Digital Electronics

Boolean Algebra & Logic Gates

Logic gates are electronic circuits which can be wused to

implement the most elementary logical expressions, which are

also known as Boolean expressions. The logic gate is the most

basic building block of combinational logic. iz

fessor. KLU

ssociate P

There are three basic logic gates, namely the OR gate, the AND gate and the NOT
gate. Other logic gates that are derived from these basic gates are the NAND gate,
the NOR gate, the EXCLUSIVE-OR gate and the EXCLUSIVE-NOR gate.

This chapter deals with logic gates and implementations using NAND and NOR
gates followed by simplification of Boolean functions using Boolean Laws and

theorems and using K-maps.

Positive and Negative Logic

The binary variables can have either of the two states, i.e., the logic ‘0’ state or the
logic ‘1 state. These logic states in digital systems such as computers, for instance,
are represented by two different voltage levels or two different current levels. If the
more positive of the two voltage or current levels represents a logic ‘1’ and the less
positive of the two levels represents a logic ‘0’; then the logic system is referred to
as a positive logic system. 1f the more positive of the two voltage or current levels
represents a logic ‘0’ and the less positive of the two levels represents a logic ‘1°,

then the logic system is referred to as a negative logic system.

If the two voltage levels are 0V and +5V, then in the positive logic system the OV
represents logic ‘0’ and the +5V represents logic ‘1’. In the negative logic system,
OV represents logic ‘1’ and 5V represents logic ‘0’. If the two voltage levels are 0V
and —5V, then in the positive logic system the OV represents a logic ‘17 and the
—5V represents a logic ‘0”. In the negative logic system, OV represents logic ‘0” and

—5V represents logic ‘1.

Logic Gates

The Logic Gate is the most basic building block of any digital system, including
computers. Each one of the basic logic gates is a piece of hardware or an electronic
circuit that can be used to implement some basic logic expression. While laws of
Boolean algebra could be used to do manipulation with binary variables and
simplify logic expressions, these are actually implemented in a digital system with
the help of electronic circuits called logic gates. The three basic logic gates are the

OR gate, the AND gate and the NOT gate.
OR Gate

A logic gate used to perform the operation of logical addition is called an OR
gate. An OR gate performs an OR operation on two or more than two logic
variables. The OR operation on two independent logic variables A and B is written
as Y = A+B and reads as Y equals A OR B. An OR gate is a logic circuit with two
or more inputs and one output. The output of an OR gate is LOW only when all
of its inputs are LOW. For all other possible input combinations, the output is
HIGH. A truth table lists all possible combinations of input binary variables and
the corresponding outputs of a logic system. Figure shows the circuit symbol and
the truth table of a two-input OR gate. The operation of a two-input OR gate is

explained by the logic expression

Y = A+B

A
Y=A+B
B

Two input OR Gate

N ==
- o = O|m
e

AND Gate

A logic gate used to perform logical multiplication is known as AND gate. An
AND gate is a logic circuit having two or more inputs and one output. The output
of an AND gate is HIGH only when all of its inputs are in the HIGH state. In all
other cases, the output is LOW. The logic symbol and truth table of a two-input
AND gate is shown in figure. The AND operation on two independent logic
variables A and B is written as Y = A.B and reads as Y equals A AND B. The

operation of a two-input AND gate is explained by the logic expression

Y=AB
Al B |
A— ol oo
B 1100
1] 1 |1
Two input AND Gate

NOT Gate

A logic gate used to perform logical inversion is known as a NOT gate. A NOT
gate is a one-input, one-output logic circuit whose output is always the
complement of the input. That is, a LOW input produces a HIGH output, and
vice versa. If X is the input to a NOT circuit, then its output Y is given by Y = X
or X'and reads as Y equals NOT X. The logic symbol and truth table of a NOT
gate is shown in figure. The operation of a NOT gate is explained by the logic

expression

NOT Gate

NAND Gate

NAND stands for NOT AND. An AND gate followed by a NOT circuit makes it
a NAND gate. The output of a NAND gate is logic ‘0’ when all its inputs are logic
‘I’. For all other input combinations, the output is logic ‘1’. The symbol and truth

table of a NAND gate is as shown. NAND gate operation is logically expressed as

TJ‘?

-,

]

|

m
= =1

- o = o|m
[Qe

Two input NAND Gate

NAND Gate is known as Universal gate as it can be used alone to implement any

gate operation. Hence it is said to be functionally complete.
NOR Gate

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a
NOR gate. The output of a NOR gate is logic ‘1” when all its inputs are logic ‘0’.
For all other input combinations, the output is logic ‘0’. The symbol and truth table
of a NOR gate is as shown. The output of a two-input NOR gate is logically

expressed as

. - =1
= O = Q|
=T ==

Two input NOR Gate

NOR gate is also known as Universal gate as it is used alone to implement any gate

operation and hence it is also functionally complete.
EXCLUSIVE-OR Gate

The EXCLUSIVE-OR gate, commonly written as EX-OR gate, is a two-input,
one-output gate. The output of an EX-OR gate is logic ‘1’ when the inputs are
unlike and logic ‘0” when the inputs are like. Although EX-OR gates are available
in integrated circuit form only as two-input gates, unlike other gates which are
available in multiple inputs also, multiple-input EX-OR logic functions can be
implemented using more than one two-input gates. The output of a multiple-input
EX-OR logic function is logic ‘1’ when the number of 1s in the input sequence is
odd and logic ‘0’ when the number of 1s in the input sequence is even, including
zero. The symbol and truth table of an EX-OR gate is shown in figure. The output
of a two-input EX-OR gate is logically expressed as

Y=A®@®B=AB+ AB’

A
Y=AGB
B

Two input EX-OR Gate

-
- o= olm
[

EXCLUSIVE-NOR Gate

EXCLUSIVE-NOR, commonly written as EX-NOR, means NOT of EX-OR, i.e.,
the logic gate that we get by complementing the output of an EX-OR gate. The
truth table of an EX-NOR gate is obtained from the truth table of an EX-OR gate

by complementing the output entries as shown in figure. Logically,

Y=A®B=AB + AB

A
Y=AEB
B

- = ool
- o - om

=

Two input EX-NOR Gate

The output of a two-input EX-NOR gate is logic ‘1’ when the inputs are like and
logic ‘0’ when they are unlike. In general, the output of a multiple-input EX-NOR
logic function is logic ‘0’ when the number of 1s in the input sequence is odd and a

logic ‘1’ when the number of 1s in the input sequence is even including zero.

Boolean algebra:

Boolean algebra is an algebraic structure defined on a set of elements B together

with two binary operators + and * provided the following postulates are satisfied:
1. a) Closure with respect to the operator +.

b) Closure with respect to the operator -.
2. 2) An identity element with respect to +, designated by 0: x + 0 = 0 + x = x.
b) An identity element with respect to -, designated by 1:x -1 =1 -x = x.
3. a) Commutative with respectto +: x +y =y + x.
b) Commutative with respectto X+ y =y * X.
4. a)-isdistributive over +: x - (y +2) = (x - y) + (x - 2).
b) + is distributive over = x + (y - 2) = (x + y) - (x + 2).

5. For every element x € B, there exists an element x' €B (complement of x)
such that

x+x' =landx-x" =0.

Boolean Laws & Theorems:

Duality Principle:

It states that every algebraic expression deducible from the postulates of Boolean

algebra remains valid if the operators and identity elements are interchanged. If the

dual of an algebraic expression is desired, OR and AND operators are

interchanged and 1’s are replaced by 0’s and 0’s by 1’s.

l.ayx+0=x byx-1=x
2.a)x+x =1 b)x-x =0
3.a)x+x=x byx-x=x
4da)yx+1=1 byx-0=0
5. DeMorgan’s Theorem: @) (x +y) = x'y’ b)(xy) =x"+y'
6. Absorption Theorem: a) x + xy = x byx(x+y) =x

Simplification using Boolean Laws & Theorems:

The Boolean functions can be simplified by using appropriate Boolean laws and

theorems.
Examples:

Simplify the following functions using Boolean laws and theorems:

1. F=ABCD + ABC'D + ABCD + ABC'D + ABCDE + ABCD'E' +
ABC'DE

Sol: F = ABCD + ABC'D' + ABCD' + ABC'D + ABCDE + ABCD'E' +
ABC'DE

= ABC(D + D)+ ABC'(D + D) + ABDE(C + C) + ABC'D'E’
=AB(C +C) + ABDE + ABCD'E'=AB(1+ DE+CD'E") = AB
2. F=xy+xz+yz
Sol: F=xy+xz+yz
=xy+xz+yz(x+x)=xy(1+2) +xz(1+y)
=xy+x'z

3. F=ABC+AB'C+ ABC + ABC + A'B'C’

Sol: F=ABC+AB'C+ ABC+ ABC' + A'B'C’
=BC+AB +ABC =B(C+AC)+ AB = AB+ BC + A'B’

Universal Gates

OR, AND and NOT gates are the three basic logic gates as they together can be
used to construct the logic circuit for any given Boolean expression. NOR and
NAND gates have the property that they individually can be used to hardware-
implement a logic circuit corresponding to any given Boolean expression. That is,
it is possible to use either only NAND gates or only NOR gates to implement any
Boolean expression. This is so because a combination of NAND gates or a
combination of NOR gates can be used to perform functions of any of the basic

logic gates. It is for this reason that NAND and NOR gates are universal gates.
Implementation of gates using NAND gates

a) NOT gate:

