HEIGHTS AND DISTANCES

PREVIOUS EAMCET BITS

P is a point on the segment joining the feet of two vertical poles of heights a and b. The angles of 1. elevation of the tops of the poles from P are 45° each. Then the square of the distance between the tops of the poles is [EAMCET 2009]

1)
$$\frac{a^2 + b^2}{2}$$
 2) $a^2 + b^2$ 3) $2(a^2 + b^2)$ 4) $4(a^2 + b^2)$

Ans: 3

Sol. $AC^2 = (\sqrt{2}a)^2 + (\sqrt{2}b)^2$ $2(a^2+b^2)$

B

2. From the top of the hill h meters high the angles of depressions of the top and the bottom of a pillar are α and β respectively. The height (in metres) of the pillar is [EAMCET 2008]

1)
$$\frac{h(\tan \beta - \tan \beta)}{\tan \beta}$$

1) $\frac{h(\tan \beta - \tan \alpha)}{\tan \beta}$ 2) $\frac{h(\tan \alpha - \tan \beta)}{\tan \alpha}$

4) $\frac{h(\tan \beta + \tan \alpha)}{}$ tan α

Ans: 1

Sol.
$$x = h \cot \beta, x = (h - d) \cot \alpha$$

$$\Rightarrow$$
 h cot $\beta = (h - d) \cot \alpha$

$$\Rightarrow$$
 h tan $\alpha = (h - d) \tan \beta$

$$\Rightarrow d \tan \beta = h (\tan \beta - \tan \alpha)$$

$$\Rightarrow d = h \frac{\left(\tan \beta - \tan \alpha\right)}{\tan \beta}$$

3. The angle of elevation of an object from a point P on the level ground is α. Moving d metres on the ground towards the object, the angle of elevation is found to be β . Then the height (in metres) of the object is [EAMCET 2007]

3)
$$\frac{d}{\cot \alpha + \cot \beta}$$

4)
$$\frac{d}{\cot \alpha - \cot \beta}$$

Ans: 4

Sol.
$$h \cot \alpha = d + x$$

$$h \cot \beta = x$$

$$d = h \left(\cot \alpha + \cot \beta \right)$$

$$\therefore h = \frac{d}{\cot \alpha - \cot \beta}$$

The locus of the point z = x + iy satisfying the equation $\left| \frac{z-1}{z+1} \right|$ =1 is given by **[EAMCET 2006]** 4.

1)
$$x = 0$$

2)
$$y = 0$$

3)
$$x = y$$

4)
$$x + y = 0$$

Ans: 1

Sol.
$$|z-1|^2 = |z+1|^2$$

$$(x-1)^2 + y^2 = (x+1)^2 + y^2$$

$$\Rightarrow 4x = 0 \Rightarrow x = 0$$

The product of the distinct $(2n)^{th}$ roots of $1+i\sqrt{3}$ is equal to 5.

[EAMCET 2006]

2)
$$-1-i\sqrt{3}$$

3)
$$1+i\sqrt{3}$$

$$(EA) -1 + i\sqrt{3}$$

Ans: 2

Sol. by substitution method put
$$n = 1$$

Then
$$(1+i\sqrt{3})^{\frac{1}{2}} = \left(2\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)\right)^{1/2} = 2^{\frac{1}{2}}\left(cis\frac{\pi}{3}\right)^{\frac{1}{2}}$$

$$=2^{\frac{1}{2}}\operatorname{cis}\left(2k\pi+\frac{\pi}{3}\right)^{\frac{1}{2}}$$

If
$$k = 0$$
, $\alpha_1 = 2^{\frac{1}{2} \text{cis} \frac{\pi}{6}}$

$$k = 0$$
, $\alpha_2 = 2^{1/2} cis \left(\pi + \frac{\pi}{6} \right) = 2^{1/2} cis \frac{7\pi}{6}$

Product of roots
$$\alpha_1 \alpha_2 = 2^{1/2} 2^{1/2} \operatorname{cis} \frac{\pi}{6} .\operatorname{cis} \left(\frac{7\pi}{6} \right)$$

$$=2\operatorname{cis}\left(\frac{\pi}{6}+\frac{7\pi}{6}\right)$$

$$=2\operatorname{cis}\frac{8\pi}{6}=2\operatorname{cis}\left(\frac{4\pi}{3}\right)$$

$$=-1-i\sqrt{3}$$

1)
$$\frac{y(x^2-y^2)}{(x^2+y^2)}$$

$$2) \frac{x(y^2 + x^2)}{(y^2 - x^2)}$$

$$3) \frac{x(x^2+y^2)}{(x^2-y^2)}$$

1)
$$\frac{y(x^2 - y^2)}{(x^2 + y^2)}$$
 2) $\frac{x(y^2 + x^2)}{(y^2 - x^2)}$ 3) $\frac{x(x^2 + y^2)}{(x^2 - y^2)}$ 4) $\frac{x(x^2 - y^2)}{(x^2 + y^2)}$

