ADDITION OF VECTORS PREVIOUS EAMCET BITS

1.	In a quadrilateral ABCD, the point P divides DC in the ratio 1 : 2 and Q is the midpoint of AC. If				
	AB + 2AD + BC - 2	2DC = kPQ, then $k =$			[EAMCET 2009]
	1) – 6	2) - 4	3) 6	4) 4	
	Ans: 1				
Sol.	$A = \overline{a}, B = b, C = \overline{c}, D = d$				
	$\therefore P = \frac{\overline{c} + 2\overline{d}}{3}, Q = \frac{\overline{a} + \overline{c}}{2}$				
	$\therefore \overline{AB} + 2\overline{AD} + \overline{BC} - 2\overline{DC} = \overline{KPQ}$				
	\Rightarrow k = -6				
2.	The position vectors of P and Q are respectively a and b. If R is a point on \overrightarrow{PQ} such that				
	$\overrightarrow{PR} = 5\overrightarrow{PQ}$, then the position vector of R is [EAMCET 2008]				
	1) 5b – 4a	2) 5b + 4a	3) 4b – 5a	4) 4b + 5a	a
	Ans: 1 \longrightarrow	\rightarrow (\rightarrow \rightarrow) $-$			
Sol.	$PR = 5PQ \Longrightarrow OR - OP = 5(OQ - OP) \Longrightarrow OR = 5OQ - 4OP = 5b - 4a$				
3.	If the points whose	position vectors are $2\vec{i}$	$+\vec{j}+\vec{k}, 6\vec{i}-\vec{j}+2\vec{k}$ and	$14\vec{i}-5\vec{j}+p$	\vec{k} are collinear, then
	the value of p is			[]	EAMCET 2007]
	1) 2	2) 4	3) 6	4) 8	
Sal	Ans: 2 $(2, 1, 1)$				
301.	$(x_1, y_1, z_1) = (2, 1, 1)$);			
	$(x_2, y_2, z_2) = (6, -1)$	1,2);			
	$(x_3, y_3, z_3) = (14, -5, P)$				
	$\frac{\mathbf{x}_1 - \mathbf{x}_2}{\mathbf{x}_1 - \mathbf{x}_2} = \frac{\mathbf{z}_1 - \mathbf{z}_2}{\mathbf{x}_1 - \mathbf{z}_2} \Longrightarrow \mathbf{P} = 4$				
	$x_2 - x_3 = z_2 - z_3$				
4.	The position vector of a point lying on the line joining the points whose position vectors are \vec{r}				
	i + j - k and $i - j + j$	⊦k is		[]	EAMCET 2006]
	1) j	2) i	3) k	4) ¹ 0	
	Ans: 2				
Sol. 5.	Vector which is collinear with given two vector by verification answer is i.				
	I: Any three coplanar vectors are linearly dependent.				
	Which of the above statements is true?				
	1) Only I	2) Only II	3) Both I and II	4) Neither	r I nor II
Sc1	Ans: 3 By concentual				
6.	Observe the follow	ving statements :		Γ	EAMCET 20051
		0		Ľ	, J

A : Three vectors are coplanar if one of them is expressible as a linear combination of the other two.

- R : Any three coplanar vectors are linearly dependent.
- The which of the following is true?
- 1) Both A and R are true and R is the correct reason for A
- 2) Both A and R are true but R is not the correct reason for A
- 3) A is true, R is false
- 4) A is false, R is true

Ans: 2

- Sol. From the definition A and R are true but R is not correct explanation of A
- 7. If $\vec{i} + 2\vec{j} + 3\vec{k}$, $3\vec{i} + 2\vec{j} + \vec{k}$ are sides of a parallelogram, then a unit vector parallel to one of the diagonals of the parallelogram is **[EAMCET 2004]**

1)
$$\frac{\vec{i} + \vec{j} + \vec{k}}{\sqrt{3}}$$
 2) $\frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{3}}$ 3) $\frac{\vec{i} + \vec{j} - \vec{k}}{\sqrt{3}}$ 4) $\frac{-\vec{i} + \vec{j} - \vec{k}}{\sqrt{3}}$

Ans: 1

Sol. diagonal = $4\vec{i} + 4\vec{j} + 4\vec{k}$

: unit vector parallel to diagonal =
$$\frac{i + j + k}{\sqrt{3}}$$

- 8. If G is the centroid of the $\triangle ABC$, then $\overrightarrow{GA} + \overrightarrow{BG} + \overrightarrow{GC} =$ [EAMCET 2004] 1) $2\overrightarrow{GB}$ 2) $2\overrightarrow{GA}$ 3) $\overrightarrow{0}$ 4) $2\overrightarrow{BG}$ Ans: 4
- Sol. $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$ $\Rightarrow \overrightarrow{GA} + \overrightarrow{BG} + \overrightarrow{GC} = 2\overrightarrow{BG}$
- 9. If D, E and F are respectively the midpoints of AB, AC and BC in \triangle ABC, then $\overrightarrow{BE} + \overrightarrow{AF} =$ [EAMCET 2003]

