www.sakshieducation.com TANGENTS AND NORMALS

SYNOPSIS

I. Let $\mathbf{y}=f(\mathbf{x})$ be a continuous function defined ever an interval I.

1. The slope of the tangent to the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at the point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\left(\frac{d y}{d x}\right)_{p}$ and is denoted by in.
2. The slope of the tangent to the curve at a point is called the gradient to the curve at that point.
3. Equation of the tangent to the curve $y=f(x)$ at $P\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$.
4. A line which is perpendicular to the tangent of the curve at P and passes through P is called the normal to the curve at P .
5. Equation of the normal to the curve $y=f(x)$ at $P\left(x_{1}, y_{1}\right)$ is $x-x_{1}=-m\left(y-y_{1}\right)$.
6. The tangent at any point of the curve $x=a t^{3}, y=a t^{4}$ divides the abscissa of the point of contact in the ratio is $1: 3$.
7. Point on the curve $a y^{2}=x^{3}$ the normal at which makes equal intercepts on the axes is $\left(\frac{4 a}{9}, \frac{8 a}{27}\right)$.
8. The condition for the line $y=m x+c$ to be a tangent to the parabola $y^{2}=4 a x$ is $c=\frac{a}{m}$.
9. The condition for the line $y=m x+c$ to be a tangent to the parabola $x^{2}=4 a x$ is $c=-a m^{2}$.
10. The equation of common tangent to the parabolas $y^{2}=4 a x, x^{2}=4 b y$ is $a^{\frac{1}{3}} x+b^{\frac{1}{3}} y+(a b)^{\frac{2}{3}}=0$.
11. The condition that the line $y=m x+c$ may be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $c^{2}=a^{2}$ $m^{2}+b^{2}$.
12. The condition that the line $y=m x+c$ may be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $c^{2}=$ $a^{2} m^{2}-b^{2}$.
II. Angle of intersection of two plane curve
13. The angle between two curves is defined as the angle between the two tangents at their common point of intersection.
14. Let $y=f_{1}(x)$ and $y=f_{2}(x)$ be two plane curves intersect at $P\left(x_{1}, y_{1}\right)$. If $m_{1}=f_{1}{ }^{1}\left(x_{1}\right)$ and $m_{2}=f_{2}{ }^{1}\left(x_{1}\right)$ are the slopes of the tangents at P and θ be the acute angle between them then tan $\theta=\left|\frac{m_{1}-m_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|, \mathrm{m}_{1} \mathrm{~m}_{2}=-1$ and angle is obtuse is " $\pi-\theta$ ".
15. If $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$ then the two curves intersect orthogonally at P .
16. If $\mathrm{m}_{1}=\mathrm{m}_{2}$ then the two curves touch each other at P . Then they will have common tangent.
17. If the curves $y^{2}=4 a x, x^{2}=4 a y$ intersect at $(0,0)$ and $(4 a, 4 a)$. At $(0,0)$ the curves cut each other orthogonally and at $(4 a, 4 a)$ the angle between the curves is $\operatorname{Tan}^{-1}(3 / 4)$ the area between the two curves is $16 a^{2} / 3$.
18. If the curves $x y=c^{2}, y^{2}=4 a x$ cut each other orthogonally then $c^{4}=32 a^{4}$.
19. The condition that the two curves $x=y^{2}, x y=k$ cut orthogonally is $8 k^{2}=1$.
20. If the curves $a_{1} x^{2}+b_{1} y^{2}=1, a_{2} x^{2}+b_{2} y^{2}=1$ cut each other orthogonally, then $\frac{1}{a_{1}}-\frac{1}{a_{2}}=$ $\frac{1}{b_{1}}-\frac{1}{b_{2}}$.
21. Angle between the curves $y^{2}=4 a x, x^{2}=4 b y$ at their point of intersection $\theta=\operatorname{Tan}^{-1}$ $\left[\frac{3 a^{\frac{1}{3}} b^{\frac{1}{3}}}{2\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)}\right]$.

III. Lengths of the tangent, normal, sub tangent and sub-normal

1. Let the tangent at P to the curve meet x-axis in T and the normal meet $O X$ in N. Draw $P Q$ perpendicular to OX; then
(i) PT is called the length of the tangent at P .
(ii) PN is called the length of the normal at P .
(iii) QT, the projection of PT on OX is called sub-tangent.
(iv) QN , the projection of PN on OX is called sub-normal.
2. Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\left(\frac{d y}{d x}\right)_{p}=\mathrm{m}$. Then
(i) Length of the tangent at $\mathrm{P}=\left|\frac{y_{1}}{m}\right| \sqrt{1+m^{2}}$.
(ii) Length of the normal at $\mathrm{P}=\left|\mathrm{y}_{1}\right| \sqrt{1+m^{2}}$
(iii) Length of the sub-tangent at $\mathrm{P}=\left|\frac{y_{1}}{m}\right|$.
(iv) Length of the sub-normal at $\mathrm{P}=\left|\mathrm{y}_{1} . \mathrm{m}\right|$.
3. The area of the triangle formed by the tangent at a point $p\left(x_{1}, y_{1}\right)$, normal at P and x-axis is $y_{1}{ }^{2} \frac{\left(1+m^{2}\right)}{2|m|}$ sq. units and the y-axis is $\frac{x_{1}{ }^{2}\left(1+m^{2}\right)}{2|m|}$.
4. Area of the Δ le formed by the tangents at $\left(x_{1}, y_{1}\right)$ on $y=f(x)$ with co-ordinate axes is $\frac{\left(y_{1}+m x_{1}\right)^{2}}{2|m|}$.
5. Area of the Δ le formed by the normal at $\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)$ on $\mathrm{y}-\mathrm{f}(\mathrm{x})$ with co-ordinate axes is $\frac{\left(x_{1}+m y_{1}\right)^{2}}{2|m|}$.
6. For the curve $x^{n}+y^{n}=a^{n} P(x, y)=\left(a \cos ^{2 / n} \theta a \sin ^{2 / n} \theta\right)$ in a point on the curve.
7. The length of the sub-normal at any point on the curve $x y^{n}=a^{n+1}$ is a constant then $n=-2$.
8. In the curve $\mathrm{by}^{2}=(\mathrm{x}+\mathrm{a})^{3}, \frac{(\text { L.S.T. })^{2}}{\text { L.S.N. }}=\frac{8 \mathrm{~b}}{27}$.
