9. RANDOM VARIABLE AND DISTRIBUTIONS
 PREVIOUS EAMCET BITS

1. If m and σ^{2} are the mean and variance of the random variable X, whose distribution is given by

$X=x:$	0	1	2	3
$P(X=x)$	$1 / 3$	$1 / 2$	0	$1 / 6$

Then
[EAMCET 2009]

1) $m=\sigma^{2}=2$
2) $\mathrm{m}=1, \sigma^{2}=2$
3) $m=\sigma^{2}=1$
4) $m=2, \sigma^{2}=1$

Ans:
Sol : $\mathrm{m}=0+\frac{1}{2}+0+\frac{3}{6}=1$
$\sigma^{2}=\sum_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}^{2} \cdot \mathrm{P}_{\mathrm{n}}-\mathrm{m}^{2}=1$
2. If X is a binomial variate with the range $\{0,1,2,3,4,5,6\}$ and $P(X=2)=4 P(X=4)$, then the parameter p of X is
[EAMCET 2009]

1) $\frac{1}{3}$
2) $\frac{1}{2}$
3) $\frac{2}{3}$
4) $\frac{3}{4}$

Ans: 1
Sol: Given $n=6, P(X=2)=4 P(X=4)$

$$
\begin{aligned}
& \Rightarrow 6_{c_{2}} p^{2} q^{4}=4 \times 6_{c_{4}} p^{4} q^{2} \\
& \Rightarrow q=2 p \Rightarrow 1-p=2 p \\
& \Rightarrow p=1 / 3
\end{aligned}
$$

3. The distribution of a random variable X is given below

$\mathrm{X}=\mathrm{x}$	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\frac{1}{10}$	K	$\frac{1}{5}$	2 k	$\frac{3}{10}$	k

the value of k is
[EAMCET 2008]

1) $\frac{3}{10}$
2) $\frac{2}{10}$
3) $\frac{3}{10}$
4) $\frac{7}{10}$

Ans:
Sol: $\quad \sum \mathrm{P}(\mathrm{X}=\mathrm{x})=1 \Rightarrow \frac{1}{10}+\mathrm{k}+\frac{1}{5}+2 \mathrm{k}+\frac{3}{10}+\mathrm{k}=1$
$\Rightarrow 4 \mathrm{k}=\frac{4}{10} \Rightarrow \mathrm{k}=\frac{1}{10}$
4. If X is a Poisson variate such that $P(X=1) P(X=2)$, then $P(X=4)$
[EAMCET 2008]

1) $\frac{1}{2 e^{2}}$
2) $\frac{1}{3 e^{2}}$
3) $\frac{2}{3 \mathrm{e}^{2}}$
4) $\frac{1}{e^{2}}$

Ans: 3
Sol: $\quad \mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{X}=2) \Rightarrow \frac{\mathrm{e}^{-\lambda} \lambda}{1!}=\frac{\mathrm{e}^{-\lambda} \lambda^{2}}{2!}$
$\Rightarrow \lambda=2 . \mathrm{P}(\mathrm{X}=4)=\frac{\mathrm{e}^{-\lambda} \lambda^{4}}{4!}=\frac{\mathrm{e}^{-2} 2^{4}}{4!}=\frac{2}{3 \mathrm{e}^{2}}$
5. The mean and standard deviation of a binomial variate X are 4 and $\sqrt{3}$ respectively. Then $\mathrm{P}(\mathrm{X} \geq 1)$ is equal to
[EAMCET 2007]

1) $1-\left(\frac{1}{4}\right)^{16}$
2) $1-\left(\frac{3}{4}\right)^{16}$
3) $1-\left(\frac{2}{3}\right)^{16}$
4) $1-\left(\frac{1}{3}\right)^{16}$

