
Logic g

impleme

also kno

basic bu

There ar

gate. Ot

the NO

This cha

gates fo

theorem

Positive

The bin

logic ‘1’

are repr

more po

positive

as a pos

represen

then the

If the tw

represen

0V repr

and −5

−5V rep

−5V rep

Boo

gates are

ent the mo

own as Bo

uilding bloc

re three ba

ther logic g

R gate, the

apter deals

ollowed by

ms and usin

e and Neg

nary variabl

 state. The

esented by

ositive of th

of the two

sitive logic sy

nts a logic

e logic syste

wo voltage

nts logic ‘0

esents logi

5V, then in

presents a l

presents log

olean A

electronic

ost elemen

oolean expr

ck of comb

asic logic ga

gates that ar

e EXCLUSI

s with logic

y simplifica

g K-maps.

gative Log

es can hav

se logic sta

two differ

he two volt

o levels rep

stem. If the

‘0’ and the

em is referr

levels are

’ and the +

c ‘1’ and 5V

n the positi

logic ‘0’. In

gic ‘1’.

Digital E

Algeb

circuits

ntary logica

ressions. T

binational lo

ates, namely

re derived

IVE-OR ga

c gates and

ation of Bo

gic

e either of

ates in digit

ent voltage

tage or cur

presents a l

e more po

e less posit

red to as a

0V and +5

+5V repres

V represen

ive logic sy

n the negati

Electron

ra & L

which can

al expressi

The logic g

ogic.

y the OR g

from these

ate and the

d implemen

oolean fun

f the two st

tal systems

e levels or t

rrent levels

logic ‘0’, th

ositive of th

tive of the

negative logic

5V, then in

sents logic

nts logic ‘0’

ystem the 0

ive logic sy

ics

Logic

n be use

ions, which

gate is the

gate, the AN

e basic gate

e EXCLUS

ntations usi

nctions usin

tates, i.e., th

 such as co

two differen

represents

hen the logi

he two vo

two levels

c system.

n the positiv

‘1’. In the

’. If the two

0V represe

ystem, 0V r

Gates

d to

h are

most

ND gate an

es are the N

SIVE-NOR

ing NAND

ng Boolean

he logic ‘0’

omputers, f

nt current l

 a logic ‘1’

ic system is

ltage or cu

s represent

ve logic sys

negative lo

o voltage le

ents a logic

represents

s

nd the NO

NAND gat

R gate.

D and NO

n Laws an

 state or th

for instanc

levels. If th

and the les

s referred t

urrent leve

s a logic ‘1

stem the 0V

ogic system

evels are 0V

c ‘1’ and th

logic ‘0’ an

T

e,

R

nd

he

e,

he

ss

to

els

1’,

V

m,

V

he

nd

Logic Gates

The Logic Gate is the most basic building block of any digital system, including

computers. Each one of the basic logic gates is a piece of hardware or an electronic

circuit that can be used to implement some basic logic expression. While laws of

Boolean algebra could be used to do manipulation with binary variables and

simplify logic expressions, these are actually implemented in a digital system with

the help of electronic circuits called logic gates. The three basic logic gates are the

OR gate, the AND gate and the NOT gate.

OR Gate

A logic gate used to perform the operation of logical addition is called an OR

gate. An OR gate performs an OR operation on two or more than two logic

variables. The OR operation on two independent logic variables A and B is written

as Y = A+B and reads as Y equals A OR B. An OR gate is a logic circuit with two

or more inputs and one output. The output of an OR gate is LOW only when all

of its inputs are LOW. For all other possible input combinations, the output is

HIGH. A truth table lists all possible combinations of input binary variables and

