MATHEMATICAL INDUCTION

SYNOPSIS

Principle of finite Mathematical Induction

Let $\{P(n) / n \in N\}$ be a set of statements. If
(i) $\mathrm{p}(1)$ is true
(ii) $\mathrm{p}(\mathrm{m})$ is true $\Rightarrow \mathrm{p}(\mathrm{m}+1)$ is true ; then $\mathrm{p}(\mathrm{n})$ is true for every $\mathrm{n} \in \mathrm{N}$.

Principle of complete induction
Let $\{P(n) / n N\}$ be a set of statements. If $p(1)$ is true and $p(2), p(3) \ldots p(m-1)$ are true $=>p(m)$ is true, then $p(n)$ is true for every $n \in N$.

Note

(i) The principle of mathematical induction is a method of proof of a statement.
(ii) We often use the finite mathematical induction, hence or otherwise specified the mathematical induction is the finite mathematical induction.

Some important formulae:

1. $\sum n=\frac{n(n+1)}{2}$
2. $\sum n^{2}=\frac{n(n+1)(2 n+1)}{6}$;
3. $\sum n^{3}=\frac{n^{2}(n+1)^{2}}{4}$
4. $a,(a+d),(a+2 d), \ldots \ldots \ldots \ldots \ldots .$. are in a.p n th
term $t_{n}=a+(n-1) d$, sum of n terms
$S_{n}=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}[a+l], \mathrm{a} \quad \mathrm{a}=$ first term, $\mathrm{l}=$ last term.
5. $a, a r, a r^{2}, \ldots \ldots .$. is a g.p.

Nth term $t_{n}=a . r^{n-1} . \mathrm{a}=1^{\text {st }}$ term, $\mathrm{r}=$ common ratio.
Sum of n terms $\quad s_{n}=a \frac{\left(r^{n}-1\right)}{r-1} ; r>1, \quad=a\left(\frac{1-r^{n}}{1-r}\right) ; r<1$
6. In Infinite G.P, Sum of Infinite terms IS $S_{\infty}=\frac{a}{1-r}$
7. Sum of the first ' n ' odd $+v e$ integers $=n^{2}$
8. Sum of the first ' n ' even $+v e$ integers $=n(n+1)$
9. The sum of cubes of three consecutive natural numbers is always divisible by 9
10. $x^{n}-y^{n}$ is divisible by $x+y$ when ' n ' is even.