Ans: 2

Sol.
$$\tan 2\alpha = \frac{x+h}{v}, \tan \alpha = \frac{x}{v}$$

Use tan(2α) formula

Then
$$h = \frac{x(y^2 + x^2)}{(y^2 - x^2)}$$

- An aeroplane flying with uniform speed horizontally one kilometer above the ground is observed 7. at an elevation of 60°. After 10 seconds if the elevation is observed to be 30°, then the speed of [EAMCET 2004] the plane (in km/hr) is
- 2) $200\sqrt{3}$
- 3) $240\sqrt{3}$
- 4) $\frac{120}{\sqrt{3}}$

Ans: 3

Sol. In
$$\triangle APD \Rightarrow \tan 60^{\circ} = \frac{1}{AP} \Rightarrow AP = \frac{1}{\sqrt{3}}$$

$$\Rightarrow$$
 AP + PQ = $\sqrt{3}$

$$PQ = \sqrt{3} - \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \text{km}$$

$$10 \sec{-\frac{2}{\sqrt{3}}}$$
 km

$$1 \text{hr} - \frac{2}{\sqrt{3}} \times \frac{3600}{10} = 240 \sqrt{3} \text{km/hr}$$

8. A tower subtends angles, α , 2α and 3α respectively at points A, B and C, all lying on a horizontal line through the foot of the tower. Then $\frac{AB}{BC} = \dots$ [EAMCET 2003]

$$1) \frac{\sin 3\alpha}{\sin 2\alpha}$$

2)
$$1 + 2\cos 2\alpha$$

3)
$$2\cos 2\alpha$$

$$4)\frac{\sin 2\alpha}{\sin \alpha}$$

Ans: 2

Sol. Let height of the tower OP = h

$$AB = OA - OB = h(\cot \alpha - \cot 2\alpha)$$

$$BC = OB - OC = h(\cot 2\alpha - \cot 3\alpha)$$

AB
$$\cot \alpha - \cot 2\alpha$$

BC
$$\cot 2\alpha - \cot 3\alpha$$

$$= \frac{\cos \alpha \sin 2\alpha - \cos 2\alpha \sin \alpha}{\times}$$

$$\sin 2\alpha . \sin 3\alpha$$

$$\sin \alpha \sin 2\alpha$$

BC
$$\cot 2\alpha - \cot 3\alpha$$

$$= \frac{\cos \alpha \sin 2\alpha - \cos 2\alpha \sin \alpha}{\sin \alpha \sin 2\alpha} \times \frac{\sin 2\alpha . \sin 3\alpha}{\cos 2\alpha \sin 3\alpha - \cos 3\alpha \sin 2\alpha}$$

$$= \frac{\sin 3\alpha}{\sin \alpha} = 1 + 2\cos 2\alpha$$

9. From a point on the level ground, the angle of elevation of the top of a pole is 30°. On moving 20 mts nearer, the angle of elevation is 45°. Then the height of the pole in mts is

[EAMCET 2002]

1)
$$10(\sqrt{3}-1)$$
 2) $10(\sqrt{3}+1)$

2)
$$10(\sqrt{3}+1)$$

Ans: 2

Sol.
$$\tan 30^\circ = \frac{h}{h+20}$$

 $\Rightarrow h = 10(\sqrt{3}+1)$

The shadow of the two standing on a level ground is found to be 60 metres longer when the sun's altitude is 30° then when it is 45°. The height of the tower is [EAMCET 2001]

3) 60
$$\sqrt{3}$$
 m

4)
$$30(\sqrt{3}+1)$$
 m

Ans: 4

Sol.
$$h = \frac{60}{\cot 30^{\circ} - \cot 45^{\circ}}$$

 $h = \frac{60}{\sqrt{3} - 1} = 30(\sqrt{3} + 1)$

h

11. If two towers of height h₁ and h₂ subtend angles 60° and 30° respectively at the midpoint of the line joining their feet, then h₁: h₂ = [EAMCET 2000]

1) 1:2

2) 1:3

3) 2:1

4)3:1

Ans: 4

Sol. $h_1: h_2 = \tan \alpha : \tan \beta$ = $\tan 60^\circ : \tan 30^\circ$ = 3:1

� � �

