MATHEMATICAL INDUCTION

SYNOPSIS

Principle of finite Mathematical Induction

Let $\{P(n) / n \in N\}$ be a set of statements. If

(i) p(1) is true

(ii) p(m) is true $\Rightarrow p(m+1)$ is true ; then p(n) is true for every $n \in N$.

Principle of complete induction

Let {P (n) / n N } be a set of statements. If p (1) is true and p(2), p(3) p(m-1) are true => p(m) is true, then p (n) is true for every $n \in N$.

Note

(i) The principle of mathematical induction is a method of proof of a statement.

(ii) We often use the finite mathematical induction, hence or otherwise specified the mathematical induction is the finite mathematical induction.

Some important formulae:

$$1. \quad \sum n = \frac{n(n+1)}{2}$$

2.
$$\sum n^2 = \frac{n(n+1)(2n+1)}{6};$$

3. $\sum n^3 = \frac{n^2 (n+1)^2}{4}$

4. $a, (a+d), (a+2d), \dots$ are in a.p n th term $t_n = a + (n-1)d$, sum of n terms

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right] = \frac{n}{2} \left[a + l \right], \text{ a } \qquad \text{a = first term, } l = last term.$$

5. $a_1 ar, ar^2, \dots$ is a g.p.

Nth term $t_n = a \cdot r^{n-1}$. $a = 1^{st}$ term, r =common ratio.

Sum of n terms
$$s_n = a \frac{(r^n - 1)}{r - 1}; r > 1, = a \left(\frac{1 - r^n}{1 - r}\right); r < 1$$

www.sakshieducation.com

www.sakshieducation.com

- 6. In Infinite G.P, Sum of Infinite terms IS $S_{\infty} = \frac{a}{1-r}$
- 7. Sum of the first 'n' odd +ve integers = n^2
- 8. Sum of the first 'n' even +ve integers = n(n+1)
- 9. The sum of cubes of three consecutive natural numbers is always divisible by 9
- 10. $x^n y^n$ is divisible by x + y when 'n' is even.