PLANES

PREVIOUS EAMCET BITS

- The image of the point (3, 2, 1) in the plane 2x y + 3z = 7 is 1. (1, 2, 3)(2, 3, 1)(3, 2, 1)(2, 1, 3)Ans: 3
- Sol. Since point lies on the plane, image is itself.
- 2. If (2, -1, 3) is the foot of the perpendicular drawn from the origin to the plane, then the equation **[EAMCET 2004]** of the plane is 2) 2x - y + 3z - 14 = 0
- 1) 2x + y 3z + 6 = 04) 2x + y + 3z - 10 = 03) 2x - y + 3z - 13 = 0Ans: 2 Sol. O(0,0,0), A(2,-1,3), P = (x, y, z)
- $OA.PA = 0 \Longrightarrow 2x y + 3z 14 = 0$
- If the plane 3x 2y z 18 = 0 meets the coordinates axes in A, B, C then the centroid of $\triangle ABC$ 3. is **[EAMCET 2004]** 4) (2, -3, -6)

1)
$$(2,3,-6)$$
 2) $(2,-3,6)$ 3) $(-2,-3,6)$
Ans: 4

Sol. $\frac{x}{6} + \frac{y}{-9} + \frac{z}{-18} = 1$:. Centroid = (2, -3, -6)

A plane π makes intercepts 3 and 4 respectively on Z-axis and X-axis. If π is parallel to 4. Y-axis, then its equation is [EAMCET 2003] 3) 3y + 4z = 124) 3z + 4y = 121) 3x + 4z = 122) 3z + 4x = 12Ans: 1

Sol. The equation of the required plane is $\frac{x}{4} + \frac{z}{3} = 1 \Rightarrow 3x + 4z = 12$

- The equation of the plane passing through (1, 1, 1) and (1, -1, -1); and perpendicular to 5. 2x - y + z + 5 = 0 is **[EAMCET 2003]** 2) x + y - z - 1 = 01) 2x + 5y + z - 8 = 0
 - 4) x y + z 1 = 03) 2x + 5y + z + 4 = 0Ans: 2
- Sol. The equation of the plane passing through (1, 1, 1) and (1, -1, -1) is x + y z = 1 and it is \perp^{ar} to 2x - y + z + 5 = 0

If P=(0, 1, 0), Q = (0, 0, 1), then the projection of PQ on the plane x + y + z = 3 is 6.

[EAMCET 2002]

3) $\sqrt{2}$ 4) $\sqrt{3}$ 1) 2 2) 3

Ans: 3

Sol. Perpendicular distances from P, Q to the plane are equal and the point P, Q lies on same side of the plane.

 \therefore The distance between P and Q is the projection of \overrightarrow{PQ} on the given plane = $\sqrt{2}$

In the space the equation by by + cz + d = 0 represents a plane perpendicular to the.... plane 7 [EAMCET 2002]

[EAMCET 2009]

					Planes	
	1) YOZ	2) ZOX	3) XOY	4) z = k		
a 1	Ans: 1					
Sol.	by + cz + d = 0					
	Plane is parallel to x-axis					
0	\therefore It is perpendicular to y o z plane.					
8.	A plane π passes inrough the point (1, 1, 1). If b, c, a are the direction ratios of a normal plane, where a, b, c (a < b < c) are the prime factors of 2001, then the equation of the plane [EAMCET 2002]					
	1) $29x + 31y +$	3z = 63	2) $23x + 29y - 2$	29z = 23	-	
	3) $23x + 29y +$	3z = 55	4) $31x + 37y + 32$	3z = 71		
	Ans: 3					
Sol.	By verification $\therefore 23x + 29y + 3$	$2001 = 23 \times 29 \times 3$ $3z = 55$				
9.	If the foot of the perpendicular from $(0, 0, 0)$ to a plane is $(1, 2, 2)$ then the equation of is [EAMC]					
	(1) - x + 2y + 8	z - 9 = 0	2) $x + 2y + 2z -$	-9 = 0		
	3) $x + y + z - 5$	5 = 0	4) $x + 2y - 3z + $	- 1= 0		
a 1	Ans: 2	ans: 2				
Sol.	The plane passing through $(1, 2, 2)$ with normal D.r.s 1, 2, 2 $\therefore 1(x-1) + 2(y-2) + 2(z-2) = 0$ $\Rightarrow x + 2y + 2z = 9$					
10.	A variable plan	A variable plane is at a constant distance k from the origin and meets the co-ordinate axes in A,				
	B, C. Then the locus of the centroid of $\triangle ABC$ is [EAMCE]					
	1) $x^{-2} + y^{-2} + z$	$k^{-2} = k^{-2}$	2) $x^{-2} + y^{-2} + z^{-2}$	$k^{-2} = 4k^{-2}$		
	3) $x^{-2} + y^{-2} + z^{-2}$	$x^{-2} = 16k^{-2}$	4) $x^{-2} + v^{-2} + z^{-2}$	$k^{-2} = 9k^{-2}$		
	Ans: 4		1) A 1 J 1 2			
Sol.	ol. Let $A(h,0,0)B(0,k,0),C(0,0,P)$					
	\therefore centroid =	$\frac{\mathbf{n}}{3}, \frac{\mathbf{k}}{3}, \frac{\mathbf{p}}{3} = \mathbf{G}(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$)			
	The perpendicu	ılar distance from orig	in to $\frac{x}{h} + \frac{y}{k} + \frac{z}{p} = 1$ is -	$\frac{1}{\sqrt{h^2 + k^2 + p^2}} = k$		
	$\Rightarrow x^{-2} + y^{-2} + z$	$z^{-2} = 9k^{-2}$				
ත් තී තී						