A -
=A

b) AND gate:

c) OR gate:

d) NOR gate:

e) Ex-OR gate:

f) Ex-NOR gate:

of,
loo

Implementation of gates using NOR gates

a) NOT gate:
) >
b) AND gate:
A
Y=AB
B
c) OR gate:

B

d) NAND gate:

A

m

e) Ex-OR gate:

:

f) Ex-NOR gate:

)

IEEE/ANSI Symbols:

-
o

>

)

Y L

Y

=]

Boolean Expressions:

A Boolean expression or a function is an expression which consists of binary
variables joined by the Boolean connectives AND and OR along with NOT

operation.
Any Boolean expression can be expressed in two forms:

a) Canonical form
b) Standard form

Canonical Form:

An expanded form of Boolean expression, where each term contains all Boolean
variables in their true or complemented form, is known as the canonical form of

the expression.

a) Sum of minterms: Any Boolean function can be expressed as a sum of
minterms expression. A minterm is a standard product which consists of all
variables in either complemented or un-complemented form for which the
output is 1. For example,

Y =ABC+ABC' + ABC
= Y».m(3,4,7)

is a sum of minterms expression with three variables.

b) Product of maxterms: Any Boolean function can be expressed as a

product of maxterms expression. A maxterm is a standard sum which

consists of all variables in either complemented or un-complemented form

tfor which the output is 0. For example,
Y=(A+B +C)A+B+CYA+B+C)
= [IM (0,1,6)
is a product of maxterms expression with three variables.
Standard Form:

A simplified form of a Boolean expression which may consist of one or more
number of variables in each term in either complemented or un-complemented

form is known as Standard form of the expression.

a) Sum of Products (SOP): The sum of products is a Boolean expression
containing AND terms, called Product terms, of one or more literals each;
the sum denotes the ORing of these terms. For example,

Y =AB+BC +AC
is a SOP expression with three variables.

b) Product of Sums (POS): It is a Boolean expression containing OR terms
called Sum terms and the product denotes the ANDing of these terms.

Y=AA+B)(B+C)

is a POS expression with three variables.

** Canonical form is obtained when a function is taken from a truth
table. When implementing a Boolean function with gates, standard

form is preferred.

Simplification of Boolean expressions:

The primary objective of all simplification procedures is to obtain an expression
that has the minimum number of terms. Obtaining an expression with the
minimum number of literals is usually the secondary objective. The Boolean

functions can be simplified by using

a) Boolean Laws and theorems
b) K maps
c) Quine Mc-Cluskey or Tabulation Method

Simplification using K-maps:

A Karnaugh map is a graphical representation of the logic system. It can be drawn
directly from either minterm (sum-of-products) or maxterm (product-of-sums)
Boolean expressions. Drawing a Karnaugh map from the truth table involves an
additional step of writing the minterm or maxterm expression depending upon
whether it is desired to have a minimized sum-of-products or a minimized product

of sums expression.

An n-variable Karnaugh map has 2" squares, and each possible input is allotted a
square. In the case of a minterm Karnaugh map, ‘1’ is placed in all those squares
for which the output is ‘1’, and ‘0’ is placed in all those squares for which the
output is ‘0. Os are omitted for simplicity. An X’ is placed in squares

corresponding to ‘don’t care’ conditions.

a) Two Variable K-map:

A A A A
0 1 0 1
_ |o 2 0 2
Bo B o
1 3 I L 3
B1 B 1
1) Sum of minterms representation

11) Product of maxterms representation

b) Three Variable K-map:

AB AB AB AB
0 01 1l 10

0 2 & 4

1) Sum of minterms representation

maxterms representation

c) Four Variable K-map:

AE AB AB AB
111} 01 11 10

0 4 12 |8
CD o

1 5 13 |9
cDn

3 7 15 1
cbn

2 6 4 [0
CD1wo

1) Sum of minterms representation

representation

d) Five Variable K-map:

A+B AYB' AMB' AMB
00 01 11 10
0 2 i 4
cao
1 3 T 5
c'1
ii) Product of
AR AFB' AMBT AMEB
1]1] 01 11 10
0 4 12 !
C+D 00
1 5 13 2
c+D* 01
3 T 15 11
C+D11
2 G 14 10
c+D10

ii) Product of maxterms

BC A AT
DE\ 0o 01 11 1 o0 01 11 10
0 4 12 |8 16 |20 |28 |24
00
1 5 13 |0 17 |21 (29 |as
01
3 7 15 1 19 (23 [31 |27
11
2 3 14 [0 18 (22 (30 |26
10

Simplification Algorithm:

Simplification of logical functions using K-maps is based on the principle of
combining terms in adjacent cells. Two cells are said to be adjacent if they differ in

only one variable.

