www.sakshieducation.com

MATRICES

SYNOPSIS

1. A matrix is an arrangement of real or complex numbers into rows and columns so that all the rows (columns) contain equal number of elements.
2. Two matrices A and B are said to be equal if i) A, B are of same type and ii) the corresponding elements in A and B are equal.
3. $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{m} \times \mathrm{n}} ; B=\left[\mathrm{b}_{\mathrm{jk}}\right]_{\mathrm{n} \times \mathrm{p}}$ then their product is $\left[\mathrm{c}_{\mathrm{ik}}\right]_{\mathrm{m} \times \mathrm{p}}$ where $\mathrm{c}_{\mathrm{ik}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \cdot \mathrm{b}_{\mathrm{jk}}$.
i) If the product $A B$ exists then it is not necessary that the product $B A$ will also exist.
ii) Matrix multiplication is not commutative even if AB and BA exist, they need not be equal.
iii) Matrix multiplication is associative.i.e., $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$.
iv) Let A be a square matrix then $\mathrm{A}^{2}=\mathrm{A}$. A

$$
\mathrm{A}^{2} \mathrm{~A}=\mathrm{A} \cdot \mathrm{~A}^{2}=\mathrm{A}^{3}
$$

v) $\left(A^{m}\right)^{n}=A^{m n} ; A^{m} \cdot A^{n}=A^{m=n}$.
vi) $A(B+C)=A B+A C$
4. A is a matrix of order $m \times n$ then $A \cdot I_{n}=I_{m} A=A$ If A and I are of same order then $\mathrm{AI}=\mathrm{IA}=\mathrm{A}$

I is called multiplicative Identity.
5. Trace of a Matrix: The sum of the principal diagonal elements $a_{11}, a_{22}, a_{33}, \ldots \ldots$. a_{nn} of a square matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is called the trace of A . It is denoted by $\operatorname{tr} \mathrm{A}$.
i) $\operatorname{tr}(\mathrm{KA})=\mathrm{K} \operatorname{tr} \mathrm{A}$
ii) $\operatorname{tr}(\mathrm{A}+\mathrm{B})=\operatorname{tr} \mathrm{A}+\operatorname{tr} \mathrm{B}$
iii) $\operatorname{tr}(\mathrm{A}-\mathrm{B})=\operatorname{tr} \mathrm{A}-\operatorname{tr} \mathrm{B}$.
iv) $\operatorname{tr} \mathrm{AB}=\operatorname{tr} \mathrm{BA}$

www.sakshieducation.com

v) $\operatorname{tr}(\mathrm{AB}) \neq \operatorname{tr}(\mathrm{A}) \cdot \operatorname{tr}(\mathrm{B})$
vi) Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three matrices of order n .

Then $\operatorname{tr}(\mathrm{ABC})=\operatorname{tr}(\mathrm{BCA})=\operatorname{tr}(\mathrm{CAB})=\operatorname{tr}(\mathrm{ACB})=\operatorname{tr}(\mathrm{BAC})=\operatorname{tr}(\mathrm{CBA})$

6. Transpose of a Matrix:

$A=\left[a_{i j}\right]_{\mathrm{m} \times \mathrm{n}} \Rightarrow A^{T}=\left[\mathrm{a}^{1}{ }_{\mathrm{ji}}\right]_{\mathrm{n} \times \mathrm{m}}$ where $\mathrm{a}^{1}{ }_{\mathrm{ji}}=\mathrm{a}_{\mathrm{ij}}$.
i) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
ii) $(A \pm B)^{T}=A^{T} \pm B^{T}$
iii) $(A B)^{T}=B^{T} A^{T}$
iv) $(K A)^{T}=K \cdot A^{T}(K$ is a scalar $)$
7. Commute: Two matrices A and B are commute if $A B=B A$.
8. Let A, B are two square matrices which are commute then

1) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
2) $(A-B)^{2}=A^{2}-2 A B+B^{2}$.
3) $(A+B)(A-B)=A^{2}-B^{2}$.
4) $(A+B)^{3}=A^{3}+3 A^{2} B+3 A B^{2}+B^{3}$
5) $(A-B)^{3}=A^{3}-3 A^{2} B+3 A B^{2}-B^{3}$.
6) $(A+B)\left(A^{2}-A B+B^{2}\right)=A^{3}+B^{3}$.
7) $(A-B)\left(A^{2}+A B+B^{2}\right)=A^{3}-B^{3}$.
9. If $\mathrm{AB}=0$ then either A or B need not be equal to 0 .
10. If $\mathrm{AB}=\mathrm{AC}$ then B need not be equal to C even if $\mathrm{A} \neq 0$.
11. If the elements of a square matrix are polynomials in x and two rows (columns) become identical when $\mathrm{x}=\mathrm{a}$ then $\mathrm{x}-1$ is a factor of its determinant. If three rows are identical then $(x-a)^{2}$ is a factor.

www.sakshieducation.com

12. The determinant of a triangular matrix is the product of the elements in the principal diagonal of the matrix.
13. $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det}(B A)$
14. If $\operatorname{det}(\mathrm{AB})=0$ then either $\operatorname{det} \mathrm{A}=0$ or $\operatorname{det} \mathrm{B}=0$.
15. The determinant of a skew symmetric matrix of order 3 is zero.
16. The determinant of a unit matrix is ' 1 '.
17. If any row or column of a square matrix contains all its elements as zeros then the determinant of the matrix is 0 .
18. A square matrix A is said to be a
(i) Singular matrix if $|A|=0$
(ii) Non singular matrix if $|A| \neq 0$.
19.1. $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=-\left(\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}-3 \mathrm{abc}\right)$.
19. $\left|\begin{array}{lll}a & h & g \\ \text { h } & \text { b } & f \\ g & f & c\end{array}\right|=a b c+2 f g h-a f^{2}-b^{2}-c^{2}$.
20. $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{2} \\ 1 & \mathrm{~b} & \mathrm{~b}^{2} \\ 1 & \mathrm{c} & \mathrm{c}^{2}\end{array}\right|=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b} \\ 1 & \mathrm{~b} & \mathrm{ca} \\ 1 & \mathrm{c} & \mathrm{ab}\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
21. $\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{a}^{3} \\ 1 & \mathrm{~b} & \mathrm{~b}^{3} \\ 1 & \mathrm{c} & \mathrm{c}^{3}\end{array}\right|=\left|\begin{array}{lll}1 & \mathrm{a}^{2} & \mathrm{bc} \\ 1 & \mathrm{~b}^{2} & \mathrm{ca} \\ 1 & \mathrm{c}^{2} & \mathrm{ab}\end{array}\right|=(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})$
22. $\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|=\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=(a b+b c+c a)(a-b)(b-c)(c-a)$
23. $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a) a b c$.
24. $\left|\begin{array}{ccc}1+a & b & c \\ a & 1+b & c \\ a & b & 1+c\end{array}\right|=1+a+b+c$.
25. $\left|\begin{array}{ccc}1+\mathrm{a} & 1 & 1 \\ 1 & 1+\mathrm{b} & 1 \\ 1 & 1 & 1+\mathrm{c}\end{array}\right|=(\mathrm{abc})\left(1+\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}\right)$
26. $\left|\begin{array}{ccc}1+\mathrm{a}^{2} & \mathrm{ab} & \mathrm{ac} \\ \mathrm{ab} & 1+\mathrm{b}^{2} & \mathrm{bc} \\ \mathrm{ac} & \mathrm{bc} & 1+\mathrm{c}^{2}\end{array}\right|=1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$.
27. If $A=p a_{i j}$] is a square matrix of order $n \times n$ and k is a scalar then $|K A|=K^{n} \operatorname{det} A$.
28. If $A=\left[a_{i j}\right]$ is a scalar matrix of order $n \times n$ such that $a_{i j}=k$ for all i then $|A|=K^{n}$.
29. Inverse of a Square Matrix: A square matrix A is said to be an invertible matrix if there exists a square matrix B such that $A B=B A=I$ then B is called the inverse of A .
30. A rectangular matrix cannot be invertible.
31. Every square matrix need not be invertible.
32. An invertible matrix has unique inverse.
33. If A is an invertible matrix then its inverse is denoted by $A^{-1} \Rightarrow A \cdot A^{-1}=A^{-1} \cdot A=I$.
34. If A is invertible $\Rightarrow\left(\mathrm{A}^{-1+)-1}=\mathrm{A}\right.$.
35. If I is invertible matrix $\Rightarrow \mathrm{I}^{-1}=\mathrm{I}$

