APPROXIMATIONS AND SMALL ERRORS PREVIOUS EAMCET BITS

1. There is an error of ± 0.04 cm in the measurement of the diameter of a sphere. When the radius is 10 cm, the percentage error in the volume of the sphere is **[EAMCET 2009]**

1)
$$\pm 1.2$$
 2) ± 1.0 3) ± 0.8 4) ± 0.6
Ans: 4

Sol. $r = 10 \text{ cm}; \delta r = 0.02$

$$\therefore \frac{\delta r}{r} \times 100 = \pm 0.2$$

$$\therefore \frac{\delta V}{V} \times 100 = 3 \times (\pm 0.2) = \pm 0.6$$

2. The circumference of a circle is measured as 56 cm with an error 0.02 cm. The percentage error in its area is [EAMCET 2007]

1)
$$\frac{1}{7}$$

Ans: 3
Sol. radius = r, circumference = x; Area = A
 $\therefore x = 2\pi r \Rightarrow r = \frac{x}{2\pi}; \delta x = 0.02$
 $A = \pi r^2 = \frac{x^2}{4\pi}$
 $\delta A = \frac{x}{2\pi} \cdot \delta x$
Percentage error in $A = \frac{\delta A}{A} \times 100$
 $= \frac{\frac{x}{2\pi} \cdot \delta x}{\left(\frac{x^2}{4\pi}\right)} \times 100 = \frac{1}{14}$

3. The radius of a circular plate is increasing at the rate of 0.01 cm/sec when the radius is 12 cm. Then the rate at which the area increases is [EAMCET 2005] 1) 0.24 π sq.cm/sec 2) 60 π sq.cm/sec 3) 24 π sq.cm/sec 4) 1.2 π sq.cm/sec

Ans: 1 Sol. r = 12, $\frac{dr}{dt} = 0.01/sec$ $A = \pi r^2$

$$\frac{dA}{dr} = 2\pi r \frac{dr}{dt} = 24\pi \times 0.01$$
$$= 0.24\pi \text{ sq.cm/sec}$$

4. The approximate value of $(1.0002)^{3000}$ is[EAMCET 2002]1) 1.22) 1.43) 1.64) 1.8

Ans: 3

Sol. Let $y = f(x) = x^{3000}$ here $x = 1, \delta = 0.0002$ $\delta y = f'(x) \delta x = 3000 x^{2999} \delta x$ = (3000)(0.0002)= 0.6 $\therefore f(x + \delta x) = y + \delta y = 1 + 0.6 = 1.6$

