8. PROBABILITY

PREVIOUS EAMCET BITS

1. If A and B are events of a random experiment such that $P(A \cup B)=\frac{4}{5}, P(\bar{A} \cup \bar{B})=\frac{7}{10}$ and $P(B)=\frac{2}{5}$, then $P(A)=$
[EAMCET 2009]
1) $\frac{9}{10}$
2) $\frac{8}{10}$
3) $\frac{7}{10}$
4) $\frac{3}{5}$

Ans: 3
Sol: $\quad \mathrm{P}(\overline{\mathrm{A} \cap \mathrm{B}})=\frac{7}{10} \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{10}$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \Rightarrow \mathrm{P}(\mathrm{A})=\frac{7}{10}$
2. The probability of choosing randomly a number c from the set $\{1,2,3, \ldots 9\}$ such that the quadratic equation $x^{2}+4 x+c=0$ has real roots is :
[EAMCET 2009]

1) $\frac{1}{9}$
2) $\frac{2}{9}$
3) $\frac{3}{9}$
4) $\frac{4}{9}$

Ans: 4
Sol: $\Delta \geq 0, \Rightarrow C \leq 4$
$\therefore \mathrm{E}=\{1,2,3,4\} \& \mathrm{P}(\mathrm{E})=\frac{4}{9}$
3. Suppose that E_{1} and $E 2$ are two events of a random experiment such that $P\left(E_{1}\right)=\frac{1}{4}, P\left(\frac{E_{2}}{E_{1}}\right)=\frac{1}{2}$ and $P\left(\frac{E_{1}}{E_{2}}\right)=\frac{1}{4}$, observe the lists given below :
[EAMCET 2009]
List - I
List - II
(A) $P\left(E_{2}\right)$
(i) $1 / 4$
(B) $\mathrm{P}\left(\mathrm{E}_{1} \cup \mathrm{E}_{2}\right)$
(ii) $5 / 8$
(C) $\mathrm{P}\left(\overline{\mathrm{E}}_{1} / \overline{\mathrm{E}}_{2}\right)$
(iii) $1 / 8$
(D) $\mathrm{P}\left(\mathrm{E}_{1} / \overline{\mathrm{E}}_{2}\right)$
(iv) $1 / 2$
(v) $3 / 8$
(vi) $3 / 4$

	A	B	C	D		A	B	C	D
1)	ii	iii	vi	i	2)	iv	v	vi	i
3)	iv	ii	vi	i	4)	i	ii	iii	iv

Sol: Ans: 3
$P\left(\frac{E_{2}}{E_{1}}\right)=\frac{1}{2} \Rightarrow \frac{P\left(E_{1} \cap E_{2}\right)}{1 / 4}=\frac{1}{2}$
$\Rightarrow P\left(E_{1} \cap E_{2}\right)=\frac{1}{8} \& P\left(\frac{E_{1}}{E_{2}}\right)=\frac{1}{4}$
$\Rightarrow P\left(\mathrm{E}_{2}\right)=\frac{1}{2}$
4. If A and B are independent events of a random experiment such that $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6}$ and $\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\frac{1}{3}$, then $\mathrm{P}(\mathrm{A})=$
[EAMCET 2008]

1) $\frac{1}{4}$
2) $\frac{1}{3}$
3) $\frac{3}{4}$
4) $\frac{2}{3}$

Ans:2
Sol: Let $\mathrm{P}(\mathrm{A})=\mathrm{x}$ and $\mathrm{P}(\mathrm{B})=\mathrm{y}$

$$
\begin{aligned}
& P(A \cap B)=\frac{1}{6} \Rightarrow P(A) P(B)=\frac{1}{6} \Rightarrow x y=\frac{1}{6} \\
& P(\bar{A} \cap \bar{B})=\frac{1}{3} \Rightarrow P(\bar{A}) P(\bar{B})=\frac{1}{3} \Rightarrow[1-P(B)]=\frac{1}{3} \Rightarrow(1-x)(1-y)=\frac{1}{3} \\
& \Rightarrow 1-x-y+x y=\frac{1}{3} \Rightarrow 1-x-y+\frac{1}{6}=\frac{1}{3} \Rightarrow x+y=\frac{5}{6} \Rightarrow y=\frac{5}{6}-x
\end{aligned}
$$

