APPROXIMATIONS AND SMALL ERRORS
 PREVIOUS EAMCET BITS

1. There is an error of $\pm 0.04 \mathrm{~cm}$ in the measurement of the diameter of a sphere. When the radius is 10 cm , the percentage error in the volume of the sphere is
[EAMCET 2009]
1) ± 1.2
2) ± 1.0
3) ± 0.8
4) ± 0.6

Ans: 4
Sol. $\quad r=10 \mathrm{~cm} ; \delta \mathrm{r}=0.02$
$\therefore \frac{\delta \mathrm{r}}{\mathrm{r}} \times 100= \pm 0.2$
$\therefore \frac{\delta \mathrm{V}}{\mathrm{V}} \times 100=3 \times(\pm 0.2)= \pm 0.6$
2. The circumference of a circle is measured as 56 cm with an error 0.02 cm . The percentage error in its area is
[EAMCET 2007]

1) $\frac{1}{7}$
2) $\frac{1}{28}$
3) $\frac{1}{14}$
4) $\frac{1}{56}$

Ans: 3
Sol. radius $=r$, circumference $=x$; Area $=A$
$\therefore x=2 \pi r \Rightarrow r=\frac{x}{2 \pi} ; \delta x=0.02$
$A=\pi r^{2}=\frac{x^{2}}{4 \pi}$
$\delta A=\frac{\mathrm{X}}{2 \pi} . \delta \mathrm{x}$
Percentage error in $A=\frac{\delta A}{A} \times 100$
$=\frac{\frac{x}{2 \pi} \cdot \delta x}{\left(\frac{x^{2}}{4 \pi}\right)} \times 100=\frac{1}{14}$
3. The radius of a circular plate is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$ when the radius is 12 cm . Then the rate at which the area increases is
[EAMCET 2005]

1) $0.24 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec} 2) 60 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
2) $24 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
3) $1.2 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$

Ans: 1
Sol. $\quad \mathrm{r}=12, \frac{\mathrm{dr}}{\mathrm{dt}}=0.01 / \mathrm{sec}$
$\mathrm{A}=\pi \mathrm{r}^{2}$
$\frac{\mathrm{dA}}{\mathrm{dr}}=2 \pi \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}}=24 \pi \times 0.01$
$=0.24 \pi \mathrm{sq} . \mathrm{cm} / \mathrm{sec}$
4. The approximate value of $(1.0002)^{3000}$ is
[EAMCET 2002]

1) 1.2
2) 1.4
3) 1.6
4) 1.8

Ans： 3
Sol．Let $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{x}^{3000}$
here $\mathrm{x}=1, \delta=0.0002$
$\delta y=f^{\prime}(x) \delta x=3000 x^{2999} \delta x$
$=(3000)(0.0002)$
$=0.6$
$\therefore \mathrm{f}(\mathrm{x}+\delta \mathrm{x})=\mathrm{y}+\delta \mathrm{y}=1+0.6=1.6$

挱资资资

