www.sakshieducation.com

RANDOM VARIABLES

SYNOPSIS

1. Let S be a simple space of a random experiment. A real valued function $\mathrm{X}: \mathrm{S}-->\mathrm{R}$ is called a random variable.
2. Let S be a sample space and $X: S \rightarrow R$ be a random variable. The function $F: R \rightarrow R$ denoted by $F(x)=P(X \leq x)$, is called probability distribution function of the random variable X .
3. A set E is said to be countable, if there exists a one - one correspondence between E and the set of Natural numbers N
4. If a sample space is countable then it is called a discrete sample space. A real valued function defined on a discrete sample space is called a discrete random variable.
5. If $X: S \rightarrow R$ is a discrete random variable with range $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ then $\sum_{r=1}^{\infty} P$ $\left(\mathrm{X}=\mathrm{X}_{\mathrm{r}}\right)=1$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=\sum_{i=1}^{n} x_{i} P\left(x=x_{i}\right) \\
& \operatorname{var}(\mathrm{x})=\sum \mathrm{x}_{\mathrm{i}}^{2} \mathrm{P}\left(\mathrm{x}=\mathrm{x}_{\mathrm{i}}\right)-(\text { mean })^{2} \\
& \text { i.e., } \sigma^{2}=\mathrm{E}\left(\mathrm{x}^{2}\right)-[\mathrm{E}(\mathrm{x})]^{2}
\end{aligned}
$$

6. In a poisson distribution the variance is m . The sum of the terms in the odd places of the distribution is $\mathrm{e}^{-\mathrm{m}} \cos \mathrm{hm}$.
7. In the above case the sum of the terms in the even places of the distribution is $\mathrm{e}^{-\mathrm{m}} \sin \mathrm{hm}$.

8. Bernoulli experiment

A random experiment in which the probability of occurrence of any event is a constant is called a Bernoulli experiment.

www.sakshieducation.com

9. Binomial Distribution

If a Bernoulli experiment is conducted n times, then probability of obtaining x successes is $P(x)={ }^{n} c_{x} \cdot P^{x} q^{n-x}, x=0,1,2, \ldots \ldots, n$
10. Mean of Binomial distribution $=n p$.
11. Variance of Binomial distribution $=$ npq.

12. Poisson Distribution

Binomial distribution tends to Poisson distribution if
(i) The number of trials n is very large.
(ii) Probability of success p is very small so that $\mathrm{np}=\mathrm{a}$ constant $=\lambda$

The probability function is given by

$$
\mathrm{P}(\mathrm{x})=\frac{\mathrm{e}^{-\lambda} \lambda^{\mathrm{x}}}{\mathrm{x}!}, \mathrm{x}=0,1,2, \ldots .
$$

13. Mean of Poisson distribution $=\lambda$
14. Variance of Poisson distribution $=\lambda$
15. Standard deviation $=\sqrt{\lambda}$
16. If the mean of a binomial distribution is λ, then standard deviation lies in the interval $[0, \sqrt{\lambda})$.
17. Maximum variance of binomial distribution is $\mathrm{n} / 4$.
18. In a binomial distribution mean $>$ variance.
19. If $(n+1) p$ is not an integer, then mode of binomial distribution is $[(n+1) p]$.
