HYPERBOLA

SYNOPSIS

1. S is focus and the ' L ' is the directrix. The locus of a point P is a hyperbola if $\frac{S P}{P M}=\mathrm{e}(>1), \mathrm{e}$ being a constant, PM being perpendicular to the fixed line ' L ' from P.
2.

Four Sandard forms of a hyperbola.

5. No_{0}.	Conte ${ }^{\text {a }}$	I	II	III	TV
	Equatiom	$\begin{aligned} & \frac{x^{2}}{x^{2}}-\frac{y^{2}}{x^{2}}-1 \\ & \text { mherb } b^{2}=x^{2}\left(x^{2}-1\right) \end{aligned}$	$\begin{aligned} & \frac{x^{2}}{x^{2}}-\frac{y^{2}}{y^{2}}-\cdots 1 \\ & \operatorname{sem}^{2}-s^{2}\left(s^{2}-1\right) \end{aligned}$	$\begin{aligned} & \frac{(x-a)^{2}}{2^{2}}-\frac{\left(y-y^{2}\right.}{b^{2}}-1 \\ & 2 x^{2}+b^{2}-a^{2}\left(y^{2}-1\right. \end{aligned}$	$\begin{aligned} & \frac{\left(x-a^{2}\right.}{a^{2}}-\frac{(y-\beta)^{2}}{b^{2}}--1 \\ & \text { ntera } x^{2}-b^{2}\left(a^{2}-1\right) \end{aligned}$
	Figure				
1.	Cerite (C)	(0,0)	(0,0)	(α, β)	(a, $\bar{\square}$
2.1	Vertices	$A, A^{\prime}=(\pm 2,0)$	$B, B^{\prime}=(0, \pm b)$	(a, 2 , p $^{\text {a }}$	(α, β * b $^{\text {a }}$
3.1	Foci (\$, 5^{\prime})	(tae, 0)			
4. 2	$2,2^{1}$	(\pm a/ 4,0)	$(0, \pm b / t)$	($\alpha \pm a / \mathrm{e}, \mathrm{B}$	($\alpha, \beta \pm b / 6)$
5. E	End oflatararecta		($\mathrm{ar}^{2} / \mathrm{b}, \pm \mathrm{be}^{\text {e }}$	(α 退, $\mathrm{p} \pm \mathrm{b}^{2} / \mathrm{a}$)	($a^{+2} / \mathrm{b}, \mathrm{\beta} \pm \mathrm{te}$)
${ }^{3}$ 3.	E¢M. Ortamerin 4	a $\quad \mathrm{y}=0$	$x=0$	$y=p$	
7.	Equ. of conjugate at	$5 \quad x=0$	$y=0$	$x=a$	$y=\beta$
$8 . \mathrm{E}$	Egn's of latiarectum	$x=22$	$y=t h e$	$x=a t 38$	$y=$ 地e
$9 . \mathrm{E}$	Eqp's of directrices	$x=\underline{t a t}$	$y= \pm$ b	$x=a t a t$	$y=\beta+$ te
10. L	Length of transers	axis 2a	2 b	2 a	2b
11. 1	Leagth of conjugate	exis 2b	2 a	2 b	2 a
12. I	Length of latarectes	a $\quad \mathbf{2 b} / \mathbf{a}$	$2 a^{2} / \mathrm{b}$	$2 \mathrm{~b}^{*} / \mathrm{a}$	$2 a^{2} b$
13. E	Eccentricily (θ)	$\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$	$\sqrt{\frac{b^{2}+a^{2}}{b^{2}}}$	$\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$	$\sqrt{\frac{b^{2}-a^{2}}{b^{2}}}$
14.	Diff of focal distanc (focal radii) of a poil pon the tlipse	\% $\quad\left\|S^{4} \mathrm{P}-\mathrm{SP}\right\|=2 \mathrm{a}$	$\left\|S^{1} P-5 P\right\|=2 b$	$\left\|S^{\prime} P-S P\right\|=2 a$	$S^{2} P-S P \mid=2 b$
$15 .$	Distance betwetn th Sol	$55^{5}=2 a t$	$55^{\prime}=2 \mathrm{be}$	$55^{1}=2 a t$	$5 S^{1}=2 b e$
10.1	vertices	$A x^{+}=12$	$B B^{\prime}=20$	$x x^{\prime}=I 2$	$\mathrm{BB}^{\circ}=26$
17. D	Distanct between	$22^{1}=2 \mathrm{z} / 2$	$22^{\prime}=2 \mathrm{blt}$	$2 z^{1}=2 a / t$	$2 z^{1}=2 \mathrm{be}$

