QUADRATIC EQUATIONS

SYNOPSIS

1. The standard form of a quadratic equation is $ax^2 + bx + c = 0$ where a, b, $c \in \mathbb{R}$ and $a \neq 0$

2. The roots of
$$ax^2 + bx + c = 0$$
 are $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 3. For the equation $ax^2+bx+c = 0$, sum of the roots $= -\frac{b}{a}$, product of the roots $= \frac{c}{a}$
- 4. If the roots of a quadratic are known, the equation is $\frac{1}{2}$
 - x^{2} (sum of the roots)x +(product of the roots)= 0
- 5. Nature of the roots of $ax^2 + bx + c = 0$

Nature of the Roots	Condition
Imaginary	$b^2 - 4ac < 0$
Equal	$b^2 - 4ac = 0$
Real	$b^2 - 4ac \ge 0$
Real and different	$b^2 - 4ac > 0$
Rational	b^2 - 4ac is a perfect square a, b, c being rational
Equal in magnitude and opposite in sign	b = 0
Reciprocal to each other	$\mathbf{c} = \mathbf{a}$
both positive	b has a sign opposite to that of a and c
both negative	a, b, c all have same sign
opposite sign	a, c are of opposite sign

- 6. "Irrational roots" of a quadratic equation with "rational coefficients" occur in conjugate pairs. If $p + \sqrt{q}$ is a root of $ax^2 + bx + c = 0$, then $p - \sqrt{q}$ is also a root of the equation.
- 7. "Imaginary" or "Complex Roots" of a quadratic equation with "real coefficients" occur in conjugate pairs. If p + iq is a root of $ax^2 + bx + c = 0$. Then p iq is also a root of the equation
- 8. If exactly one root of $ax^2+bx + c = 0$ lies in the interval (k_1, k_2) , then $f(k_1)f(k_2) < 0$.

www.sakshieducation.com

www.sakshieducation.com

- 9. The roots of $ax^2 + bx + c = 0$ are in the ratio m : n, if $mnb^2 = ac(m + n)^2$.
- 10. One root of $ax^2 + bx + c = 0$ is the square of the other if $ac(a + c) + b^3 = 3abc$.
- **11.** One root of $ax^2 + bx + c = 0$ is n^{th} power of the other if $(a^n c)^{\frac{1}{n+1}} + (a \cdot c^n)^{\frac{1}{n+1}} = -b$.
- 12. Two equations $a_1x^2 + b_1x + c_1 = 0$, $a_2x^2 + b_2x + c_2 = 0$ have exactly the same roots if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.
- 13. The equations $a_1x^2 + b_1x + c_1 = 0$, $a_2x^2 + b_2x + c_2 = 0$ have a common root,

If $(c_1a_2 - c_2a_1)^2 = (a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1)$ and the common root is $\frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$ if $a_1b_2 \neq a_2b_1$

- 14. (i) If unity is a root of $ax^2 + bx + c = 0$, then the other root is $\frac{c}{a}$
 - (ii) If -1 is one root of $ax^2 + bx + c = 0$, then the other root is $-\frac{c}{a}$.

15. The difference between the roots of $ax^2 + bx + c = 0$ is $\frac{\sqrt{b^2 - 4ac}}{a}$.

- 16. If f(x) = 0 is a quadratic equation, then the equation whose roots are
 - (i) The reciprocals of the roots of f(x) = 0 is $f\left(\frac{1}{x}\right) = 0$
 - (ii) The roots of f(x) = 0, each 'increased' by k is f(x k) = 0
 - (iii) The roots of f(x) = 0, each 'diminished' by k is f(x + k) = 0
 - (iv) The roots of f(x) = 0 with sign changed is f(-x) = 0

(v) The roots of f(x) = 0 each multiplied by $k(\neq 0)$ is $f\left(\frac{x}{k}\right) = 0$

- 17. If the coefficients of the quadratic equation $ax^2 + bx + c = 0$ are odd integers, then the roots are not rational.
- 18. The number of quadratic equations which are unchanged by squaring their roots is four.
- **19.** The standard form of a quadratic expression is $ax^2 + bx + c$ where a, b, $c \in \mathbb{R}$ and $a \neq 0$.

www.sakshieducation.com

www.sakshieducation.com

- **20.** The product (x a)(x b) (where a < b) is negative if a < x < b i.e if x lies between a and b.
- **21.** The product (x a)(x b) (where a < b) is positive if x < a or x > b i.e. x does not lie between a and b.
- 22. The sign of the expression $ax^2 + bx + c$ is same as that of 'a' for all values of x if $b^2 4ac \le 0$ i.e. if the roots of $ax^2 + bx + c = 0$ are imaginary or equal.
- 23. If the roots of the equation $ax^2 + bx + c = 0$ are real and different i.e. $b^2-4ac > 0$, the sign of the expression is same as that of 'a' if x does not lie between the two roots of the equation and opposite to that of 'a' if x lies between the roots of the equation.
- **24.** The expression $ax^2 + bx + c$ is positive for all real values of x if $b^2 4ac < 0$ and a > 0.
- 25. The expression $ax^2 + bx + c$ has a maximum value when 'a' is negative and $x = -\frac{b}{2a}$. Maximum value of the expression $=\frac{4ac-b^2}{4a}$.
- 26. The expression $ax^2 + bx + c$, has a minimum when 'a' is positive and $x = -\frac{b}{2a}$. Minimum value of the expression $= \frac{4ac b^2}{4a}$.
- 27. The minimum value of $k + (x + a)^2$ is k. and The maximum value of $k (x + a)^2$ is k.
- **28.** If $a^2 + b^2 + c^2 = 1$ then $ab + bc + ca lies in \left[-\frac{1}{2}, 1\right]$.
- **29.** Range of $x + \frac{1}{x}$ is $[2, \infty)$ when x > 0, $(-\infty, -2]$ when x < 0.

30. If $f(x) = \frac{x^2 - ax + b}{x^2 + ax + b}$ where x is real then the range of f(x) is $\left[f\left(-\sqrt{b}\right), f\left(\sqrt{b}\right)\right]$.

www.sakshieducation.com