www.sakshieducation.com

29. If A and B are two invertible matrices of same type then $A B$ is also invertible $\Rightarrow(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$.
30. $\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \ldots . . \mathrm{A}_{\mathrm{n}}\right)^{-1} \cdot \mathrm{~A}_{\mathrm{n}}{ }^{-1} \cdot \mathrm{~A}_{\mathrm{n}-1}{ }^{-1} \ldots \ldots \mathrm{~A}_{2}^{-1} \mathrm{~A}_{1}{ }^{-1}$.
31. If A is an invertible matrix then A^{T} is also invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{T}$.
32. If A is a non singular matrix $\Rightarrow A^{-1}=\frac{\operatorname{Adj} A}{\operatorname{det} A}$
33. If A is a square matrix $\Rightarrow A .(\operatorname{Adj} A)=(\operatorname{Adj} A) A=\operatorname{det} A . I$.
34. $\operatorname{det}\left(\mathrm{A}^{-1}\right)=\frac{1}{\operatorname{det} \mathrm{~A}}$
35. $\operatorname{Adj}(A B)=(\operatorname{Adj} B)(\operatorname{Adj} A)$
36. If A is a square matrix of type n then $|\operatorname{Adj} A|=|A| n^{n-1}$
37. If A is a non singular matrix of order n, then $\operatorname{Adj}(\operatorname{Adj} A)=|A|^{n-2} A$
38. $(\operatorname{Adj} \mathrm{A})^{-1}=\frac{\mathrm{A}}{|\mathrm{A}|}=\operatorname{Adj}\left(\mathrm{A}^{-1}\right)$
39. $\operatorname{Adj} A^{T}=(\operatorname{Adj} A)^{T}$.
40. For any scale $\mathrm{k}, \operatorname{Adj}(\mathrm{kA})=\mathrm{kn}^{-1} \operatorname{Adj} \mathrm{~A}$.
41. $|\operatorname{Adj}(\operatorname{Adj} A)|=|A|^{(\mathrm{n}-1)^{2}}$.
42. \mid Adj Adi Adi $\mathrm{A}\left|=|\mathrm{A}|^{(\mathrm{n}-1)^{3}}\right.$
43. If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}a & -b \\ -c & d\end{array}\right]$.
44. If $A=\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]$ and $a b c \neq 0$ then $\mathrm{A}^{-1}=\left[\begin{array}{ccc}\frac{1}{\mathrm{a}} & 0 & 0 \\ 0 & \frac{1}{b} & 0 \\ 0 & 0 & \frac{1}{\mathrm{c}}\end{array}\right]$.
45. If $\mathrm{A}(\alpha)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$ then $\left[\mathrm{A}(\alpha)^{-1}=\mathrm{A}(-\alpha)\right.$.
46. The inverse of a symmetric matrix is symmetric.
47. The inverse of a diagonal matrix is a diagonal matrix.
48. A is singular $\Rightarrow A^{T}$ is singular.
A is non singular $\Rightarrow A^{T}$ is non singular.
49. If A and B are non singular matrices of the same type then $A B$ is a non singular of the same type.
50. If A is a singular matrix then Adj A is also singular matrix.
51. If A is a singular then $\mathrm{A}(\operatorname{Adj} \mathrm{A})=(\operatorname{Adj} \mathrm{A}) \mathrm{A}=0$.
52. If $|A|=0$, then $|\operatorname{Adj} A|=0$.
53. If A is symmetric then $\operatorname{Adj} \mathrm{A}$ is also symmetric.
54. i) The linear equations in two variable are $a_{1} x+b_{1} y=c_{1}$.
$a_{2} x+b_{2} y=c_{2}$ then the system of equations in x and y can be written as the matrix equation $A X=B$.

