RATE OF CHANGE
 PREVIOUS EAMCET BITS

1. A stone thrown upwards, has its equation of motion $s=490 t-4.9 t^{2}$. Then the maximum height reached by it is
[EAMCET 2005]
1) 24500
2) 12500
3) 12250
4) 25400

Ans: 3
Sol. $S=490 t-4.9 t^{2}$
$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=490-9.8 \mathrm{t}$
at maximum height $\mathrm{v}=0$
$\therefore \mathrm{t}=50$
$\therefore \mathrm{S}=12250$
2. A particle moves along the curve $y=x^{2}+2 x$. Then the point on the curve such that x and y coordinates of the particle change with the same rate:
[EAMCET 2004]

1) $(1,3)$
2) $\left(\frac{1}{2}, \frac{5}{2}\right)$
3) $\left(-\frac{1}{2},-\frac{3}{4}\right)$
4) $(-1,-1)$

Ans: 3
Sol. $\frac{\mathrm{dy}}{\mathrm{dt}}=(2 \mathrm{x}+2) \frac{\mathrm{dx}}{\mathrm{dt}}$

$$
\begin{aligned}
& \Rightarrow x=\frac{-1}{2} \quad\left(\because \frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{dx}}{\mathrm{dt}}\right) \\
& y=\frac{-3}{4} \\
& \therefore(x, y)=\left(\frac{-1}{2}, \frac{-3}{4}\right)
\end{aligned}
$$

69. A point is moving on $y=4-2 x^{2}$. The x-coordinate of the point is decreasing at the rate of 5 units per second. Then the rate at which ' y '-coordinate of the point is changing when the point is $(1,2)$ is
[EAMCET 2004]
1) 5 units/sec
2) 10 units/sec
3) 15 units $/ \mathrm{sec}$
4) 20 units/ sec

Ans: 4
Sol.
$y=4-2 x^{2} \Rightarrow \frac{d y}{d t}=-4 x \frac{d x}{d t}$
$=4(1)(-5)=20$ units $/ \mathrm{sec}$
3. Gas is being pumped into a spherical balloon at the rate of $30 \mathrm{ft}^{3} / \mathrm{min}$. Then the rate at which the radius increases when it reaches the value 15 ft is
[EAMCET 2003]

1) $\frac{1}{30 \pi} \mathrm{ft} / \mathrm{min}$
2) $\frac{1}{15 \pi} \mathrm{ft} / \mathrm{min}$
3) $\frac{1}{20} \mathrm{ft} / \mathrm{min}$
4) $\frac{1}{25} \mathrm{ft} / \mathrm{min}$

Ans: 1
Sol. $\quad \mathrm{v}=\frac{4}{3} \pi \mathrm{r}^{3} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}=4 \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}$
$30=4 \pi(15)^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{30 \pi} \mathrm{ft} / \mathrm{min}$
4. The family of curves, in which the substangent at any point to any curve is double the abscissa, is given by
[EAMCET 2001]

1) $x=c y^{2}$
2) $y=c x^{2}$
3) $x^{2}=c y^{2}$
4) $y=c x$

Ans: 1
Sol. Let $\mathrm{x}=\mathrm{cy}^{2} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2 \mathrm{cy}}$
\Rightarrow Subtangent $=\frac{\mathrm{y}}{1 / 2 \mathrm{cy}}=2 \mathrm{cy}^{2}=2 \mathrm{x}$
5. The distance moved by the particle in time t is given by $x=t^{3}-12 t^{2}+6 t+8$. At the instant, when its acceleration is zero, the velocity is
[EAMCET 2000]

1) 42
2) -42
3) 48
4) -48

Ans: 2
Sol. $S=t^{3}-12 t^{2}+6 t+8$
$\mathrm{V}=\frac{\mathrm{ds}}{\mathrm{dt}}=3 \mathrm{t}^{2}-24 \mathrm{t}+6$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{t}-24=0 \Rightarrow \mathrm{t}=4$
$\therefore \mathrm{t}=4 \Rightarrow \mathrm{v}=-42$