1. Identify the ones which cannot be combined with any other ones and

encircle them. These are called essential prime implicants.

2. ldentify the ones that can be combined in groups of two in only one way.

Encircle them.

3. Identify the ones that can be combined with three other ones, to make a

group of four adjacent ones, in only one way. Encircle such group of ones.

4. Identify the ones that can be combined with seven other ones, to make a

group of eight adjacent ones, in only one way. Encircle them.

5. After identifying the essential groups of 2, 4, and 8 ones, if there still remain
some ones which have not been encircled, then these are to be combined

with each other or with other already encircled ones.
Examples:
1. Simplify the Boolean function F = A'C + AB + AB'C + BC
Sol: F=AC+AB+ABC+BC=ABC+ABC +ABC+ABC+ AB'C
AB AB AB AB

[1L] 01 11 10

] 2___ |6 4
Co 1

1 3 1 5
cr|[r [[L]] T 1]

F=C+AB

2. F(4,B,C,D) =¥ m (0,1,2,3,5,7,8,9,11,14)

ABE AB AB AB
w o 11 10

o— (4 12 &
CDhom |1 1

1 5 13 e
copo | ||1]|| 1 1

3 7 15 11
coullll|]l 1 1

2 1] 14 10
cDu| [1]

F=AB +AD+ ABCD +B'C' +B'D
3. F(A4,B,C,D) =¥m(1,2,3,5,7,8,9,10,13)

AB AB AB AB
1]1] 01 11 |lq

4 12
cow |’)

. 71 IEE

3 15 11
coull 1 ‘

2 [14 10
chn| |1 m
]

F=ACD+ACD+ ABD'+ AB'D + A'B'C

4. F(A,B,C,D) =[IM (0,1,2,3,4,10,11)

A+B A+B" AMB' AY4B
00 01 11 10

C+D 00 ITF_T . ’

1 5 13 9
C+D° 01 0

3 7 5 m
C+D11| |0 0

2 6 14 |
c+p'1o| |0 0

F=(A+B)A+C+D)B+C)

5. F= ¥m(1,23,513) + X d (6,7,8,9,11, 15)

AB AB AB AB
1] 01 11 10
0 4 12 |8
CD o X
1 £ 13 o
cpn||l 1 1| x

3 7 15 11
chn 1 X X X

2 6 |4 [w
cowl| |1 | X

F=D+AC
6. F=¥Ym(0,2,4,9,12,15) + ¥ ¢(1,5,7,10)

AB AB AB AB
0 | 1 11w

4
CD oo 1 EEB

I 5 13 2

cpul| x|l x 1
3
cD 11 ="
2 5 |14 |10
cDw| |1 X

’

F=ABD +BCD+BCD +B'CD
Two level Implementation:

Any logic circuit can be implemented in two levels by representing the Boolean
function either in SOP or POS form. Two level NAND and NOR circuits can be
obtained by representing the expression in SOP and POS form respectively.
Minimum propagation delay will be obtained by using two level implementation.
But as the number of terms increases, the number of inputs increases for the

second level gate.

NAND Implementation:

By expressing the given function in SOP form, the logic circuit can be

implemented using two level NAND gates.

Example:
Implement ¥ = A(A"+ B") + BC' + AC using NAND gates.
Sol: Y =44+ B") + BC + AC

=AB'+BC' +AC SOP form

By using double complements we get,
Y=()={(AB'+BC +AC)} = (AB")'(BC)'(AC)'

L

—

D—] >
e —

B

c

NOR Implementation:

By expressing the given function in POS form, the logic circuit can be

implemented using two level NOR gates.

Example:

Implement Y = A'B + BC ’using NOR gates.

Sol: Y =AB+BC’
=(AB+B)YAB+C)...... Distributive law
Y=BA+B)A+CYB+C)...... Distributive law

and the expression is in POS form.

Y=U)=[{BUA +B)A +C)B+CH}T
=B +U+B)+A+CY+B+CH]

B’

=

e) >—

Multilevel Implementation:

Multi level NAND or NOR implementation of a Boolean circuit can be achieved
by replacing each gate in the circuit with the NAND or NOR equivalent circuits
respectively. With this type of implementation, very large propagation delay is

achieved and only two input gates are required.
NAND Implementation:

By replacing each gate in the circuit with the NAND equivalent, multi level
NAND circuit is achieved. When two single input NAND gates (inverters) are in

series, they can be removed.

Example: Y = A(B + CD) + BC'

|
L

foE oo

-

NOR Implementation:

By replacing each gate in the circuit with the NOR equivalent, multi level NOR
circuit is achieved. When two single input NOR gates (inverters) are in series, they

can be removed.

Example: Y = A(B + CD) + BC'

.

