www.sakshieducation.com TANGENTS AND NORMALS

SYNOPSIS

- I. Let y = f(x) be a continuous function defined ever an interval I.
- 1. The slope of the tangent to the curve y = f(x) at the point $P(x_1, y_1)$ is $\left(\frac{dy}{dx}\right)_p$ and is denoted

by in.

- 2. The slope of the tangent to the curve at a point is called the gradient to the curve at that point.
- 3. Equation of the tangent to the curve y = f(x) at $P(x_1, y_1)$ is $y y_1 = m(x x_1)$.
- 4. A line which is perpendicular to the tangent of the curve at P and passes through P is called the normal to the curve at P.
- 5. Equation of the normal to the curve y = f(x) at $P(x_1, y_1)$ is $x x_1 = -m (y y_1)$.
- 6. The tangent at any point of the curve $x = at^3$, $y = at^4$ divides the abscissa of the point of contact in the ratio is 1 : 3.
- 7. Point on the curve $ay^2 = x^3$ the normal at which makes equal intercepts on the axes is $\left(\frac{4a}{9}, \frac{8a}{27}\right)$.
- 8. The condition for the line y = mx + c to be a tangent to the parabola $y^2 = 4ax$ is $c = \frac{a}{m}$.
- 9. The condition for the line y = mx + c to be a tangent to the parabola $x^2 = 4ax$ is $c = -am^2$.
- 10. The equation of common tangent to the parabolas $y^2 = 4ax$, $x^2 = 4by$ is $a^{\frac{1}{3}}x + b^{\frac{1}{3}}y + (ab)^{\frac{2}{3}} = 0$.
- 11. The condition that the line y = mx + c may be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $c^2 = a^2$ $m^2 + b^2$.
- 12. The condition that the line y = mx + c may be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 b^2$.

www.sakshieducation.com

WWW.sakshieducation.com

- 1. The angle between two curves is defined as the angle between the two tangents at their common point of intersection.
- 2. Let $y = f_1(x)$ and $y = f_2(x)$ be two plane curves intersect at $P(x_1, y_1)$. If $m_1 = f_1^{-1}(x_1)$ and $m_2 = f_2^{-1}(x_1)$ are the slopes of the tangents at P and θ be the acute angle between them then tan $\theta = \left| \frac{m_1 m_2}{1 + m_1 m_2} \right|$, $m_1 m_2 = -1$ and angle is obtuse is " $\pi \theta$ ".
- 3. If $m_1m_2 = -1$ then the two curves intersect orthogonally at P.
- 4. If $m_1 = m_2$ then the two curves touch each other at P. Then they will have common tangent.
- 5. If the curves $y^2 = 4ax$, $x^2 = 4ay$ intersect at (0, 0) and (4a, 4a). At (0, 0) the curves cut each other orthogonally and at (4a, 4a) the angle between the curves is Tan⁻¹(3/4) the area between the two curves is $16a^2/3$.
- 6. If the curves $xy = c^2$, $y^2 = 4ax$ cut each other orthogonally then $c^4 = 32a^4$.
- 7. The condition that the two curves $x = y^2$, xy = k cut orthogonally is $8k^2 = 1$.
- 8. If the curves $a_1x^2 + b_1y^2 = 1$, $a_2x^2 + b_2y^2 = 1$ cut each other orthogonally, then $\frac{1}{a_1} \frac{1}{a_2} = 1$

$$\frac{1}{b_1} - \frac{1}{b_2}$$

- III. Lengths of the tangent, normal, sub tangent and sub-normal

- Let the tangent at P to the curve meet x –axis in T and the normal meet OX in N. Draw PQ perpendicular to OX; then
 - (i) PT is called the length of the tangent at P.
 - (ii) PN is called the length of the normal at P.
 - (iii) QT, the projection of PT on OX is called sub-tangent.
 - (iv) QN, the projection of PN on OX is called sub-normal.
- 2. Let P(x₁, y₁) be a point on the curve y = f(x) and $\left(\frac{dy}{dx}\right)_p = m$. Then

(i) Length of the tangent at $P = \left| \frac{y_1}{m} \right| \sqrt{1 + m^2}$. (ii) Length of the normal at $P = |y_1| \sqrt{1 + m^2}$

(iii) Length of the sub-tangent at P =. $\left| \frac{y_1}{m} \right|$. (iv) Length of the sub-normal at P = $|y_1 .m|$.

- 3. The area of the triangle formed by the tangent at a point $p(x_1, y_1)$, normal at P and x-axis is $y_1^2 \frac{(1+m^2)}{2|m|}$ sq. units and the y-axis is $\frac{x_1^2(1+m^2)}{2|m|}$.
- 4. Area of the Δ le formed by the tangents at (x_1, y_1) on y = f(x) with co-ordinate axes is $\frac{(y_1 + mx_1)^2}{2|m|}.$
- 5. Area of the Δ le formed by the normal at $(x_1 y_1)$ on y-f(x) with co-ordinate axes is $\frac{(x_1 + my_1)^2}{2|m|}$.
- 6. For the curve $x^n + y^n = a^n P(x, y) = (a \cos^{2/n} \theta \ a \sin^{2/n} \theta)$ in a point on the curve.
- 7. The length of the sub-normal at any point on the curve $xy^n = a^{n+1}$ is a constant then n = -2.
- 8. In the curve by² = $(x + a)^3$, $\frac{(L.S.T.)^2}{L.S.N.} = \frac{8b}{27}$.