PERIODICITY AND EXTREME VALUES

SYNOPSIS

Periodic Function and Period of Function

A real function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is such that $\mathrm{f}(\mathrm{x}+\mathrm{k})=\mathrm{f}(\mathrm{x}) \quad \forall \mathrm{k} \in \mathrm{R}$; then f is called periodic function and least positive real number ' k ' is called period of function.
(i.e.) ' k ' is period of $f(x)$ then (i) $f(x+K)=f(x)$ and (ii) $f(x+n k)=f(x)$.

* If the period of $f(x)$ is a, then the period of $-f(x)$ is also ' a '.
* The period of $\sin x, \cos x, \operatorname{cosec} x$ and $\sec x$ is 2π.
* The period of $\tan x, \cot$ is π.
* The period of $\sin \mathrm{kx}, \cos \mathrm{kx}, \sec \mathrm{kx}, \operatorname{cosec} \mathrm{kx}$ is $\frac{2 \pi}{|\mathrm{k}|}$.
* The period of $\tan \mathrm{kx}$ and $\cot \mathrm{kx}$ is $\frac{\pi}{|\mathrm{k}|}$.
* The period of $\sin ^{n} x, \cos ^{n} x, \operatorname{cosec}^{n} x, \sec ^{n} x$.

If n is even it is π.

If n is odd it is 2π.

* The period of $\tan ^{n} x, \cot ^{n} x$ when ' n ' is either even or odd is π.
* The period of $|\sin x|,|\cos x|,|\tan x|,|\operatorname{cosec} x|,|\sec x|$ and $|\cot \mathrm{x}|$ is π.
* If $a, b, \in R$ and $n \in R$. The period of
(i) $a \sin ^{n} x+b \cos ^{n} x$.
(ii) $\tan ^{\mathrm{n}} \mathrm{x}+\mathrm{b} \cot ^{\mathrm{n}} \mathrm{x}$.
(iii) $a \operatorname{cosec}^{n} \mathrm{x}+\mathrm{b} \sec ^{\mathrm{n}} \mathrm{x}$

	$\mathrm{a}=\mathrm{b}$	$\mathrm{a} \neq \mathrm{b}$
n even	$\frac{\pi}{2}$	π
n odd	2π	2π

* The period of
(i) $a|\sin x|+b|\cos x|$
(ii) $a|\sin x|+b|\cot x|$
(iii) $a|\operatorname{cosec} x|+b|\sec x|$ is $\frac{\pi}{2}$ if $a=b$ AND is π if $a \neq b$.
* The period of $\mathrm{x}-[\mathrm{x}]$ is $1[\because$ Here [.] denotes greatest integer function $\leq \mathrm{x}]$
* $f_{1}(x), f_{2}(x), f_{3}(x)$ and $f_{4}(x)$ are periodic functions with periods P_{1}, P_{2}, P_{3} and P_{4} respectively then the period of
(a) a. $f_{1}(x) \pm b f_{2}(x)$ is LCM of periods of $f_{1}(x)$ and $f_{2}(x)(a \neq b)$
(b) $\frac{\text { a. } f_{1}(x) \pm \text { b. } f_{2}(x)}{\text { c. } f_{3}(x) \pm \text { d. } f_{4}(x)}$ is LCM of periods of $f_{1}(x), f_{2}(x), f_{3}(x)$ and $f_{4}(x)$.
* The LCM of functions $\frac{a}{b}, \frac{c}{d}, \frac{e}{f}$.
$\frac{\mathrm{LCM} \text { of } \mathrm{Nr}}{\mathrm{HCF} \text { of } \mathrm{Dr}}$ (i.e.) $\frac{\mathrm{LCM} \text { of (a.c.e) }}{\mathrm{HCF} \text { of (b.d.f) }}$

Extreme values.

* The range of $\sin x$ and $\cos x$ is $[-1,1]$
* The range of $\tan x$ and $\cot x$ is $(-\infty, \infty)$

The range of $\sec \mathrm{x}$ and $\operatorname{cosec} \mathrm{x}$ is $(-\infty,-1] \cup[1, \infty)$.

* The extreme values of $a \cos x+b \sin x+c$.
$\operatorname{Min}=c-\sqrt{a^{2}+b^{2}}$.
$\operatorname{Max}=\mathrm{c}+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$

Range $=\left[c-\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}, \mathrm{c}+\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}\right]$

* The minimum value of
(i) $a^{2} \sin ^{2} x+b^{2} \operatorname{cosec}^{2} x$
(ii) $a^{2} \tan ^{2} x+b^{2} \cot ^{2} x$
(iii) $a^{2} \cos ^{2} x+b^{2} \sec ^{2} x$ is $2 a b$.

Range: [2ab, ∞)

* The extreme values of
$a \sin ^{2} x+b \sin x \cos x+c \cos ^{2} x \quad$ Min $=\frac{a+c}{2}-\frac{\sqrt{b^{2}+(a-c)^{2}}}{2}$
$\operatorname{Max}=\frac{a+c}{2}+\frac{\sqrt{b^{2}+(a-c)^{2}}}{2}$.