3. The equation of the auxiliary circle is $x^{2}+y^{2}=a^{2}$
4. The equation of the director circle of the hyperbola is $x^{2}+y^{2}=a^{2}-b^{2}$
5. The equation of the tangent at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}-1=0 \quad\left(\mathrm{~S}_{1}=0\right)$
6. The line $y=m x+c$ will be a tangent to the hyperbola if $c^{2}=a^{2} m^{2}-b^{2}$
7. If ' m ' is the slope of any tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then its equation is $\mathrm{y}=\mathrm{mx} \pm \sqrt{a^{2} m^{2}-b^{2}}$
8. The line $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ will be a tangent to the hyperbola if $\mathrm{a}^{2} l^{2}-\mathrm{b}^{2} \mathrm{~m}^{2}=\mathrm{n}^{2}$.
9. The slopes of tangents drawn from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are given by $m^{2}\left(x_{1}{ }^{2}-a^{2}\right)-2 m x_{1} y_{1}+y_{1}{ }^{2}+b^{2}=0$.
10. ' α ' is the angle between the tangents drawn from $\left(x_{1}, y_{1}\right)$ to the hyperbola, then $\tan ^{2} \alpha=\frac{4\left(-b^{2} x_{1}^{2}+a^{2} y_{1}^{2}+a^{2} b^{2}\right)}{\left(x_{1}^{2}+y_{1}^{2}-a^{2}+b^{2}\right)^{2}}$
11. The equation of the normal at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{a^{2} x}{x_{1}}+\frac{b^{2} y}{y_{1}}=\mathrm{a}^{2}+\mathrm{b}^{2}$
12. The line $1 x+m y+n=0$ is a normal to the hyperbola if $\frac{a^{2}}{\ell^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$.
13. The equation of the chord joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ as the rectangular hyperbola $x y=c^{2}$ is $\frac{x}{x_{1}+x_{2}}+\frac{y}{y_{1}+y_{2}}=1$
14. The equation of the chord joining the points $(a \sec \theta, b \tan \theta)$ is $\frac{x}{a} \cos \frac{\theta-\phi}{2}-\frac{y}{b} \sin \frac{\theta+\phi}{2}=\cos \frac{\theta+\phi}{2}$
15. The equation of the tangent at $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is $\frac{x \sec \theta}{a}-\frac{y \tan \theta}{b}=1$
16. The equation of the normal at $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=\mathrm{a}^{2}+\mathrm{b}^{2}$
17. From any point four normals can be drawn to a hyperbola.
18. The equation of the chord of contact of tangents from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $S_{1}=0$.
19. The equation of the polar of $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ w.r.t. hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\mathrm{S}_{1}=0$
20. The pole of the line $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ w.r.t. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\left(\frac{-\mathrm{a}^{2} \ell}{\mathrm{n}}, \frac{\mathrm{b}^{2} \mathrm{~m}}{\mathrm{n}}\right)$
21. The lines $1_{1} x+m_{1} y+n_{1}=0,1_{2} x+m_{2} y+n_{2}=0$ are conjugate lines w.r.t. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $\mathrm{a}^{2} 1_{1} \mathrm{l}_{2}-\mathrm{b}^{2} \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{n}_{1} \mathrm{n}_{2}$
22. The equation of the chord of the hyperbola $S=0$ having its middle point at $\left(x_{1}, y_{1}\right)$ is $S_{1}=S_{11}$
23. The midpoint of the chord of the hyperbola $\left[\frac{-a^{2} \ell n}{a^{2} \ell^{2}-b^{2} m^{2}}, \frac{b^{2} m n}{a^{2} \ell^{2}-b^{2} m^{2}}\right]$
24. $P N$ is the ordinate of any point P on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $A A^{\prime}$ is the transverse axis. If Q divides $A P$ in the ratio $a^{2}: b^{2}$, then NQ is perpendicular to $A P$.
25. If e_{1} and e_{2} are the eccentricities of a hyperbola and its conjugate, then $\frac{1}{e_{1}^{2}}+\frac{1}{e_{2}^{2}}=1$.
26. The equations of the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are $\frac{x}{a}-\frac{y}{b}=0, \frac{x}{a}+\frac{y}{b}=0$
27. The combined equation of the asymptotes of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$
28. The angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $2 \sec ^{-1} \mathrm{e}$ or $2 \tan ^{-1}\left(\frac{b}{a}\right)$
29. If the asymptotes of a hyperbola are at right angles, then its eccentricity is $\sqrt{2}$
30. The hyperbola whose eccentricity is $\sqrt{2}$ is called a rectangular hyperbola.
31. The equation of a hyperbola and that of its asymptotes differ only in the constant term.
32. The polar of any point on one asymptote is parallel to that asymptote.
33. The points where the asymptotes meet the directricies lie on the auxilary circle of the hyperbola.
34. The foot of the perpendicular from the focus on any asymptote lies on the auxilary circle as well as on the corresponding directrix.
35. The equation of rectangular hyperbola w.r.t. the asymptotes as co-ordinate axes is $x y=c^{2}$.
36. The product of perpendiculars from any point on hyperbola to its asymptotes is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
37. a) If the product of perpendiculars from a variable point to two given lines is a constant, then the locus of the point is a hyperbola.
b) If the two lines are perpendicular, then the locus of the point is a Rectangular Hyperbola
38. $x^{2}-y^{2}=a^{2}$ takes the form $x y=\frac{a^{2}}{2}$ when the asymptotes are taken as its axes.
39. The tangent at a point P on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cuts one of its directrices in Q. Then $P Q$ subtends a right angle at the corresponding focus.
40. The area of triangle formed by any tangent to the hyperbola and its asymptotes is ab.
41. The portion of any tangent to a hyperbola intercepted between the asymptotes is bisected at its point of contact.
42. The hyperbola and its conjugate hyperbola are having same asymptotes.
43. The tangent and normal at any point bisect the angle between the focal distances internally and externally.