the corresponding outputs of a logic system. Figure shows the circuit symbol and

the truth table of a two-input OR gate. The operation of a two-input OR gate is

explained by the logic expression

 Y = A+B

 Two input OR Gate

AND Gate

A logic gate used to perform logical multiplication is known as AND gate. An

AND gate is a logic circuit having two or more inputs and one output. The output

of an AND gate is HIGH only when all of its inputs are in the HIGH state. In all

other cases, the output is LOW. The logic symbol and truth table of a two-input

AND gate is shown in figure. The AND operation on two independent logic

variables A and B is written as Y = A.B and reads as Y equals A AND B. The

operation of a two-input AND gate is explained by the logic expression

 Y = A.B

Two input AND Gate

NOT Gate

A logic gate used to perform logical inversion is known as a NOT gate. A NOT

gate is a one-input, one-output logic circuit whose output is always the

complement of the input. That is, a LOW input produces a HIGH output, and

vice versa. If ܺ is the input to a NOT circuit, then its output Y is given by Y = ܺ ഥ

or ܺ′ and reads as Y equals NOT ܺ. The logic symbol and truth table of a NOT

gate is shown in figure. The operation of a NOT gate is explained by the logic

expression

 Y = ܺ ഥ

 NOT Gate

NAND Gate

NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it

a NAND gate. The output of a NAND gate is logic ‘0’ when all its inputs are logic

‘1’. For all other input combinations, the output is logic ‘1’. The symbol and truth

table of a NAND gate is as shown. NAND gate operation is logically expressed as

 ܻ ൌ ܤܣ

 Two input NAND Gate

NAND Gate is known as Universal gate as it can be used alone to implement any

gate operation. Hence it is said to be functionally complete.

NOR Gate

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a

NOR gate. The output of a NOR gate is logic ‘1’ when all its inputs are logic ‘0’.

For all other input combinations, the output is logic ‘0’. The symbol and truth table

of a NOR gate is as shown. The output of a two-input NOR gate is logically

expressed as

 ܻ ൌ ሺܣ ൅ ሻܤ

 Two input NOR Gate

NOR gate is also known as Universal gate as it is used alone to implement any gate

operation and hence it is also functionally complete.

EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input,

one-output gate. The output of an EX-OR gate is logic ‘1’ when the inputs are

unlike and logic ‘0’ when the inputs are like. Although EX-OR gates are available

in integrated circuit form only as two-input gates, unlike other gates which are

available in multiple inputs also, multiple-input EX-OR logic functions can be

implemented using more than one two-input gates. The output of a multiple-input

EX-OR logic function is logic ‘1’ when the number of 1s in the input sequence is

odd and logic ‘0’ when the number of 1s in the input sequence is even, including

zero. The symbol and truth table of an EX-OR gate is shown in figure. The output

of a two-input EX-OR gate is logically expressed as

ܻ ൌ ܣ ْ ܤ ൌ ܤ′ܣ ൅ ′ܤܣ

 Two input EX-OR Gate

EXCLUSIVE-NOR Gate

EXCLUSIVE-NOR, commonly written as EX-NOR, means NOT of EX-OR, i.e.,

the logic gate that we get by complementing the output of an EX-OR gate. The

truth table of an EX-NOR gate is obtained from the truth table of an EX-OR gate

by complementing the output entries as shown in figure. Logically,

 ܻ ൌ ܣ ْ ܤ ൌ ′ܤ′ܣ ൅ ܤܣ

 Two input EX-NOR Gate

The output of a two-input EX-NOR gate is logic ‘1’ when the inputs are like and

logic ‘0’ when they are unlike. In general, the output of a multiple-input EX-NOR

logic function is logic ‘0’ when the number of 1s in the input sequence is odd and a

logic ‘1’ when the number of 1s in the input sequence is even including zero.

Boolean algebra:

Boolean algebra is an algebraic structure defined on a set of elements B together

with two binary operators + and · provided the following postulates are satisfied:

1. a) Closure with respect to the operator +.

b) Closure with respect to the operator ·.

