QUADRATIC EQUATIONS

SYNOPSIS

1. The standard form of a quadratic equation is $a x^{2}+b x+c=0$ where $a, b, c \in R$ and $a \neq 0$
2. The roots of $a x^{2}+b x+c=0$ are $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
3. For the equation $a x^{2}+b x+c=0$, sum of the roots $=-\frac{b}{a}$, product of the roots $=\frac{c}{a}$.
4. If the roots of a quadratic are known, the equation is $x^{2}-($ sum of the roots $) x+($ product of the roots $)=0$
5. Nature of the roots of $a x^{2}+b x+c=0$

Nature of the Roots	Condition
Imaginary	$\mathrm{b}^{2}-4 \mathrm{ac}<0$
Equal	$\mathrm{b}^{2}-4 \mathrm{ac}=0$
Real	$\mathrm{b}^{2}-4 \mathrm{ac} \geq 0$
Real and different	$\mathrm{b}^{2}-4 \mathrm{ac}>0$
Rational	$\mathrm{b}^{2}-4 \mathrm{ac}$ is a perfect square $\mathrm{a}, \mathrm{b}, \mathrm{c}$ being rational
Equal in magnitude and opposite in sign	$\mathrm{b}=0$
Reciprocal to each other	$\mathrm{c}=\mathrm{a}$
both positive	b has a sign opposite to that of a and c
both negative	$\mathrm{a}, \mathrm{b}, \mathrm{c}$ all have same sign
opposite sign	a, c are of opposite sign

6. "Irrational roots" of a quadratic equation with "rational coefficients" occur in conjugate pairs. If $p+\sqrt{q}$ is a root of $a x^{2}+b x+c=0$, then $p-\sqrt{q}$ is also a root of the equation.
7. "Imaginary" or "Complex Roots" of a quadratic equation with "real coefficients" occur in conjugate pairs. If $p+i q$ is a root of $a x^{2}+b x+c=0$. Then $p-i q$ is also a root of the equation
8. If exactly one root of $a x^{2}+b x+c=0$ lies in the interval $\left(k_{1}, k_{2}\right)$, then $f\left(k_{1}\right) f\left(k_{2}\right)<0$.
9. The roots of $a x^{2}+b x+c=0$ are in the ratio $m: n$, if $m n b^{2}=a c(m+n)^{2}$.
10. One root of $a x^{2}+b x+c=0$ is the square of the other if $a c(a+c)+b^{3}=3 a b c$.
11. One root of $a x^{2}+b x+c=0$ is $n^{\text {th }}$ power of the other if $\left(a^{n} c\right)^{\frac{1}{n+1}}+\left(a \cdot c^{n}\right)^{\frac{1}{n+1}}=-b$.
12. Two equations $a_{1} x^{2}+b_{1} x+c_{1}=0, a_{2} x^{2}+b_{2} x+c_{2}=0$ have exactly the same roots if $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$.
13. The equations $a_{1} x^{2}+b_{1} x+c_{1}=0, a_{2} x^{2}+b_{2} x+c_{2}=0$ have a common root, If $\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}=\left(a_{1} b_{2}-a_{2} b_{1}\right)\left(b_{1} c_{2}-b_{2} c_{1}\right)$ and the common root is $\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}$ if $a_{1} b_{2} \neq a_{2} b_{1}$
14. (i) If unity is a root of $a x^{2}+b x+c=0$, then the other root is $\frac{c}{a}$
(ii) If -1 is one root of $a x^{2}+b x+c=0$, then the other root is $-\frac{c}{a}$.
15. The difference between the roots of $a x^{2}+b x+c=0$ is $\frac{\sqrt{b^{2}-4 a c}}{a}$.
16. If $f(x)=0$ is a quadratic equation, then the equation whose roots are
(i) The reciprocals of the roots of $f(x)=0$ is $f\left(\frac{1}{x}\right)=0$
(ii) The roots of $f(x)=0$, each 'increased' by k is $f(x-k)=0$
(iii) The roots of $f(x)=0$, each 'diminished' by k is $f(x+k)=0$
(iv) The roots of $f(x)=0$ with sign changed is $f(-x)=0$
(v) The roots of $f(x)=0$ each multiplied by $k(\neq 0)$ is $f\left(\frac{x}{k}\right)=0$
17. If the coefficients of the quadratic equation $a x^{2}+b x+c=0$ are odd integers, then the roots are not rational.
18. The number of quadratic equations which are unchanged by squaring their roots is four.
19. The standard form of a quadratic expression is $a x^{2}+b x+c$ where $a, b, c \in R$ and $a \neq 0$.
20. The product $(x-a)(x-b)($ where $a<b)$ is negative if $a<x<b$ i.e if x lies between a and b.
21. The product $(x-a)(x-b)($ where $a<b)$ is positive if $x<a$ or $x>b$ i.e. x does not lie between a and b.
22. The sign of the expression $a x^{2}+b x+c$ is same as that of ' a ' for all values of x if $b^{2}-4 a c \leq 0$ i.e. if the roots of $a x^{2}+b x+c=0$ are imaginary or equal.
23. If the roots of the equation $a x^{2}+b x+c=0$ are real and different i.e. $b^{2}-4 a c>0$, the sign of the expression is same as that of ' a ' if x does not lie between the two roots of the equation and opposite to that of ' a ' if x lies between the roots of the equation.
24. The expression $a x^{2}+b x+c$ is positive for all real values of x if $b^{2}-4 a c<0$ and $a>0$.
25. The expression $a x^{2}+b x+c$ has a maximum value when ' a ' is negative and $x=-\frac{b}{2 a}$. Maximum value of the expression $=\frac{4 a c-b^{2}}{4 a}$.
26. The expression $a x^{2}+b x+c$, has a minimum when ' a ' is positive and $x=-\frac{b}{2 a}$. Minimum value of the expression $=\frac{4 a c-b^{2}}{4 a}$.
27. The minimum value of $k+(x+a)^{2}$ is k. and The maximum value of $k-(x+a)^{2}$ is k.
28. If $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$ then $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}$ lies in $\left[-\frac{1}{2}, 1\right]$.
29. Range of $x+\frac{1}{x}$ is $[2, \infty)$ when $x>0,(-\infty,-2]$ when $x<0$.
30. If $f(x)=\frac{x^{2}-a x+b}{x^{2}+a x+b}$ where x is real then the range of $f(x)$ is $\lfloor f(-\sqrt{b}), f(\sqrt{b}) \mid$.