$x y=\frac{1}{6} \Rightarrow x\left(\frac{5}{6}-x\right)=\frac{1}{6} \Rightarrow x(5-6 x)=1 \Rightarrow 6 x^{2}-5 x+1=0 \Rightarrow(2 x-1)(3 x-1)=0$
$\Rightarrow \mathrm{x}=\frac{1}{2}$ (or) $\frac{1}{3}$
5. Let S be the sample space of the random experiment of throwing simultaneously two unbiased dice with six faced (numbered 1 to 6) and let $E_{k}=\{(a, b) \in S: a b=k\}$ for $k \geq 1$ [EAMCET 2008]

1) $\mathrm{p}_{1}<\mathrm{p}_{30}<\mathrm{p}_{4}<\mathrm{p}_{6}$ 2) $\mathrm{p}_{36}<\mathrm{p}_{6}<\mathrm{p}_{2}<\mathrm{p}_{4}$
2) $\mathrm{p}_{1}<\mathrm{p}_{11}<\mathrm{p}_{4}<\mathrm{p}_{6}$
3) $\mathrm{p}_{36}<\mathrm{p}_{11}<\mathrm{p}_{6}<\mathrm{p}_{4}$

Ans:1
Sol: $\quad \mathrm{p}_{1}=\mathrm{P}\left(\mathrm{E}_{1}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=1\}]=\mathrm{P}[\{(1,1)\}]=1 / 36$
$\mathrm{p}_{2}=\mathrm{P}\left(\mathrm{E}_{2}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=2\}]=\mathrm{P}[\{(1,2),(2,1)\}]=2 / 36$
$\mathrm{P}_{4}=\mathrm{P}\left(\mathrm{E}_{4}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=4\}]=\mathrm{P}[\{(1,4),(2,2),(4,1)\}]=3 / 36$
$\mathrm{p}_{6}=\mathrm{P}\left(\mathrm{E}_{6}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=6\}]=\mathrm{P}[\{(1,6),(2,3),(3,2),(6,1)\}]=4 / 36$
$p_{11}=P\left(E_{11}\right)=P[\{(a, b) / a b=11\}]=P[\phi]=0$
$\mathrm{p}_{30}=\mathrm{P}\left(\mathrm{E}_{30}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=30\}]=\mathrm{P}[\{(5,6),(6,5)\}]=2 / 36$
$\mathrm{p}_{36}=\mathrm{P}\left(\mathrm{E}_{36}\right)=\mathrm{P}[\{(\mathrm{a}, \mathrm{b}) / \mathrm{ab}=36\}]=\mathrm{P}[\{(6,6)\}]=1 / 36 \therefore \mathrm{p}_{1}<\mathrm{p}_{30}<\mathrm{p}_{4}<\mathrm{p}_{6}$
6. For $K=1,2,3$ the box B_{k} contains k red balls and $(k+1)$ white balls. Let $P\left(B_{1}\right)=\frac{1}{2}, P\left(B_{2}\right)=\frac{1}{3}, P\left(B_{3}\right)=\frac{1}{6}$. A box is selected at random and a ball is drawn from it. If a red ball is drawn, the probability that it has come from box B_{2} is
[EAMCET 2008]

1) $\frac{35}{78}$
2) $\frac{14}{39}$
3) $\frac{10}{13}$
4) $\frac{12}{13}$

Ans:
Sol: Let E be the event of drawing red ball from the selected box.
$\mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{B}_{1}}\right)=\frac{1}{2}, \mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{B}_{2}}\right)=\mathrm{P}\left(\frac{\mathrm{E}}{\mathrm{B}_{3}}\right)=\frac{3}{4}$
$\mathrm{P}\left(\frac{\mathrm{B}^{2}}{\mathrm{E}}\right)=\frac{\mathrm{P}\left(\mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{E} \backslash \mathrm{B}_{2}\right)}{\mathrm{P}\left(\mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{E} \backslash \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{E} \backslash \mathrm{B}_{2}\right)+\mathrm{P}\left(\mathrm{B}_{3}\right) \mathrm{P}\left(\mathrm{E} \backslash \mathrm{B}_{3}\right)}$
$\frac{(1 / 3)(2 / 3)}{(1 / 2)(1 / 2)+(1 / 3)(2 / 3)+(1 / 6)(3 / 4)}=\frac{2 / 9}{1 / 4+2 / 9+1 / 8}=\frac{2}{9} \times \frac{72}{18+16+9}=\frac{16}{43}$
7. Four numbers are chosen at random from $\{1,2,3, \ldots . .40\}$. The probability that they are not consecutive, is
[EAMCET 2007]