2. a) An identity element with respect to +, designated by 0: ݔ ൅ 0 ൌ 0 ൅ ݔ ൌ .ݔ

 b) An identity element with respect to ·, designated by 1:ݔ · 1 ൌ 1 · ݔ ൌ .ݔ

3. a) Commutative with respect to +: ݔ ൅ ݕ ൌ ݕ ൅ .ݔ

 b) Commutative with respect to ·: ݔ · ݕ ൌ ݕ · .ݔ

4. a) · is distributive over +: ݔ · ሺݕ ൅ ሻݖ ൌ ሺݔ · ሻݕ ൅ ሺݔ · .ሻݖ

b) + is distributive over ·: ݔ ൅ ሺݕ · ሻݖ ൌ ሺݔ ൅ ሻݕ · ሺݔ ൅ .ሻݖ

5. For every element ݔ א ᇱݔ there exists an element ,ܤ א (ݔ complement of) ܤ

such that

ݔ ൅ ᇱݔ ൌ 1 and ݔ · ᇱݔ ൌ 0.

Boolean Laws & Theorems:

Duality Principle:

It states that every algebraic expression deducible from the postulates of Boolean

algebra remains valid if the operators and identity elements are interchanged. If the

dual of an algebraic expression is desired, OR and AND operators are

interchanged and 1’s are replaced by 0’s and 0’s by 1’s.

1. ܽሻ ݔ ൅ 0 ൌ ݔ ሻܾ ݔ · 1 ൌ ݔ

2. ܽሻ ݔ ൅ ݔ ′ ൌ 1 ܾሻ ݔ · ݔ ′ ൌ 0

3. ܽሻ ݔ ൅ ݔ ൌ ݔ ሻܾ ݔ · ݔ ൌ ݔ

4. ܽሻ ݔ ൅ 1 ൌ 1 ܾሻ ݔ · 0 ൌ 0

5. DeMorgan’s Theorem: ܽሻ ሺݔ ൅ ′ሻݕ ൌ ݔ ݕ′ ′ ܾሻ ሺݕݔሻ′ ൌ ݔ ′ ൅ ′ݕ

6. Absorption Theorem: ܽሻ ݔ ൅ ݕݔ ൌ ݔሺݔ ሻܾ ݔ ൅ ሻݕ ൌ ݔ

Simplification using Boolean Laws & Theorems:

The Boolean functions can be simplified by using appropriate Boolean laws and

theorems.

Examples:

Simplify the following functions using Boolean laws and theorems:

ܨ .1 ൌ ܦܥܤܣ ൅ ܥܤܣ ′ܦ′ ൅ ′ܦܥܤܣ ൅ ܥܤܣ ܦ′ ൅ ܧܦܥܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൅

 ܧܦ′ܥܤܣ

Sol: ܨ ൌ ܦܥܤܣ ൅ ܥܤܣ ′ܦ′ ൅ ′ܦܥܤܣ ൅ ܥܤܣ ܦ′ ൅ ܧܦܥܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൅

 ܧܦ′ܥܤܣ

ൌ ܦሺܥܤܣ ൅ ሻ′ܦ ൅ ܥܤܣ ′ሺܦ ൅ ሻ′ܦ ൅ ܥሺܧܦܤܣ ൅ ܥ ′ሻ ൅ ܥܤܣ ′ܧ′ܦ′

ൌ ܥሺܤܣ ൅ ܥ ′ሻ ൅ ܧܦܤܣ ൅ ܥܤܣ ′ܧ′ܦ′ ൌ ሺ1ܤܣ ൅ ܧܦ ൅ ܥ ሻ′ܧ′ܦ′ ൌ ܤܣ

ܨ .2 ൌ ݕݔ ൅ ݔ ݖ′ ൅ ݖݕ

Sol: ܨ ൌ ݕݔ ൅ ݔ ݖ′ ൅ ݖݕ

 ൌ ݕݔ ൅ ݔ ݖ′ ൅ ݔሺݖݕ ൅ ݔ ′ሻ ൌ ሺ1ݕݔ ൅ ሻݖ ൅ ݔ ሺ1ݖ′ ൅ ሻݕ

ൌ ݕݔ ൅ ݖ′ݔ

ܨ .3 ൌ ܥܤܣ ൅ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ൅ ܥܤܣ ′ ൅ ′ܥ′ܤ′ܣ