4) $\frac{3}{2} \overrightarrow{BF}$

1) \overrightarrow{DC} 2) $\frac{1}{2}\overrightarrow{BF}$ 3) $2\overrightarrow{BF}$ Ans: 1 Sol. Let $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$ $\overrightarrow{OF} = \frac{\overrightarrow{a} + \overrightarrow{c}}{2}, \overrightarrow{OE} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2}$ $\overrightarrow{BE} + \overrightarrow{AF} = \overrightarrow{OE} - \overrightarrow{OB} + \overrightarrow{OF} - \overrightarrow{OA}$ $= \overrightarrow{c} - \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{DC}$

10. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then the vector equation $\vec{r} = (1-p-q)\vec{a} + p\vec{b} + q\vec{c}$ represents is [EAMCET 2003] 1) Straight line 2) Plane 3) Plane passing through the origin 4) Sphere Ans: 2

D

E

B

Sol. $r = (1 - p - q)\vec{a} + P\vec{b} + q\vec{c}$ is a plane passing through a, b and c where p and q are scalars.

11. If three points A, B and C having position vector is (1, x, 3) (3, 4, 7) and (y, -2, -5) respectively
and if they are collinear, then (x, y) = [EAMCET 2002]
1) (2, -3) 2) (-2, 3) 3) (-2, -3) 4) (2, 3)
Ans: 1
Sol.
$$\overline{AB} = t \ \overline{AC} \Rightarrow (2, 4 - 4, 4)$$

=t(y-1, -2 - x, -8)
 $\frac{2}{y-1} = \frac{4-x}{-2-x} = \frac{4}{-8} \Rightarrow \frac{2}{y-1} = \frac{-1}{2} \Rightarrow y = -3$
 $\frac{4-x}{-2-x} = \frac{-1}{2} \Rightarrow x = 2$
12 If the position vectors of the vertices of a triangle are $2\vec{i} - \vec{j} + \vec{k}, \vec{i} - 3\vec{j} - 5\vec{k}$ and $3\vec{i} - 4\vec{j} - 4\vec{k}$ then
it is atriangle [EAMCET 2002]
1) Equilateral 2) Isosceles 3) Right angled isosceles 4) Right-angled
Ans: 4
Sol. Let A = (2, -1, 1), B = (1, -3, -5), C = (3, -4, -4) are the vertical of AABC
AB² = 1 + 4 + 36 = 41
BC² = 4 + 1 + 1 = 6; AC² = 1 + 9 + 25 = 35
AB³ = AC² + BC²
 \therefore AABC is right angled triangle.
13. If $\vec{a} = \vec{i} + 4\vec{j}, \vec{b} = 2\vec{i} - 3\vec{j} \in 5\vec{i} + 9\vec{j}$, then C
13. Sol. Let $\vec{C} = t\vec{a} + \vec{b}$
 $\Rightarrow 5i + 9j = t(i + 4j) + (2i - 3j)$
 $t = 3$ $\therefore \vec{C} = 3\vec{a} + \vec{b}$
14. ABCD is a parallelogram, with AC, BD as diagonals. Then $\vec{AC} - \vec{BD} =$ [EAMCET 2001]
1) $4\vec{AB}$ 2) $3\vec{AB}$ 3) $2\vec{AB}$ 4) \vec{AB}
Ans: 3
Sol. $\vec{AC} - \vec{BD} = \vec{AB} + \vec{BC} - (\vec{BA} + \vec{AD})$
 $= \vec{AB} + \vec{BC} - (-\vec{AB} + \vec{BC}) = 2\vec{AB}$
15. If OACB is a parallelogram with $\vec{OC} = \vec{a}$ and $\vec{AB} = \vec{b}$ then \vec{OA} [EAMCET 2000]
1) $\vec{a} + \vec{b}$ 2) $\vec{a} - \vec{b}$ 3) $\frac{1}{2}(\vec{b} - \vec{a})$ 4) $\frac{1}{2}(\vec{a} - \vec{b})$
Ans: 4
Sol. Mid point of $\vec{OC} = Mid$ point of \vec{AB}
 $\frac{\vec{a}}{2} = \frac{\vec{OA} + \vec{OB}}{2}$
 $\vec{a} = 2\vec{OA} + \vec{OB} - \vec{OA}; \vec{a} = 2\vec{OA} + \vec{b} \Rightarrow \vec{OA} = \frac{1}{2}(\vec{a} - \vec{b})$
 $\underline{ * # * * *}$