1) $\frac{1}{2470}$
2) $\frac{4}{7969}$
3) $\frac{2469}{2470}$
4) $\frac{7965}{7969}$

Ans:3
Sol: Probability that four of the numbers are consecutive $=\frac{{ }^{37} \mathrm{C}_{1}}{{ }^{40} \mathrm{C}_{4}}$
Now, probability that four of the numbers are not consecutive $=1-\frac{{ }^{37} \mathrm{C}_{1}}{{ }^{40} \mathrm{C}_{4}}=\frac{2469}{2470}$
8. If A and B are mutually exclusive event with $P(B) \neq 1$, then $P(A \mid \bar{B})$ is equal to (Here \bar{B} is the complement of the event B).
[EAMCET 2007]

1) $\frac{1}{\mathrm{P}(\mathrm{B})}$
2) $\frac{1}{1-P(B)}$
3) $\frac{P(A)}{P(B)}$
4) $\frac{P(A)}{1-P(B)}$

Ans:4
Sol: Given A and B are mutually exclusive events So, $(A \cap B)=\phi$
Now, $\mathrm{P}(\mathrm{A} \mid \overline{\mathrm{B}})=\frac{\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})}{\mathrm{P}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\overline{\mathrm{B}})}=\frac{\mathrm{P}(\mathrm{A})}{1-\mathrm{P}(\mathrm{B})}$
9. A bag contains 6 white and 4 black balls. Two balls are drawn at random. The probability that they are of the same colour, is
[EAMCET 2007]

1) $\frac{1}{15}$
2) $\frac{2}{5}$
3) $\frac{4}{15}$
4) $\frac{7}{15}$

Ans:4
Sol: The number of ways to select 2 balls our of $10={ }^{10} \mathrm{C}_{2}$

Number of ways to select 2 balls both white $={ }^{6} \mathrm{C}_{2}$
Number of ways to select 2 balls both black $==^{4} \mathrm{C}_{2}$
\therefore The required probability $=\frac{{ }^{6} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{2}}{{ }^{10} \mathrm{C}_{2}}=\frac{7}{15}$
10. If A and B are two independent events such that $P(B)=\frac{2}{7}, P\left(A \cup B^{c}\right)=0.8$, then $P(A)$ is equal to
[EAMCET 2006]

1) 0.1
2) 0.2
3) 0.3
4) 0.4

Ans: 3
Sol: $\because P(B)=\frac{2}{7}$ and $P\left(A \cup B^{c}\right)=0.8$
$\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)=1-\frac{2}{7}=\frac{5}{7}$
We know that $P\left(A \cup B^{c}\right)=P(A)+P\left(B^{c}\right)-P(A) \cdot P\left(B^{c}\right)$
$\Rightarrow 0.8=\mathrm{P}(\mathrm{A})+\frac{5}{7}-\frac{5}{7} \mathrm{P}(\mathrm{A}) \Rightarrow 0.8=\frac{5}{7}+\frac{2}{7} \mathrm{P}(\mathrm{A})$
$\Rightarrow 5.6-=2 \mathrm{P}(\mathrm{A}) \Rightarrow \mathrm{P}(\mathrm{A})=0.3$
11. A number n is chosen at random from $\{1,2,3,4, \ldots \ldots, 100\}$. The probability that ' n ' is divided by 7 , is
[EAMCET 2006]

1) $\frac{71}{500}$
2) $\frac{143}{1000}$
3) $\frac{72}{500}$
4) $\frac{71}{1000}$

Ans: 1
Sol: Multiple of 7 in $\{1,2, \ldots \ldots, 1000\}$ are $7,14,21, \ldots, 994$.
Let the number of terms be N
$\therefore 994=7+(\mathrm{N}-1) .7 \Rightarrow \frac{987}{7}=(\mathrm{N}-1)$
$\Rightarrow \mathrm{N}-1=141 \Rightarrow \mathrm{~N}=142$
\therefore Number of terms which leaves remainder 1 when divided by $7=142$ and $n(S)=1000$
$\therefore \quad$ Required probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{142}{1000}=\frac{71}{500}$
12. In the random experiment of tossing two unbiased dice let E be the event of getting the sum 8 and F be the event of getting even numbers on both the dice. Then (I) $\mathrm{P}(\mathrm{E})=\frac{7}{36}$ (II) $\mathrm{P}(\mathrm{E})=\frac{1}{3}$. Which of the following is correct statement?
[EAMCET 2006]