Where $A=\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right] x=\left[\begin{array}{l}x \\ y\end{array}\right], B=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$.
ii) The Homogeneous Equation are $a_{1} x+b_{1} y=0 ; a_{2} x+b_{2} y=0$.

If $x=0, y=0$ then the solution is called zero solution (Trivial solution). $|A| \neq 0$ other wise the solution is called non trivial solution, $|\mathbf{A}|=0$.
iii) The linear equations in three variables are

$$
\begin{aligned}
& \mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} \\
& \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2} \\
& \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}
\end{aligned}
$$

Matrix equation is $\mathrm{AX}=\mathrm{D}$ where

$$
\mathbf{A}=\left[\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \mathbf{D}=\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right] .
$$

iv) The homogeneous equations are

$$
\begin{aligned}
& a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=0 \\
& \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=0 \\
& \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=0
\end{aligned}
$$

If $x=0, y=0, z=0$ then the solution is called zero solution (Trivial solution)
Other wise the solution is called non trivial solution.
If the system of equation is $A X=0$ where A is non singular, then the system possess trivial solution only.
If the system of equation is $A X=0$; where A is singular, then the system possesses a non trivial solution.
v) The system of equation $\mathrm{AX}=\mathrm{B}$ or $\mathrm{AX}=\mathrm{D}$ is said to be consistent if $\mathrm{AX}=\mathrm{B}$ or $\mathrm{AX}=\mathrm{D}$ has a solution.
vi) The system of equations $A X=B$ or $A X=D$ is said to the inconsistent if $A X=B$ or $A X=D$ has no solution.
I. Consider the system of equation are

$$
\begin{aligned}
& \mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1} \mathrm{z}=\mathrm{d}_{1} \\
& \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2} \\
& \mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{\mathrm{z}} \mathrm{z}=\mathrm{d}_{3}
\end{aligned}
$$

i) The matrix $\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$ is called coefficient matrix.
ii) The matrix $\left[\begin{array}{llll}a_{1} & b_{1} & c_{1} & d_{1} \\ a_{2} & b_{2} & c_{2} & d_{2} \\ a_{3} & b_{3} & c_{3} & d_{3}\end{array}\right]$ is called as Augmented matrix.
iii) The Augmented Matrix can be reduced into the form $\left[\begin{array}{llll}1 & 0 & 0 & \alpha \\ 0 & 1 & 0 & \beta \\ 0 & 0 & 1 & \gamma\end{array}\right]$ then $\mathrm{x}=\alpha$, $y=\beta, z=\gamma$ is the solution of the system of equations.
iv) The Augmented matrix is reduced to the form $\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ 0 & p_{5} & p_{6} & p_{7} \\ 0 & 0 & p_{8} & p_{9}\end{array}\right]$ by using elementary trans-formations known as Echelon form of a matrix.
II. Sub Matrix: A matrix obtained by deleting some rows or columns (or both) of a matrix is called as sub matrix.
i) Every element of matrix is a sub matrix of order 1.
ii) Every matrix is a sub matrix of itself.
III. Rank of a Matrix: The rank of matrix is the order of the highest order non singular square matrix.

We can find the rank of a matrix by reducing the system of equations into Echelon form.
i) The rank of a matrix in Echelon form is equal to the number of non zero rows of the matrix.
ii) The rank of a unit matrix of order n is n.
iii) The rank of a non singular matrix of order n is n.
IV. Let $\mathrm{AX}=\mathrm{B}$ be a system of equations in a unknowns, such that the rank of the coefficient matrix A is r_{1} and the rank of the augmented matrix K is r_{2}.
i) If $r_{1} \neq r_{2}$ then the system $A X=B$ is inconsistent i.e. it has no solution.
ii) If $r_{1}=r_{2}=n$ then the system $A X=B$ is consistent and it has unique solution.
iii) If $r_{1}=r_{2}<n$ then the system $A X=B$ is consistent and it has infinitely many solutions.

