HYPERBOLA SYNOPSIS

1. S is focus and the 'L' is the directrix. The locus of a point P is a hyperbola if $\frac{SP}{PM} = e$ (>1), e

being a constant, PM being perpendicular to the fixed line 'L' from P.

2.

S.N	o. Content	I	Π	ш	TV
	Equation	$\frac{x^2}{x^2} - \frac{y^2}{b^2} - 1$ where $b^2 - a^2 (a^2 - 1)$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} + -1$ mbaras ² - 5 ² (s ² - 1)	$\frac{(t-a)^2}{a^2} = \frac{(y-b)^2}{b^2} = 1$ where $b^2 = a^2(a^2 - 1)$	$\frac{(\mathbf{x} \cdot \mathbf{x})^2}{\mathbf{z}^2} - \frac{(\mathbf{y} \cdot \mathbf{\beta})^2}{\mathbf{b}^2} = -1$ where $\mathbf{z}^2 = \mathbf{b}^2 (\mathbf{e}^2 - 1)$
	Figure	$\begin{pmatrix} x^{i} & \lambda \\ p \end{pmatrix} = \begin{vmatrix} y \\ x^{i} \\ p \end{vmatrix} \begin{pmatrix} y \\ x^{i} \\ y^{i} \end{vmatrix} \begin{pmatrix} y \\ x^{i} \\ x^{i} \end{pmatrix}$		*. ``````````` *	<u>*<u>↓</u> <u></u>*</u>
1.	Centre (C)	(0, 0)	(0, 0)	(a, ß)	(a, þ
2.	Vertik es	$\mathbf{A},\mathbf{A}^{1}=(\pm\mathbf{a},0)$	$\mathbf{B}, \mathbf{B}^{i} = (0, \pm b)$	(a, 22, f)	(a, p ±b)
3.	Foci (S, S')	(±ae,0)	(0, ±be)	(a.±at, B)	(a, β ±bt)
4,	Z,Z'	(±a/e,0)	(0,±b/e)	(a±s/e, B	(α, β±b/e)
5.	End of latararecta	(tae, tb ² /a)	$(\pm a^2/b,\pm be)$	(a. ±ae, β±b²/a)	(ata ² /b, β±be)
ð.	Equ. of transverse a	as <u>y</u> = 0	x=0	y=B	x=a
1.	Eqn. of conjugate as	s x=0	y = 0	X# C	y=β
8.	Equ's of laturectum	set=z	y=±be	x=a tae	y=\$tbe
9.	Equ's of directrices	x=±ałt	y ≈ ±b/e	x= a tat	y=B±be
10.	Length of transverse	axús 2a	25	2a	26
1.	Length of conjugate	axis 2b	2a	26	2 a
12.	Length of laturectu	n 2b²/a	2a ² /b	2b ² /a	2a ² /b
13.	Eccentricity (+)	$\sqrt{\frac{a^2+b^2}{a^2}}$	$\sqrt{\frac{b^2+a^2}{b^2}}$	$\sqrt{\frac{a^2+b^2}{a^2}}$	$\sqrt{\frac{b^2 - a^2}{b^2}}$
4.	Diff of for al distance (focal radii) of a poin p on the ellipse	$d \qquad S^{t}P - SP = 2a$	$ \mathbf{S}^{t}\mathbf{P} - \mathbf{S}\mathbf{P} = 2\mathbf{b}$	$ \mathbf{S}^{t}\mathbf{P} - \mathbf{S}\mathbf{P} = 2\mathbf{a}$	$ S^{T}P - SP = 2b$
5.	Distance between th	55' =2ae	SS ¹ = 2be	SS ⁱ = 2ae	SS ¹ =2be
Ιδ,	Distance between vertices	xx'=n	BB' = 20	AA*= 73	EB' = 75
17.	Distance between	Z Z ¹ = 2a/e	ZZ *= 2b/e	$ZZ^{1} = 2a/e$	ZZ1 = 26/e

Four Standard forms of a hyperbola.

3. The equation of the auxiliary circle is $x^2 + y^2 = a^2$

- 4. The equation of the director circle of the hyperbola is $x^2 + y^2 = a^2 b^2$
- 5. The equation of the tangent at (x_1, y_1) to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} 1 = 0$ (S₁ = 0)

