TRIGONOMETRIC EQUATIONS

1.

Equation	Interval in which principal solution lies	General solution
$\operatorname{Sin} \theta=\mathrm{k}$		$\theta=\mathrm{n} \pi+(-1)^{\prime \prime} \alpha$
$(-1 \leq \mathrm{k} \leq 1)$	$[-(\pi / 2), \pi / 2]$	$\mathrm{n} \in \mathrm{z}$
$(-1 \leq \mathrm{k} \leq 1)$	$[0, \mathrm{r}]$	$\mathrm{n} \in \mathrm{z}$
$\operatorname{Cos} \theta=\mathrm{k}$		$\theta=\mathrm{n} \pi+\alpha ;$
$(\mathrm{k} \in \mathrm{R})$	$[-(\pi / 2), \pi / 2]$	$\mathrm{n} \in \mathrm{z}$

2. The solution of $\sin \theta=\mathrm{k}(|\mathrm{k}| \leq 1)$ lying between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ is called the principle solution of the equation.
3. The solution of $\cos \theta=\mathrm{k}(|\mathrm{k}| \leq 1)$ lying between 0 and π is called the principal solution of the equation.
4. That solution of $\tan \theta=k$, lying between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ is called the principal solution of the equation.
5. The general value of θ satisfying $\cos \theta=k(|k| \leq 1)$ is given by $\theta=2 n \pi \pm \alpha$ where $n \in Z$.
6. The general value of θ satisfying $\sin \theta=k(|k| \leq 1)$ is given by $\theta=n \pi+(-1)^{n} \alpha$ where $n \in Z$.
7. The general value of θ satisfying $\tan \theta=k$ is given by $\theta=n \pi+\alpha$ where $n \in Z$. (in each of the above cases, α is the principal solution).
8. If $\sin \theta=\mathrm{k}, \tan \theta=\mathrm{k}$ are given equations, then the general value of θ is given by $\theta=2 \mathrm{n} \pi+\alpha$ where α is that solution lying between 0 and 2π.
9. The equation $\mathrm{a} \cos \theta+\mathrm{b} \sin \theta=\mathrm{c}$ will have no solution or will be inconsistent if $|c|>\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
10. If $\sin A=\sin B$ and $\cos A=\cos B$, then $\sin \frac{A-B}{2}=0$ and $A=2 n \pi+B$.
11. $\cos n \pi=(-1)^{n}, \sin n \pi=0$.
12. If $\sin ^{2} \theta=\sin ^{2} \alpha$ or $\cos ^{2} \theta=\cos ^{2} \alpha$ or $\tan ^{2} \theta=\tan ^{2} \alpha$, then $\theta=n \pi \pm \alpha ; n \in Z$.