Ans: 2
Sol: Mean $=n p=4$, variance $n q p=3$
On solving, we get $\mathrm{q}=\frac{3}{4}, \mathrm{n}=16, \mathrm{p}=\frac{1}{4}$
Now $\mathrm{p}(\mathrm{X} \geq 1)=1-\mathrm{p}(\mathrm{X}=0)=1-{ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{p}^{0} \mathrm{q}^{\mathrm{n}-0}=1-\left(\frac{3}{4}\right)^{16}$
6. The probability distribution of a random variable X is given by

$\mathrm{X}=\mathrm{x}$	0	1	2	3	4
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0.4	0.3	0.1	0.1	0.1

The variance of X is
[EAMCET 2007]

1) 1.76
2) 2.45
3) 3.2
4) 4.8

Ans: 1
Sol: Given

$\mathrm{X}=\mathrm{x}$	$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$\mathrm{xP}(\mathrm{X}=\mathrm{x})$	$\mathrm{x}^{2} \mathrm{P}$
0	0.4	0	0
1	0.3	0.3	0.3
2	0.1	0.2	0.4
3	0.1	0.3	0.9
4	0.1	0.4	1.6

Mean $\bar{x}=\sum_{i=0}^{4} p_{i} x_{i}=1.2$

Variance $=\sum_{\mathrm{i}=0}^{4} \mathrm{p}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\overline{\mathrm{x}}^{2}=3.20-1.44=1.76$
7. In a book of 500 pages, it is found that there are 250 typing errors. Assume that Poisson law holds for the number of errors per page. Then, the probability that a random sample of 2 pages will contain no error, is
[EAMCET 2006]

1) $e^{-0.3}$
2) $e^{-0.5}$
3) e^{-1}
4) e^{-2}

Ans: 3
Sol: Here number of errors per page $=\frac{250}{500}=\frac{1}{2}$
and $n=2$
$\therefore \lambda=\mathrm{np}=2 \times \frac{1}{2}=1$ and probability of no error $\mathrm{P}(\mathrm{X}=0)=\frac{\mathrm{e}^{-1} \times(1)^{0}}{0!}=\mathrm{e}^{-1}$
8. If the range of a random variable X is $\{0,1,2,3,4, \ldots$.$\} with \mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{(\mathrm{k}+1) \mathrm{a}}{3^{\mathrm{k}}}$ for $\mathrm{k} \geq 0$, then a is equal to
[EAMCET 2005]

1) $\frac{2}{3}$
2) $\frac{4}{9}$
3) $\frac{8}{27}$
4) $\frac{16}{81}$

Ans: 2
Sol: Given that $\mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{(\mathrm{k}+1)}{3^{\mathrm{k}}}$ for $\mathrm{x} \in\{0,1,2, \ldots \infty\}$
As we know that $\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2)+\ldots \ldots . \infty=1$
$\Rightarrow \mathrm{a}+\frac{2 \mathrm{a}}{3}+\frac{3 \mathrm{a}}{3^{2}}+\ldots . . \infty=1 \ldots$. (i)
$\mathrm{S}=\mathrm{a}\left(1+\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\ldots \infty\right) \Rightarrow \frac{\frac{1}{3} \mathrm{~S}=\mathrm{a}\left(\frac{1}{3}+\frac{2}{3^{2}}+\frac{3}{3^{3}}+\ldots . \infty\right)}{\mathrm{S}-\frac{1}{3} \mathrm{~S}=\mathrm{a}\left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots \infty\right)}$
$\Rightarrow \frac{2}{3} \mathrm{~S}=\mathrm{a}\left(\frac{1}{1-\frac{1}{3}}\right) \Rightarrow \frac{2}{3} \mathrm{~S}=\frac{3 \mathrm{a}}{2} \Rightarrow \mathrm{~S}=\frac{9 \mathrm{a}}{4}$
from equation (i) $\Rightarrow \frac{9 \mathrm{a}}{4}=1 \Rightarrow \mathrm{a}=\frac{4}{9}$
9 For a binomial variate X with $n=6$, if $P(X=2)=9 P(X=4)$, then its variance is
[EAMCET 2005]

