PERIODICITY AND EXTREME VALUES

SYNOPSIS

Periodic Function and Period of Function

A real function $f : A \to B$ is such that $f(x + k) = f(x) \quad \forall k \in R$; then f is called periodic function and least positive real number 'k' is called period of function.

(i.e.) 'k' is period of f(x) then (i) f(x + K) = f(x) and (ii) f(x + nk) = f(x).

- * If the period of f(x) is a, then the period of -f(x) is also 'a'.
- * The period of sin x , cos x, cosec x and sec x is 2π .
- * The period of tan x, cot is π .
- * The period of sin kx, cos kx, sec kx, cosec kx is
- * The period of tan kx and cot kx is $\frac{\pi}{|\mathbf{k}|}$
- * The period of $\sin^n x$, $\cos^n x$, $\csc^n x$, $\sec^n x$.

If n is even it is π .

If n is odd it is 2π .

- * The period of $\tan^n x$, $\cot^n x$ when 'n' is either even or odd is π .
- * The period of $|\sin x|$, $|\cos x|$, $|\tan x|$, $|\csc x|$, $|\sec x|$ and $|\cot x|$ is π .
- * If $a, b, \in R$ and $n \in R$. The period of
- (i) a $\sin^n x + b \cos^n x$.
- (ii) a $\tan^n x + b \cot^n x$.
- (iii) a $\operatorname{cosec}^n x + b \operatorname{sec}^n x$

www.sakshieducation.com

www.sakshieducation.com

	a = b	a ≠ b
n even	$\frac{\pi}{2}$	π
n odd	2π	2π

- * The period of
 - (i) $a|\sin x| + b|\cos x|$
 - (ii) $a|\sin x| + b|\cot x|$
 - (iii) a |cosec x| + b |sec x| is $\frac{\pi}{2}$ if a = b AND is π if a \neq b.
- * The period of x [x] is 1 [: Here [.] denotes greatest integer function $\leq x$]
- * f₁(x), f₂(x), f₃(x) and f₄(x) are periodic functions with periods P₁, P₂, P₃ and P₄ respectively then the period of
 - (a) $a.f_1(x) \pm b f_2(x)$ is LCM of periods of $f_1(x)$ and $f_2(x)$ (a \neq b)
 - (b) $\frac{a.f_1(x)\pm b.f_2(x)}{c.f_3(x)\pm d.f_4(x)}$ is LCM of periods of $f_1(x)$, $f_2(x)$, $f_3(x)$ and $f_4(x)$.
- * The LCM of functions $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f}$.

 $\frac{\text{LCM of Nr}}{\text{HCF of Dr}} \text{ (i.e.) } \frac{\text{LCM of (a.c.e)}}{\text{HCF of (b.d.f)}}$

Extreme values.

- * The range of sin x and $\cos x$ is [-1, 1]
- * The range of tan x and cot x is $(-\infty, \infty)$
- * The range of sec x and cosec x is $(-\infty, -1] \cup [1, \infty)$.
- * The extreme values of a $\cos x + b \sin x + c$.

$$Min = c - \sqrt{a^2 + b^2}$$

 $Max = c + \sqrt{a^2 + b^2}$

www.sakshieducation.com

Range =
$$[c - \sqrt{a^2 + b^2}, c + \sqrt{a^2 + b^2}]$$

* The minimum value of

*

(i) a²sin²x + b²cosec²x
(ii) a²tan²x + b²cot²x
(iii) a²cos²x + b²sec²x is 2ab.
Range: [2ab, ∞)
The extreme values of

a $\sin^{2}x + b \sin x \cos x + c \cos^{2}x$ Min $= \frac{a+c}{2} - \frac{\sqrt{b^{2} + (a-c)^{2}}}{2}$ Max $= \frac{a+c}{2} + \frac{\sqrt{b^{2} + (a-c)^{2}}}{2}$.