1) Both I and II are correct
2) Neither I nor II is true
3) I is true, II is false
4) I is false, II is true

Ans:2
Sol: $\mathrm{E}=$ Event of getting the sum 8 .
$=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$ and $F=$ Event of getting the even numbers on both the dice.
$=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$\therefore P(E)=5$ and $P(F)=6$
also $n(S)=36 \therefore P(E)=\frac{n(E)}{n(S)}=\frac{5}{36}$ and $P(F)=\frac{n(F)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
Neither I nor II is true.
13. Seven balls are drawn simultaneously from a bag containing 5 white and 6 green balls. The probability of drawing 3 white and 4 green balls is:
[EAMCET 2006]

1) $\frac{7}{{ }^{11} \mathrm{C}_{7}}$
2) $\frac{{ }^{5} \mathrm{C}_{3}+{ }^{6} \mathrm{C}_{4}}{{ }^{11} \mathrm{C}_{7}}$
3) $\frac{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}{{ }^{11} \mathrm{C}_{7}}$
4) $\frac{{ }^{6} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}}{{ }^{11} \mathrm{C}_{7}}$

Ans:3
Sol: Number of ways to get 3 white and 4 green balls from 5 white and 6 green balls $={ }^{5} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{4}={ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2}$
and total number of ways $={ }^{11} \mathrm{C}_{7}$
$\therefore \quad$ Required probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{S})}=\frac{{ }^{5} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{2}}{{ }^{11} \mathrm{C}_{7}}$
14. A coin and six faced die, both unbiased, are thrown simultaneously. The probability o getting a head on the coin and an odd number on the die, is
[EAMCET 2005]

1) $\frac{1}{2}$
2) $\frac{3}{4}$
3) $\frac{1}{4}$
4) $\frac{2}{3}$

Ans:3
Sol: Let $\mathrm{E}=$ Event of getting a head from a coin. $\mathrm{F}=$ Event of getting an odd number $(1,3,5)$ from a die. $\mathrm{P}(\mathrm{E})=\frac{1}{2}, \mathrm{P}(\mathrm{F})=\frac{3}{6}=\frac{1}{2}$
Since E and F are independent events
$\therefore \mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cap \mathrm{P}(\mathrm{F})=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
15. A number n is chosen at random from $S=\{1,2,3, \ldots, 50\}$. Let $A=\left\{n \in S: n+\frac{50}{n}>27\right\}$, $B=\{n \in S ; n$ is a prime $\}$ and $C=\{n \in S ; n$ is a square $\}$. Then correct order of their probabilities is
[EAMCET 2005]

1) $\mathrm{P}($ A $)<\mathrm{P}(\mathrm{B})<\mathrm{P}(\mathrm{C})$
2) $\mathrm{P}(\mathrm{A})>\mathrm{P}(\mathrm{B})>\mathrm{P}(\mathrm{C})$
3) $\mathrm{P}(\mathrm{B})<\mathrm{P}(\mathrm{A})<\mathrm{P}(\mathrm{C})$
4) $\mathrm{P}($ A $)>P($ C $)>P($ B $)$

Ans: 2
Sol: Given that $S=\{1,2,3, \ldots, 50\}, A=\left\{n \in S: n+\frac{50}{n}>27\right\}$

$$
\begin{aligned}
& =\{\mathrm{n} \in \mathrm{~S}: \mathrm{n}<2 \text { or } \mathrm{n}>25\} \\
& =\{1,26,27, \ldots . ., 50\}
\end{aligned}
$$

