COORDINATE GEOMETRY
 LOCUS
 SYNOPSIS AND FORMULAE

1. Locus: The path traced out by moving point under one or more given conditions is called its Locus .
2. Equation of Locus: The algebraic relation between x and y obtained by applying the geometrical conditions is called the equation of locus.
3. The locus of a point which is equidistant from the two points A $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is a straight line whose equation is
$2\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \mathrm{x}+2\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mathrm{y}=\left(x_{1}^{2}+y_{1}^{2}\right)-\left(x_{2}^{2}+y_{2}^{2}\right)$
This equation of the perpendicular bisector of the join the two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
4. The locus of a point which is at a distance er 1 from the the given point $A\left(x_{1}, y_{1}\right)$ is a circle whose equation is $\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=r^{2}$
5. The locus of a point ${ }_{e} \mathrm{Pl}$ such that $\mathrm{PA}=\mathrm{KPB}$ is
(i) perpendicular bisector of AB if $\mathrm{K}=1$
(ii) a circle of $K_{\neq 1}$
6. Let A, B be two points, then the locus of a point ePl such that $P A+P B=K$ is
(i) an ellipse if $\mathrm{K}>\mathrm{AB}$
(ii) a line segment if $\mathrm{K}=\mathrm{AB}$
(iii) empty set if $K<A B$
7. Let A, B be two points then the locus of a point P such that $|P A-P B|=\mathrm{K}$ is
(i) a hyperbola if $\mathrm{K}<\mathrm{AB}$
(ii) union of two rays if $K=A B$
(iii) empty set if $K>A B$
8. If A, B are two points then the locus of a point P such that
$\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{K} \mathrm{PC}{ }^{2}$ is
(i) a straight line if $\mathrm{K}=2$
(ii) a circle if $\mathrm{K} \neq 2$ and $\mathrm{K}>0$
9. Let a, b be two points then the locus of P such that the area of triangle PAB is " ie., a pair of parallel lines which are parallel to $\overline{A B}$ and at a distance of $\frac{2 A}{A B}$ from $\overline{A B}$
10. The equation $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0$ represents
(i) a pair of lines if " $=0$; $h^{2}>\mathrm{ab}$
(ii) a pair of parallel lines if " $=0$; $h^{2}=a b$
(iii) a pair of perpendicular lines if $"=0$; $a+b=0$
11. If $\mathrm{A}=(\mathrm{a}, \mathrm{b}) \mathrm{B}=(-\mathrm{a}, \mathrm{b})$ then the locus of P such that $\mathrm{PA}+\mathrm{PB}=$ k or $|P A-P B|=\mathrm{K}$ is $\frac{4 x^{2}}{k^{2}}+\frac{4(y-b)^{2}}{k^{2}-4 a^{2}}=1$
12. If $\mathrm{A}=(\mathrm{a}, \mathrm{b}) \mathrm{B}=(\mathrm{a},-\mathrm{b})$ then the locus of P such that $\mathrm{PA}+\mathrm{PB}=$ k or $|P A-P B|=\mathrm{K}$ is

$$
\frac{4(x-a)^{2}}{k^{2}-4 b^{2}}+\frac{4 y^{2}}{k^{2}}=1
$$

13. Let A, B be two given points. The locus of P such that the area of "PAB is k sq. units is a pair of parallel straight lines
14. Let A, B be two fixed points. The locus P such that $\angle \mathrm{APB}=90^{\circ}$ is a circle on the line joining A, B as the ends of a diameter

www.sakshieducation.com

15 The ends of a rod of length K moves on two positive coordinate axes. The locus of the point on the rod, which divides it in the ratio $1: \mathrm{m}$ is

$$
\frac{x^{2}}{m^{2}}+\frac{y^{2}}{l^{2}}=\frac{k^{2}}{(l+m)^{2}} \quad \text { or } \quad \frac{x^{2}}{l^{2}}+\frac{y^{2}}{m^{2}}=\frac{k^{2}}{(l+m)^{2}}
$$

16. A st. line passing through the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ meets the positive coordinate axis at A, B. The locus of the point P which divides AB in the ratio $1: \mathrm{m}$ is $\frac{l x^{2}}{x}+\frac{m y_{1}}{y}=1+\mathrm{m}$ or $\frac{m x_{1}}{x}+\frac{l y_{1}}{y}=1+\mathrm{m}$