www.sakshieducation.com

www.sakshieducation.com

- 6. The line y = mx + c will be a tangent to the hyperbola if $c^2 = a^2m^2 b^2$
- 7. If 'm' is the slope of any tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then its equation is $y = mx \pm \sqrt{a^2m^2 b^2}$
- 8. The line lx + my + n = 0 will be a tangent to the hyperbola if $a^2 l^2 b^2 m^2 = n^2$.
- 9. The slopes of tangents drawn from (x_1, y_1) to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are given by $m^2(x_1^2 a^2) 2mx_1y_1 + y_1^2 + b^2 = 0.$
- 10. ' α ' is the angle between the tangents drawn from (x_1, y_1) to the hyperbola, then $\tan^2 \alpha = \frac{4(-b^2 x_1^2 + a^2 y_1^2 + a^2 b^2)}{(x_1^2 + y_1^2 - a^2 + b^2)^2}$
- 11. The equation of the normal at (x_1, y_1) to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$
- 12. The line lx + my + n = 0 is a normal to the hyperbola if $\frac{a^2}{\ell^2} \frac{b^2}{m^2} = \frac{\left(a^2 + b^2\right)^2}{n^2}$.
- 13. The equation of the chord joining the points (x_1, y_1) and (x_2, y_2) as the rectangular hyperbola $xy = c^2$ is $\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$
- 14. The equation of the chord joining the points (a sec θ , b tan θ) is

$$\frac{x}{a}\cos\frac{\theta-\phi}{2} - \frac{y}{b}\sin\frac{\theta+\phi}{2} = \cos\frac{\theta+\phi}{2}$$

- **15.** The equation of the tangent at (a sec θ , b tan θ) is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$
- **16.** The equation of the normal at (a sec θ , b tan θ) is $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$
- 17. From any point four normals can be drawn to a hyperbola.
- 18. The equation of the chord of contact of tangents from (x_1, y_1) to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $S_1 = 0$.
- **19.** The equation of the polar of (x_1, y_1) w.r.t. hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $S_1 = 0$

www.sakshieducation.com

www.sakshieducation.com

20. The pole of the line lx + my + n = 0 w.r.t. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\left(\frac{-a^2\ell}{n}, \frac{b^2m}{n}\right)$

- 21. The lines $l_1x + m_1y + n_1 = 0$, $l_2x + m_2y + n_2 = 0$ are conjugate lines w.r.t. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ if $a^2 l_1 l_2 b^2 m_1 m_2 = n_1 n_2$
- 22. The equation of the chord of the hyperbola S = 0 having its middle point at (x_1, y_1) is $S_1 = S_{11}$
- 23. The midpoint of the chord of the hyperbola $\left| \frac{-a^2 \ell n}{a^2 \ell^2 b^2 m^2}, \frac{b^2 m n}{a^2 \ell^2 b^2 m^2} \right|$
- 24. PN is the ordinate of any point P on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and AA' is the transverse axis. If Q divides AP in the ratio $a^2 : b^2$, then NQ is perpendicular to AP.
- **25.** If e₁ and e₂ are the eccentricities of a hyperbola and its conjugate, then $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$.
- 26. The equations of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are $\frac{x}{a} \frac{y}{b} = 0$, $\frac{x}{a} + \frac{y}{b} = 0$
- 27. The combined equation of the asymptotes of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$
- 28. The angle between the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is 2 sec⁻¹e or 2tan⁻¹ $\left(\frac{b}{a}\right)$
- **29.** If the asymptotes of a hyperbola are at right angles, then its eccentricity is $\sqrt{2}$
- **30.** The hyperbola whose eccentricity is $\sqrt{2}$ is called a rectangular hyperbola.
- 31. The equation of a hyperbola and that of its asymptotes differ only in the constant term.
- 32. The polar of any point on one asymptote is parallel to that asymptote.
- **33.** The points where the asymptotes meet the directricies lie on the auxiliary circle of the hyperbola.
- **34.** The foot of the perpendicular from the focus on any asymptote lies on the auxilary circle as well as on the corresponding directrix.
- **35.** The equation of rectangular hyperbola w.r.t. the asymptotes as co-ordinate axes is $xy = c^2$.
- 36. The product of perpendiculars from any point on hyperbola to its asymptotes is $\frac{a^2b^2}{a^2+b^2}$
- a) If the product of perpendiculars from a variable point to two given lines is a constant, then the locus of the point is a hyperbola.

www.sakshieducation.com

www.sakshieducation.com

b) If the two lines are perpendicular, then the locus of the point is a Rectangular Hyperbola

- **38.** $x^2-y^2 = a^2$ takes the form $xy = \frac{a^2}{2}$ when the asymptotes are taken as its axes.
- **39.** The tangent at a point P on $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ cuts one of its directrices in Q. Then PQ subtends a

right angle at the corresponding focus.

- 40. The area of triangle formed by any tangent to the hyperbola and its asymptotes is ab.
- **41.** The portion of any tangent to a hyperbola intercepted between the asymptotes is bisected at its point of contact.
- 42. The hyperbola and its conjugate hyperbola are having same asymptotes.
- **43.** The tangent and normal at any point bisect the angle between the focal distances internally and externally.