$\Rightarrow \mathrm{n}(\mathrm{A})=26$
$B=\{n \in S: n$ is a prime $\}=\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47\}$

$$
\Rightarrow \mathrm{n}(\mathrm{~B})=15
$$

$C=\{n \in S ; n$ is a square $\}=\{1,4,9,16,25,36,49\}$
$\Rightarrow \mathrm{n}(\mathrm{C})=7$
$\therefore \mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{26}{50} ; \mathrm{P}(\mathrm{B})=\frac{\mathrm{n}(\mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{15}{50} ; \mathrm{P}(\mathrm{C})=\frac{\mathrm{n}(\mathrm{C})}{\mathrm{n}(\mathrm{S})}=\frac{7}{50}$
$\Rightarrow \mathrm{P}(\mathrm{A})>\mathrm{P}(\mathrm{B})>\mathrm{P}(\mathrm{C})$
16. Box A contain 2 black and 3 red balls, while Box B contains 3 black and 4 red balls. Out of these two boxes one is selected at random; and the probability of choosing Box A is double that of Box B. If a red ball is drawn from the selected box, then the probability that it has come from Box B, is
[EAMCET 2005]

1) $\frac{21}{41}$
2) $\frac{10}{31}$
3) $\frac{12}{31}$
4) $\frac{13}{41}$

Ans:2
Sol: Let $\mathrm{P}(\mathrm{B})=\mathrm{p}$ according to given condition $\mathrm{P}(\mathrm{A})=2 \mathrm{P}(\mathrm{B})=2 \mathrm{p}$
$\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{A}}\right)=\frac{{ }^{3} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{1}}=\frac{3}{5}$ and $\mathrm{P}\left(\frac{\mathrm{R}}{\mathrm{B}}\right)=\frac{{ }^{4} \mathrm{C}_{1}}{{ }^{7} \mathrm{C}_{1}}=\frac{4}{7}$
Using Baye's theorem $P\left(\frac{B}{R}\right)=\frac{P(B) \cdot P\left(\frac{R}{B}\right)}{P(A) \cdot P\left(\frac{R}{A}\right)+P(B) \cdot P\left(\frac{R}{B}\right)}$
$=\frac{\mathrm{p} \cdot \frac{4}{7}}{2 \mathrm{p} \cdot \frac{3}{5}+\mathrm{p} \cdot \frac{4}{7}}=\frac{\frac{4}{7}}{\frac{6}{5}+\frac{4}{7}}=\frac{\frac{4}{7}}{\frac{42+20}{35}}=\frac{20}{62}=\frac{10}{31}$
17. An unbiased coin tossed to get 2 points for turning up a head and one point for the tail. If three unbiased coins are tossed simultaneously, then the probability of getting a total off odd number of points is
[EAMCET 2004]

1) $\frac{1}{2}$
2) $\frac{1}{4}$
3) $\frac{1}{8}$
4) $\frac{3}{8}$

Ans:1
Sol: We are getting a odd number of point, if it will comes (two head, one tail and three tail).
$\therefore \mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=\frac{1}{2}$
\therefore Required probability $=$ Probability of getting two heads and one tail + Probability of all three tails
$={ }^{3} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3} \Rightarrow 3\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{3}=\frac{3}{8}+\frac{1}{8}=\frac{1}{2}$
18. Suppose E and F are two events of a random experiment. If the probability of occurrence of E is $1 / 5$ and the probability of occurrence of F given E is $1 / 10$, then the probability of non- occurrence of at least one of the events E and F is
[EAMCET 2004]

1) $\frac{1}{18}$
2) $\frac{1}{2}$
3) $\frac{49}{50}$
4) $\frac{1}{50}$

Ans:3
Sol: Given that $\mathrm{P}(\mathrm{E})=\frac{1}{5}, \mathrm{P}(\mathrm{F})=\frac{1}{10}$
Probability of both occurrence, $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})=\frac{1}{5} \cdot \frac{1}{10}=\frac{1}{50}$
Required Probability $=1-\mathrm{P}(\mathrm{E} \cap \mathrm{F})=1-\frac{1}{50}=\frac{49}{50}$
19. Six faces of an unbiased die are numbered with $2,3,5,7,11$ and 13 . If two such dice are thrown, then the probability that the sum on the uppermost faces of the dice is an odd number is
[EAMCET 2004]

1) $\frac{5}{18}$
2) $\frac{5}{36}$
3) $\frac{13}{18}$
4) $\frac{25}{36}$

Ans:1
Sol: The sum of two numbered on a dice is odd only, whence once is odd and second is even.
\therefore Required probability $=2 \times$ Probability of odd number \times Probability of even number
$[\because$ Here we multiply by 2 because either the even number is on first or second dice.]

$$
=2 \times\left(\frac{5}{6}\right) \times\left(\frac{1}{6}\right)=\frac{5}{18}
$$

