www.sakshieducation.com

TRIGONOMETRIC EQUATIONS

1.

Equation	Interval in which	General solution
	principal solution	
	lies	
$\sin \theta = k$		$\theta = n \pi + (-1)^n \alpha$
$(-1 \le k \le 1)$	[-(π/2), π/2]	$n \in z$
$\cos \theta = k$		$\theta = 2n \pi \pm \alpha$
$(-1 \le k \le 1)$	[0, r]	$n \in z$
Tan $\theta = k$		$\theta = n \pi + \alpha;$
$(k \in R)$	[-(π/2), π/2]	$n \in z$

- 2. The solution of $\sin\theta = k$ ($|k| \le 1$) lying between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ is called the principle solution of the equation.
- 3. The solution of $\cos\theta = k$ ($|k| \le 1$) lying between 0 and π is called the principal solution of the equation.
- 4. That solution of $\tan \theta = k$, lying between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ is called the principal solution of the equation.
- 5. The general value of θ satisfying $\cos \theta = k$ ($|k| \le 1$) is given by $\theta = 2n\pi \pm \alpha$ where $n \in \mathbb{Z}$.
- 6. The general value of θ satisfying $\sin \theta = k$ ($|k| \le 1$) is given by $\theta = n\pi + (-1)^n \alpha$ where $n \in \mathbb{Z}$.
- 7. The general value of θ satisfying $\tan \theta = k$ is given by $\theta = n\pi + \alpha$ where $n \in Z$. (in each of the above cases, α is the principal solution).
- 8. If $\sin\theta = k$, $\tan\theta = k$ are given equations, then the general value of θ is given by $\theta = 2n\pi + \alpha$ where α is that solution lying between 0 and 2π .

www.sakshieducation.com

www.sakshieducation.com

- 9. The equation a $\cos\theta + b \sin\theta = c$ will have no solution or will be inconsistent if $|c| > \sqrt{a^2 + b^2}$
- 10. If sinA = sinB and cosA = cosB, then $sin\frac{A-B}{2} = 0$ and $A = 2n\pi + B$.
- **11.** $\cos n\pi = (-1)^n$, $\sin n\pi = 0$.
- **12.** If $\sin^2\theta = \sin^2\alpha$ or $\cos^2\theta = \cos^2\alpha$ or $\tan^2\theta = \tan^2\alpha$, then $\theta = n\pi \pm \alpha$; $n \in \mathbb{Z}$.