Sol: ܨ ൌ ܥܤܣ ൅ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ൅ ܥܤܣ ′ ൅ ′ܥ′ܤ′ܣ

 ൌ ܥܤ ൅ ′ܤ′ܣ ൅ ܥܤܣ ′ ൌ ܥሺܤ ൅ ܥܣ ′ሻ ൅ ′ܤ′ܣ ൌ ܤܣ ൅ ܥܤ ൅ ′ܤ′ܣ

Universal Gates

OR, AND and NOT gates are the three basic logic gates as they together can be

used to construct the logic circuit for any given Boolean expression. NOR and

NAND gates have the property that they individually can be used to hardware-

implement a logic circuit corresponding to any given Boolean expression. That is,

it is possible to use either only NAND gates or only NOR gates to implement any

Boolean expression. This is so because a combination of NAND gates or a

combination of NOR gates can be used to perform functions of any of the basic

logic gates. It is for this reason that NAND and NOR gates are universal gates.

Implementation of gates using NAND gates

a) NOT gate:

b) AND gate:

c) OR gate:

d) NOR gate:

e) Ex-OR gate:

f) Ex-NOR gate:

Implementation of gates using NOR gates

a) NOT gate:

b) AND gate:

c) OR gate:

d) NAND gate:

e) Ex-OR gate:

f) Ex-NOR gate:

IEEE/ANSI Symbols:

Boolean Expressions:

A Boolean expression or a function is an expression which consists of binary

variables joined by the Boolean connectives AND and OR along with NOT

operation.

Any Boolean expression can be expressed in two forms:

a) Canonical form

b) Standard form

Canonical Form:

An expanded form of Boolean expression, where each term contains all Boolean

variables in their true or complemented form, is known as the canonical form of

the expression.

a) Sum of minterms: Any Boolean function can be expressed as a sum of

minterms expression. A minterm is a standard product which consists of all

variables in either complemented or un-complemented form for which the

output is 1. For example,

 ܻ ൌ ܥܤ′ܣ ൅ ܥ′ܤܣ ′ ൅ ܥܤܣ

 ൌ ∑ ݉ሺ3,4,7ሻ

is a sum of minterms expression with three variables.

b) Product of maxterms: Any Boolean function can be expressed as a

product of maxterms expression. A maxterm is a standard sum which

consists of all variables in either complemented or un-complemented form

for which the output is 0. For example,

 ܻ ൌ ሺܣ′ ൅ ′ܤ ൅ ܣሻሺܥ ൅ ܤ ൅ ܥ ′ሻሺܣ ൅ ܤ ൅ ሻܥ

 ൌ ∏ ሺ0,1,6ሻ ܯ

is a product of maxterms expression with three variables.

Standard Form:

A simplified form of a Boolean expression which may consist of one or more

number of variables in each term in either complemented or un-complemented

form is known as Standard form of the expression.

a) Sum of Products (SOP): The sum of products is a Boolean expression

containing AND terms, called Product terms, of one or more literals each;

the sum denotes the ORing of these terms. For example,

 ܻ ൌ ܤ′ܣ ൅ ܥܤ ′ ൅ ܥܣ

is a SOP expression with three variables.

b) Product of Sums (POS): It is a Boolean expression containing OR terms

called Sum terms and the product denotes the ANDing of these terms.

 ܻ ൌ ܣሺܣ ൅ ܤሻሺ′ܤ ൅ ܥ ′ሻ

is a POS expression with three variables.

** Canonical form is obtained when a function is taken from a truth

table. When implementing a Boolean function with gates, standard

form is preferred.