1) $\frac{8}{9}$
2) $\frac{1}{4}$
3) $\frac{9}{8}$
4) 4

Ans: 3
Sol: Given that $\mathrm{n}=6$ and $\mathrm{P}(\mathrm{X}=2)=9 \mathrm{P}(\mathrm{X}=4)$
$\Rightarrow{ }^{6} \mathrm{C}_{2} \mathrm{P}^{2} \mathrm{q}^{4}=9 .{ }^{6} \mathrm{C}_{4} \mathrm{P}^{4} \mathrm{q}^{2}$
$\Rightarrow 9 \mathrm{p}^{2}=\mathrm{q}^{2} \Rightarrow \mathrm{p}=\frac{1}{3} \mathrm{q}$
\because we know that $\mathrm{p}+\mathrm{q}=1$
$\Rightarrow \frac{\mathrm{q}}{3}+\mathrm{q}=1 \Rightarrow \mathrm{q}=\frac{3}{4}$ and $\mathrm{p}=\frac{1}{4}$
\therefore variance $=\mathrm{npq}=6 \cdot \frac{1}{4} \cdot \frac{3}{4}=\frac{9}{8}$
10. A person who tosses an unbiased coin gains two points for turning up a head and loses one point for a tail. If three coins are tossed and the total score X is observed, then the range of x is
[EAMCET 2004]

1) $\{0.3 .6\}$
2) $\{-3,0,3\}$
3) $\{-3,0,3,6\}$
4) $\{-3,3,6\}$

Ans: 3
Sol: Since it is given that for tossing a coin, if head will come down it will give two point and for tail comes down it loose one point.
There are four case arise : Case(i) If all three tails comes out, then his points $=-1-1-1=-3$
Case (ii) If two tails and one head comes out, then his points $=-1-1+2=0$
Case (iii) If one tail and two heads comes out, then this points $=-1+2+2=3$
Case (iv) If all three heads comes out, then his points $=2+2+2=6$
\therefore Range $=\{-3,0,3,6\}$
11. If X is a Poisson variate with $\mathrm{P}(\mathrm{X}=0)=0.8$, then the variance of X is

1) $\log _{e} 20$
2) $\log _{10} 20$
3) $\log _{e} 5 / 4$
4) 0

Ans: 3
Sol: Poisson distribution $P(X)=\frac{\mathrm{e}^{-\mathrm{m}} \mathrm{m}^{\mathrm{x}}}{\mathrm{x}!}$
$\therefore \mathrm{P}(\mathrm{X}=0)=\frac{\mathrm{e}^{-\mathrm{m}} 1}{1} \Rightarrow 0.8=\mathrm{e}^{-\mathrm{m}} \Rightarrow-\mathrm{m}=\log _{\mathrm{e}} 0.8$
$\Rightarrow \mathrm{m}=\log _{\mathrm{e}} \frac{10}{8}=\log _{\mathrm{e}} \frac{5}{4}$
As we know in a Poisson distribution variance $=\mathrm{m}$
Variance $=\log _{e} \frac{5}{4}$
12. For a Poisson variate X, if $P(X=2)=3 P(X=3)$, then the mean of X is
[EAMCET 2003]

1) 1
2) $\frac{1}{2}$
3) $\frac{1}{3}$
4) $\frac{1}{4}$

Ans: 1
Sol: We known that $\mathrm{P}(\mathrm{X}=\mathrm{k})=\frac{\lambda^{\mathrm{k}} \mathrm{e}^{\lambda}}{\mathrm{k}!}$
Since, $P(X=2)=3 P(X=3)$
$\Rightarrow \frac{\lambda^{2} \mathrm{e}^{\lambda}}{2!}=3 \cdot \frac{\lambda^{3} \mathrm{e}^{\lambda}}{3!} \Rightarrow \lambda=1$
\therefore Mean of Poisson distribution $=\lambda \Rightarrow 1$
13. A random variable X takes the values $0,1,2,3$ and its mean is 13 . If $P(X=3)=2 P(X=1)$ an $\mathrm{P}(\mathrm{X}=2)=0.3$, then $\mathrm{P}(\mathrm{X}=0)$ is equal to
[EAMCET 2003]