20. If $P(A \cup B)=0.8$ and $P(A \cap B)=0.3$, then $P(\overline{\mathrm{~A}})+P(\bar{B})$ is equal to
[EAMCET 2003]
1) 0.3
2) 0.5
3) 0.8
4) 0.9

Ans: 4
Sol: We have $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\begin{aligned}
& =0.8+0.3=1.1 \\
& \Rightarrow 1-\mathrm{P}(\overline{\mathrm{~A}})+1-\mathrm{P}(\overline{\mathrm{~B}})=1.1 \\
& \Rightarrow \mathrm{P}(\overline{\mathrm{~A}})+\mathrm{P}(\overline{\mathrm{~B}})=2-1.1=0.9
\end{aligned}
$$

21 A coin is tossed n times the probability of getting head at least once is greater than 0.8 . Then the least value of such n is
[EAMCET 2003]

1) 2
2) 3
3) 4
4) 5

Ans: 2
Sol: The probability of getting head $=\frac{1}{2}$
The probability of getting head at least once in n times
$=\frac{1}{2}+\frac{1}{2^{2}}+\ldots .+\frac{1}{2^{n}}=\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=1-\left(\frac{1}{2}\right)^{n}$
Given that $1-\left(\frac{1}{2}\right)^{\mathrm{n}}>0.8 \Rightarrow\left(\frac{1}{2}\right)^{\mathrm{n}}<0.2 \Rightarrow 2^{\mathrm{n}}>\frac{1}{0.2} \Rightarrow 2^{\mathrm{n}}>5$
Least value of n for which $2^{\mathrm{n}}>5$ is $\mathrm{n}=3$
22. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then the probability for the ball chosen be white, is
[EAMCET 2003]

1) $\frac{2}{15}$
2) $\frac{7}{15}$
3) $\frac{8}{15}$
4) $\frac{14}{15}$

Ans:3
Sol: Probability of selecting a white ball from X bag $=\frac{2}{5}$
Probability of selecting a white ball from Y bag $=\frac{4}{6}=\frac{2}{3}$
Probability of selecting a white ball from X or Y bags $=\frac{2}{5}+\frac{2}{3}=\frac{6+10}{15}=\frac{16}{15}$
Probability of selecting the white ball from one of the bags $==\frac{1}{2} \cdot \frac{16}{15}=\frac{8}{15}$
23. A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected at random, the probability that it is a black or a red ball, is
[EAMCET 2002]

1) $\frac{1}{3}$
2) $\frac{1}{4}$
3) $\frac{5}{12}$
4) $\frac{2}{3}$

Ans: 4
Sol: Required probability
$=\frac{{ }^{5} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{1}}=\frac{5+3}{12}=\frac{8}{12}=\frac{2}{3}$
24. The probability of getting qualified in IITJEE and EAMCET by a student are respectively $\frac{1}{5}$ and $\frac{3}{5}$. The probability that the student gets qualified for at least on of these test, is
[EAMCET 2002]

1) $\frac{3}{25}$
2) $\frac{8}{25}$
3) $\frac{17}{25}$
4) $\frac{22}{25}$

Ans: 3
Sol: Given that $\mathrm{P}(\mathrm{A})=\frac{1}{5} \cdot \mathrm{P}(\mathrm{B})=\frac{3}{5}$
Required probability $=P(A) P(\bar{B})+P(\bar{A}) P(B)+P(A) P(B)$
$=\frac{1}{5}\left(1-\frac{3}{5}\right)+\left(1-\frac{1}{5}\right) \cdot \frac{3}{5}+\frac{1}{5} \cdot \frac{3}{5}$
$=\frac{1}{5} \cdot \frac{2}{5}+\frac{4}{5} \cdot \frac{3}{5}+\frac{3}{25} \Rightarrow \frac{2}{25}+\frac{12}{25}+\frac{3}{25}=\frac{17}{25}$
25. One die and a coin (both unbiased) are tossed simultaneously. The probability of getting 5 on the top of the die and tail on the coin is
[EAMCET 2002]

1) $\frac{1}{2}$
2) $\frac{1}{12}$
3) $\frac{1}{6}$
4) $\frac{1}{8}$

Ans: 2
Sol: Required probability $=\frac{1}{6} \times \frac{1}{2}=\frac{1}{12}$
26. In a competition $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are participating the probability that A wins is twice that of B , the probability that B wins is twice that of C , then probability that A loses is
[EAMCET 2001]