Simplification of Boolean expressions:

The primary objective of all simplification procedures is to obtain an expression

that has the minimum number of terms. Obtaining an expression with the

minimum number of literals is usually the secondary objective. The Boolean

functions can be simplified by using

a) Boolean Laws and theorems

b) K maps

c) Quine Mc-Cluskey or Tabulation Method

Simplification using K-maps:

A Karnaugh map is a graphical representation of the logic system. It can be drawn

directly from either minterm (sum-of-products) or maxterm (product-of-sums)

Boolean expressions. Drawing a Karnaugh map from the truth table involves an

additional step of writing the minterm or maxterm expression depending upon

whether it is desired to have a minimized sum-of-products or a minimized product

of sums expression.

An n-variable Karnaugh map has 2n squares, and each possible input is allotted a

square. In the case of a minterm Karnaugh map, ‘1’ is placed in all those squares

for which the output is ‘1’, and ‘0’ is placed in all those squares for which the

output is ‘0’. 0s are omitted for simplicity. An ‘X’ is placed in squares

corresponding to ‘don’t care’ conditions.

a) Two Variable K-map:

i) Sum of minterms representation

ii) Product of maxterms representation

b) Three Variable K-map:

i) Sum of minterms representation ii) Product of

maxterms representation

c) Four Variable K-map:

i) Sum of minterms representation ii) Product of maxterms

representation

d) Five Variable K-map:

Simplification Algorithm:

Simplification of logical functions using K-maps is based on the principle of

combining terms in adjacent cells. Two cells are said to be adjacent if they differ in

only one variable.

1. Identify the ones which cannot be combined with any other ones and

encircle them. These are called essential prime implicants.

2. Identify the ones that can be combined in groups of two in only one way.

Encircle them.

3. Identify the ones that can be combined with three other ones, to make a

group of four adjacent ones, in only one way. Encircle such group of ones.

4. Identify the ones that can be combined with seven other ones, to make a

group of eight adjacent ones, in only one way. Encircle them.

5. After identifying the essential groups of 2, 4, and 8 ones, if there still remain

some ones which have not been encircled, then these are to be combined

with each other or with other already encircled ones.

Examples:

1. Simplify the Boolean function ܨ ൌ ܥ′ܣ ൅ ܤ′ܣ ൅ ܥ′ܤܣ ൅ ܥܤ

 Sol: ܨ ൌ ܥ′ܣ ൅ ܤ′ܣ ൅ ܥ′ܤܣ ൅ ܥܤ ൌ ܥ′ܤ′ܣ ൅ ܥܤ′ܣ ′ ൅ ܥܤ′ܣ ൅ ܥ′ܤܣ ൅ ܥ′ܤܣ

ܨ ൌ ܥ ൅ ܤ′ܣ

,ܣሺܨ .2 ,ܤ ,ܥ ሻܦ ൌ ∑ ݉ ሺ0, 1, 2, 3, 5, 7, 8, 9, 11, 14ሻ

ܨ ൌ ′ܤ′ܣ ൅ ܦ′ܣ ൅ ′ܦܥܤܣ ൅ ܥ′ܤ ′ ൅ ܦ′ܤ

,ܣሺܨ .3 ,ܤ ,ܥ ሻܦ ൌ ∑ ݉ ሺ1, 2, 3, 5, 7, 8, 9, 10, 13ሻ

ܨ ൌ ܦܥ′ܣ ൅ ܥܣ ܦ′ ൅ ′ܦ′ܤܣ ൅ ܦ′ܤ′ܣ ൅ ܥ′ܤ′ܣ

,ܣሺܨ .4 ,ܤ ,ܥ ሻܦ ൌ ∏ ,ሺ0 ܯ 1, 2, 3, 4, 10, 11ሻ

ܨ ൌ ሺܣ ൅ ܣሻሺܤ ൅ ܥ ൅ ܤሻሺܦ ൅ ܥ ′ሻ

ܨ .5 ൌ ∑ ݉ ሺ1, 2,3, 5, 13ሻ ൅ ∑ ݀ ሺ6, 7, 8, 9, 11, 15ሻ

ܨ ൌ ܦ ൅ ܥ′ܣ

ܨ .6 ൌ ∑ ݉ሺ0, 2, 4, 9, 12, 15ሻ ൅ ∑ ,ሺ1׎ 5, 7, 10ሻ

ܨ ൌ ′ܦ′ܤ′ܣ ൅ ܦܥܤ ൅ ܥܤ ′ܦ′ ൅ ܦ′ܥ′ܤ

Two level Implementation:

Any logic circuit can be implemented in two levels by representing the Boolean

function either in SOP or POS form. Two level NAND and NOR circuits can be

obtained by representing the expression in SOP and POS form respectively.

Minimum propagation delay will be obtained by using two level implementation.

But as the number of terms increases, the number of inputs increases for the

second level gate.

NAND Implementation:

By expressing the given function in SOP form, the logic circuit can be

implemented using two level NAND gates.

Example:

Implement ܻ ൌ ′ܣሺܣ ൅ ሻ′ܤ ൅ ܥܤ ′ ൅ .using NAND gates ܥܣ

Sol: ܻ ൌ ′ܣሺܣ ൅ ሻ′ܤ ൅ ܥܤ ′ ൅ ܥܣ

 ൌ ′ܤܣ ൅ ܥܤ ′ ൅ SOP form ----- ܥܣ

 By using double complements we get,

 ܻ ൌ ሺܻ′ሻ′ ൌ ሼሺܤܣ′൅ ܥܤ ′ ൅ ′ሻ′ሽܥܣ ൌ ሺܤܣ′ሻ′ሺܥܤ ′ሻ′ሺܥܣሻ′

NOR Implementation:

By expressing the given function in POS form, the logic circuit can be

implemented using two level NOR gates.

Example:

Implement ܻ ൌ ܤ′ܣ ൅ ܥܤ ′using NOR gates.

Sol: ܻ ൌ ܤ′ܣ ൅ ܥܤ ′

 ൌ ሺܤ′ܣ ൅ ܤ′ܣሻሺܤ ൅ ܥ ′ሻ ……. Distributive law

 ܻ ൌ ′ܣሺܤ ൅ ′ܣሻሺܤ ൅ ܥ ′ሻሺܤ ൅ ܥ ′ሻ ……. Distributive law

and the expression is in POS form.

ܻ ൌ ሺܻ′ሻ′ ൌ ሾሼܤሺܣ′ ൅ ′ܣሻሺܤ ൅ ܥ ′ሻሺܤ ൅ ܥ ′ሻሽ′ሿ′

 ൌ ሾሺܤሻ′ ൅ ሺܣ′ ൅ ′ሻܤ ൅ ሺܣ′ ൅ ܥ ′ሻ′ ൅ ሺܤ ൅ ܥ ′ሻ′ሿ′

Multilevel Implementation:

Multi level NAND or NOR implementation of a Boolean circuit can be achieved

by replacing each gate in the circuit with the NAND or NOR equivalent circuits

respectively. With this type of implementation, very large propagation delay is

achieved and only two input gates are required.

NAND Implementation:

By replacing each gate in the circuit with the NAND equivalent, multi level

NAND circuit is achieved. When two single input NAND gates (inverters) are in

series, they can be removed.

Example: ܻ ൌ ܤሺܣ ൅ ሻܦܥ ൅ ′ܥܤ

NOR Implementation:

By replacing each gate in the circuit with the NOR equivalent, multi level NOR

circuit is achieved. When two single input NOR gates (inverters) are in series, they

can be removed.

Example: ܻ ൌ ܤሺܣ ൅ ሻܦܥ ൅ ′ܥܤ