1) 0.1
2) 0.2
3) 0.3
4) 0.4

Ans: 4
Sol: Given that Mean $=\sum \mathrm{X}_{\mathrm{k}} \mathrm{P}(\mathrm{X}=\mathrm{k})=1.3$

$$
\begin{aligned}
& \mathrm{X}_{0} \mathrm{P}(\mathrm{X}=0)+\mathrm{X}_{1} \mathrm{P}(\mathrm{X}=1)+\mathrm{X}_{2} \mathrm{P}(\mathrm{X}=2)+\mathrm{X}_{3} \mathrm{P}(\mathrm{X}=3)=1.3 \\
& \Rightarrow 0 . \mathrm{P}(\mathrm{X}=0)+1 . \mathrm{P}(\mathrm{X}=1)+2 . \mathrm{P}(\mathrm{X}=2)+3 . \mathrm{P}(\mathrm{X}=3)=1.3 \\
& \Rightarrow \mathrm{P}(\mathrm{X}=1)+2(0.3)+3.2 \mathrm{P}(\mathrm{X}=1)=1.3 \\
& \Rightarrow 7 \mathrm{P}(\mathrm{X}=1)=0.7 \Rightarrow \mathrm{P}(\mathrm{X}=1)=0.1
\end{aligned}
$$

Now, $\mathrm{P}(\mathrm{X}=3) 2 \mathrm{P}(\mathrm{X}=1)=2(0.1)=0.2$
Also, $\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)=1$
$\Rightarrow \mathrm{P}(\mathrm{X}=0)+0.1+0.3+0.2=1 \Rightarrow \mathrm{P}(\mathrm{X}=0)=1-0.6=0.4$
14. In a binomial distribution the probability of getting success is $1 / 4$ and the standard deviation is 3 . Then its mean is
[EAMCET 2002]

1) 6
2) 8
3) 10
4) 12

Ans:4
Sol: Given that $\mathrm{P}=\frac{1}{4}$ and $\mathrm{q}=1-\frac{1}{4}=\frac{3}{4}$
S.D $=3 \Rightarrow \sqrt{\mathrm{npq}}=3 \Rightarrow \mathrm{npq}=9 \Rightarrow \mathrm{n} \cdot \frac{1}{4} \cdot \frac{3}{4}=9=\mathrm{n}=48$

Mean $=n p=48 \times \frac{1}{4}=12$
15. If the mean of a Poisson distribution is $1 / 2$ then the ratio of $P(X=3)$ to $P(X=2)$ is
[EAMCET 2002]

1) $1: 2$
2) $1: 4$
3) $1: 6$
4) $1: 8$

Ans: 3
Sol: Given that $\lambda=\frac{1}{2}$, Now $\mathrm{P}(\mathrm{X}=\mathrm{n})=\frac{\lambda^{\mathrm{n}}}{\mathrm{n}!} \mathrm{e}^{\lambda}$
$\therefore P(X=3)=\frac{\left(\frac{1}{2}\right)^{3}}{3!} \mathrm{e}^{1 / 2}$ and $\mathrm{P}(X=2)=\frac{\left(\frac{1}{2}\right)^{2}}{2!} \mathrm{e}^{1 / 2}$
$\frac{P(X=3)}{P(X=2)}=\frac{\frac{\left(\frac{1}{2}\right)^{3} \mathrm{e}^{1 / 2}}{3!}}{\frac{\left(\frac{1}{2}\right)^{2} \mathrm{e}^{1 / 2}}{2!}}=\frac{\left(\frac{1}{2}\right)^{3} \mathrm{e}^{1 / 2} 2!}{\left(\frac{1}{2}\right)^{2} \mathrm{e}^{1 / 2} 3!}=\frac{\frac{1}{2}}{3}=\frac{1}{6}$
16. A random variable X takes the values 0,1 and 2. If $P(X=1)=P(X=2)$ and $P(X=0)=0.4$, then the mean of the random variable X is
[EAMCET 2002]