1) $\frac{1}{2}$
2) $\frac{2}{7}$
3) $\frac{4}{7}$
4) $\frac{3}{7}$

Ans: 4
Sol: Let $\mathrm{P}(\mathrm{C})=\mathrm{p}$, then $\mathrm{P}(\mathrm{B})=2 \mathrm{p}, \mathrm{P}(\mathrm{A})=2(2 \mathrm{p})=4 \mathrm{p}$
Given that $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})=1$
$\Rightarrow 4 \mathrm{p}+2 \mathrm{p}+\mathrm{p}=1 \Rightarrow \mathrm{p}=\frac{1}{7} \quad \therefore \mathrm{P}(\mathrm{A})=\frac{4}{7}$
$\mathrm{P}(\overline{\mathrm{A}})=1-\frac{4}{7}=\frac{3}{7}$
Thus the required probability is $\frac{3}{7}$
27. The probability that a number selected at random from the set of numbers $(1,2,3, \ldots, 100)$ s a cube is
[EAMCET 2001]

1) $\frac{1}{25}$
2) $\frac{2}{25}$
3) $\frac{3}{25}$
4) $\frac{4}{25}$

Ans:1
Sol: $n(S)=100$
The se of cube numbers $\mathrm{A}=\left(1^{3}, 2^{3}, 3^{3}, 4^{3}\right)$
Total number in favour $\mathrm{n}(\mathrm{A})=4$
Required probability $\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{4}{100}=\frac{1}{25}$
28. The events A and B have probabilities 0.25 and 0.50 respectively. The probability that both A and B occur simultaneously is 0.14 , then the probability that neither A nor B occurs, is
[EAMCET 2001]

1) 0.39
2) 0.29
3) 0.110
4) 0.25

Ans: 1
Sol: Given that $\mathrm{P}(\mathrm{A})=0.25, \mathrm{P}(\mathrm{B})=0.50, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.14$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =0.25+0.50-0.14 \Rightarrow 0.75-0.14=0.61 \\
& \mathrm{P}(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}})=\mathrm{P}(\overline{\mathrm{~A} \cup \mathrm{~B}})=1-\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=1-0.61=0.39
\end{aligned}
$$

29. Two dice are rolled simultaneously. The probability that the sum of the two numbers on the mean is 3 and variance is 2
[EAMCET 2001]
1) $\frac{5}{12}$
2) $\frac{7}{12}$
3) $\frac{9}{14}$
4) none of these

Ans:1
Sol: Give that $\mathrm{A}=[2,3,5,7,11]$
Required probability $=P(X=2)+P(X=3)+P(X=5)+P(X=7)+P(X=11)$
$\frac{1}{36}+\frac{2}{36}+\frac{4}{36}+\frac{6}{36}+\frac{2}{36}=\frac{15}{36}=\frac{5}{12}$

30. Probability of choosing a number divisible by 6 or 8 from among 1 to 90 is
[EAMCET 2000]

1) $\frac{1}{6}$
2) $\frac{11}{90}$
3) $\frac{1}{30}$
4) $\frac{23}{90}$

Ans: 4
Sol: The total number of ways $=90$
Number divisible by 6 , $\mathrm{E}=(6,12,18,24,30,36,42,48,54,60,66,72,78,84,90)$
$\therefore \mathrm{n}(\mathrm{E})=15$
Numbers divisible by $8, \mathrm{~F}=\{8,16,24,32,40,48,56,64,72,80,88\}$
$\therefore \mathrm{n}(\mathrm{F})=11$
The number divisible by both 6 and $8 \mathrm{E} \cap \mathrm{F}=\{24,48,72\}$
$n(E \cap F)=3$
The total number of way, $=15+11-3=26-3=23$
Required probability $==\frac{23}{90}$
31. The probability of two events A and Bare 0.25 and 0.40 respectively and $P(A \cap B)=0.15$ the probabilities that neither A nor B occurs is
[EAMCET 2000]

1) 0.35
2) 0.65
3) 0.5
4) 0.75

Ans: 3
Sol: Given that

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=0.25, \mathrm{P}(\mathrm{~B})=0.40 \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.15 \\
& \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =0.25+0.40-0.15=0.50 \Rightarrow 1-0.5=0.5
\end{aligned}
$$

