ

                                     

ܨ                                          ൌ ܥ ൅  ܤ′ܣ

 

 



,ܣሺܨ .2 ,ܤ ,ܥ ሻܦ ൌ ∑ ݉ ሺ0, 1, 2, 3, 5, 7, 8, 9, 11, 14ሻ 

                    
ܨ ൌ ′ܤ′ܣ ൅ ܦ′ܣ ൅ ′ܦܥܤܣ ൅ ܥ′ܤ ′ ൅  ܦ′ܤ

,ܣሺܨ .3 ,ܤ ,ܥ ሻܦ ൌ ∑ ݉ ሺ1, 2, 3, 5, 7, 8, 9, 10, 13ሻ 

                             

ܨ ൌ ܦܥ′ܣ ൅ ܥܣ ܦ′ ൅ ′ܦ′ܤܣ ൅ ܦ′ܤ′ܣ ൅  ܥ′ܤ′ܣ

 

,ܣሺܨ .4 ,ܤ ,ܥ ሻܦ ൌ ∏ ,ሺ0 ܯ 1, 2, 3, 4, 10, 11ሻ 

                      

ܨ ൌ ሺܣ ൅ ܣሻሺܤ ൅ ܥ ൅ ܤሻሺܦ ൅ ܥ ′ሻ 

 



ܨ .5 ൌ  ∑ ݉ ሺ1, 2,3, 5, 13ሻ ൅ ∑ ݀ ሺ6, 7, 8, 9, 11, 15ሻ 

                    

ܨ ൌ ܦ ൅  ܥ′ܣ

ܨ .6 ൌ  ∑ ݉ሺ0, 2, 4, 9, 12, 15ሻ ൅ ∑ ,ሺ1׎ 5, 7, 10ሻ 

                        
ܨ ൌ ′ܦ′ܤ′ܣ ൅ ܦܥܤ ൅ ܥܤ ′ܦ′ ൅  ܦ′ܥ′ܤ

Two level Implementation: 

Any logic circuit can be implemented in two levels by representing the Boolean 

function either in SOP or POS form. Two level NAND and NOR circuits can be 

obtained by representing the expression in SOP and POS form respectively. 

Minimum propagation delay will be obtained by using two level implementation. 

But as the number of terms increases, the number of inputs increases for the 

second level gate. 

 

 



NAND Implementation: 

By expressing the given function in SOP form, the logic circuit can be 

implemented using two level NAND gates. 

Example:  

Implement  ܻ ൌ ′ܣሺܣ ൅ ሻ′ܤ ൅ ܥܤ ′ ൅  .using NAND gates ܥܣ

Sol:              ܻ ൌ ′ܣሺܣ ൅ ሻ′ܤ ൅ ܥܤ ′ ൅  ܥܣ

    ൌ ′ܤܣ ൅ ܥܤ ′ ൅  SOP form   -----      ܥܣ

 By using double complements we get, 

   ܻ ൌ ሺܻ′ሻ′ ൌ ሼሺܤܣ′൅ ܥܤ ′ ൅ ′ሻ′ሽܥܣ ൌ ሺܤܣ′ሻ′ሺܥܤ ′ሻ′ሺܥܣሻ′ 

                                             

NOR Implementation: 

By expressing the given function in POS form, the logic circuit can be 

implemented using two level NOR gates. 

Example: 

Implement ܻ ൌ ܤ′ܣ ൅ ܥܤ ′using NOR gates. 

Sol:   ܻ ൌ ܤ′ܣ ൅ ܥܤ ′ 

       ൌ ሺܤ′ܣ ൅ ܤ′ܣሻሺܤ ൅ ܥ ′ሻ ……. Distributive law 

    ܻ ൌ ′ܣሺܤ ൅ ′ܣሻሺܤ ൅ ܥ ′ሻሺܤ ൅ ܥ ′ሻ ……. Distributive law 

and the expression is in POS form. 



                  

ܻ ൌ ሺܻ′ሻ′ ൌ ሾሼܤሺܣ′ ൅ ′ܣሻሺܤ ൅ ܥ ′ሻሺܤ ൅ ܥ ′ሻሽ′ሿ′                                                     

 ൌ ሾሺܤሻ′ ൅ ሺܣ′ ൅ ′ሻܤ ൅ ሺܣ′ ൅ ܥ ′ሻ′ ൅ ሺܤ ൅ ܥ ′ሻ′ሿ′ 

                                   

 

Multilevel Implementation: 

Multi level NAND or NOR implementation of a Boolean circuit can be achieved 

by replacing each gate in the circuit with the NAND or NOR equivalent circuits 

respectively. With this type of implementation, very large propagation delay is 

achieved and only two input gates are required.  

NAND Implementation: 

By replacing each gate in the circuit with the NAND equivalent, multi level 

NAND circuit is achieved. When two single input NAND gates (inverters) are in 

series, they can be removed. 

Example:  ܻ ൌ ܤሺܣ ൅ ሻܦܥ ൅  ′ܥܤ

                                 



                                  

NOR Implementation: 

By replacing each gate in the circuit with the NOR equivalent, multi level NOR 

circuit is achieved. When two single input NOR gates (inverters) are in series, they 

can be removed. 

Example:  ܻ ൌ ܤሺܣ ൅ ሻܦܥ ൅  ′ܥܤ

                       

                     

 

 