1) 0.2
2) 0.7
3) 0.5
4) 0.9

Ans: 4
Sol: We have $\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{X}=2)$
$\frac{\lambda^{1}}{1!} \mathrm{e}^{\lambda}=\frac{\lambda^{2}}{2!} \mathrm{e}^{\lambda} \Rightarrow \lambda=2$
also $P(X=0)+P(X=1)+P(X=2)=1$
$\Rightarrow 0.4+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=1$
$\Rightarrow \mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=0.6=\frac{6}{10}=\frac{3}{5}$
Also, $\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=1)=\frac{3}{5} \quad[$ from (i)]
$\Rightarrow \mathrm{P}(\mathrm{X}=1)=\frac{3}{10} \Rightarrow \mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{X}=2)=\frac{3}{10}$
Mean $X_{0} P(X=0)+X_{1} P(X=1)+X_{2} P(X=2)$

$$
=0+1 \cdot \frac{3}{10}+2 \cdot \frac{3}{10}=\frac{9}{10}=0.9
$$

17. Find the binomial probability distribution whose mean is 3 and variance is
[EAMCET 2001]
1) $\left(\frac{2}{3}+\frac{1}{3}\right)^{9}$
2) $\left(\frac{5}{3}+\frac{2}{3}\right)^{9}$
3) $\left(\frac{3}{3}+\frac{1}{2}\right)^{9}$
4) None of these

Ans: 1
Sol: We have $\mathrm{np}=3, \mathrm{npq}=2 \Rightarrow \mathrm{q}=\frac{2}{3}$
$\therefore \mathrm{p}=1-\mathrm{q}=1-\frac{2}{3}=\frac{1}{3}, \mathrm{n}=9$
Hence, the binomial distribution is $(\mathrm{q}+\mathrm{p})^{\mathrm{n}}=\left(\frac{2}{3}+\frac{1}{3}\right)^{9}$
18. For a binomial variate X, if $n=4$ and $P(X=4)=6 P(X=2)$, then the value of p is
[EAMCET 2001]

1) $\frac{3}{7}$
2) $\frac{4}{7}$
3) $\frac{6}{7}$
4) $\frac{5}{7}$

Ans: 3
Sol: We have, $P(x=4)=6 P(x=2)$
$\Rightarrow{ }^{4} \mathrm{C}_{4} \mathrm{P}^{4} \mathrm{q}^{0}=6 .{ }^{4} \mathrm{C}_{2} \mathrm{p}^{2} \mathrm{q}^{2}$
$\Rightarrow \mathrm{p}^{2}=36 \mathrm{q}^{2}$
$\Rightarrow \mathrm{p}=6 \mathrm{q}=6(1-\mathrm{p}) \Rightarrow \mathrm{p}=\frac{6}{7}$
19. For all values of a and b the line $(a+2 b) x+(a-b) y+(a+5 b)=0$ passes through the point
[EAMCET 2001]

1) $(-1,2)$
2) $(2,-1)$
3) $(-2,1)$
4) $(1,-2)$

Ans: 3
Sol: Let the line passes through a point whose co-ordinates are $(-2,1)$ then
$(a+2 b)(-2)+(a-b)(1)+a+5 b$
$=-2 a-4 b+a-b+a+5 b$
$=-2 a-5 b+2 a+5 b=0$
20. The probability distribution of a random variable X is given below, then k is equal to

N	1	2	3	4
$P(X=n)$	$2 k$	$4 k$	$3 k$	K

[EAMCET 2000]

1) 0.1
2) 0.2
3) 0.3
4) 0.4

Ans: 1
Sol: We have, $P(X=1)+P(x=2)+P(X=3)+P(X=4)=1$
$\Rightarrow 2 \mathrm{k}+4 \mathrm{k}+3 \mathrm{k}+\mathrm{k}=1 \Rightarrow \mathrm{k}=\frac{1}{10}=0.1$

