FUNCTIONS

SYNOPSIS

- **1.** A and B are any two sets. If to every element of A exactly one element of B is associated, the association is said to form a function (mapping) from A to B, and written as $f: A \rightarrow B$.
- 2. If $f : A \rightarrow B$, A is called the domain of f and B is called the codomain of f.
- 3. The set of all images in $f: A \rightarrow B$ i.e. the set of all values of f(x) is called the range of f and is denoted by f(A) and $f(A) \subseteq B$.
- 4. A function $f: A \rightarrow B$ is one-one or an injection if different elements of A have different images.
- 5. A function $f: A \rightarrow B$ is onto, if f(A)=B. i.e. if corresponding each $b \in B$, we can find an element $a \in A$ such that f(a) = b.
- 6. If a function is both one one and onto, then the function is a bijection.
- 7. A function $f : A \rightarrow B$ is said to be invertible if f is one-one and onto.
- 8. Many-one mapping : If the mapping $f:A \rightarrow B$ is such that two distinct elements a_1 , a_2 of A have the same f image in B, then f is called a many one mapping or many one function.
- Into mapping: If f: A→B is such that there is at least one element of B which is not the f-image of any element of A, then f is an into function from A to B.
- 10. Two functions f and g are said to be equal if
 - (i) They are defined on the same domain A
 - (ii) f(x) = g(x) for every $x \in A$.
- 11. If $f: A \rightarrow B$, $g: B \rightarrow C$, $h: C \rightarrow D$, then ho(gof) = (hog) of.
- **12.** The function I: A \rightarrow A is said to be the identity function on A, if f(a) = a for every $a \in A$, and is denoted by I_A.
- **13.** If $f: A \rightarrow B$, $g: B \rightarrow A$ are such that $gof = I_A$ and $fog = I_B$, then $g = f^{-1}$ and also $f = g^{-1}$.
- 14. If $f: A \rightarrow B$, $g: B \rightarrow C$ are both one-one, then gof is also one-one (gof) is the composite function of f and g.
- **15.** i) If $f:A \rightarrow B$, $g:B \rightarrow C$ are both onto, then $gof: A \rightarrow C$ is also onto.

ii) f:A \rightarrow B g: B \rightarrow C are one-one functions then gof: A \rightarrow C is also one-one.

iii) If 0(A) = m, 0(B)=n and m>n, then the number of one-one functions from A to B is zero

- **16.** A function f(x) is a increasing function if $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$
- **17.** A function f(x) is a decreasing function if $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$.
- **18.** If O(A) = m, O(B) = n, then number of mappings from A to B is n^m .
- **19.** If O(A) = m, O(B) = n and $m \le n$, then the number of one-one functions from A to B isⁿ p_m .
- 20. If O(A) = m, O(B) = n and n ≤ m, then the number of onto functions from A to B is $n^m - c_1^n (n-1)^m + c_2^n (n-2)^m - c_3^n (n-3)^m + \dots$
- **21.** If O(A) = n, O(B) = n, the number of bijections from A to B is ${}^{n}p_{n} = n!$
- 22. If two sets A and B have exactly same number of elements then everyone-one function from A to B is also onto and every onto function from A to B is also one-one.
- **23.** If O(A) = n, O(B) = 2, the number of surjections from A to B is $2^n 2$.
- **24.** (i) If O(A) = n, the number of binary operations defined on A is n^{n^2} .
 - (ii) If 0(A)=n, the number of binary operations defined on A which are commutative is $\frac{n(n+1)}{2}$
- **25.** If $f: \mathbb{R} \to \mathbb{R}$ is such that f(x) = |x| or x^2 , then f is neither one-one nor onto.
- **26.** If $f: \mathbb{R} \to \mathbb{R}$ is such that f(x) = x|x|, then f is a bijection.
- 27. If D_1 and D_2 are the domains of f_1 and f_2 , then domain of $f_1 + f_2$ is $D_1 \cap D_2$ and the domain of f_1f_2 is also $D_1 \cap D_2$.
- 28. If $f(x) = \frac{ax+b}{cx-a}$ then (fof)(x) (or) f[f(x)] = x

29. F t	inction	Domain	Range
1.	sinx	R	[-1, 1]
2.	COSX	R	[-1, 1]
3.	tanx	$\mathbf{R} \cdot \left\{ (2n+1)\frac{\pi}{2} / n \in \mathbf{Z} \right\}$	R
4.	cosecx	$\mathbf{R} - \left\{ \mathbf{n}\pi / \mathbf{n} \in \mathbf{Z} \right\}$	R - (-1, 1)

	5.	secx	$R - \left\{ (2n+1)\frac{\pi}{2} / n \in Z \right\}$	R - (-1, 1)			
	6.	cotx	$R - \left\{ n\pi / n \in Z \right\}$	R			
	7.	sin ⁻¹ x	[-1, 1]	[-π/2, π/2]			
	8.	$\cos^{-1} x$	[-1, 1]	[0, π]			
	9.	tan ⁻¹ x	R	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$			
	10.	cosec ⁻¹ x	R-(-1, 1)	$\left[\frac{-\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$			
	11.	sec ⁻¹ x	R - (-1, 1)	$\left[0,\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\pi\right]$			
	12.	$\cot^{-1} x$	R	$(0,\pi)$			
	13.	logx	R ⁺	R			
	14.	[x]	R	Z			
	15.	e ^x	R	R^+			
	16.	$a^{x}(a > 0)$	R	(0,∞)			
	17.	sin hx	R	R			
	18.	coshx	R	[1,∞)			
	19.	tanhx	R	(-1, 1)			
	20	cothx	R-{0}	R – [-1,1]			
	21.	sechx	R	(0, 1]			
(22.	cosechx	R - {0}	R - {0}			
	23.	$\sinh^{-1} x$	R	R			
	24.	$\cosh^{-1} x$	[1,∞)	[0,∞)			
	25.	tanh ⁻¹ x	(-1, 1)	R			
	26.	coth ⁻¹ x	R – [-1,1]	$R - \{0\}$			
	27.	sech ⁻¹ x	(0,1]	[0,∞)			
	28.	cosech ⁻¹ x	$R - \{0\}$	R -{0}			
	www.sakshieducation.com						

- **29.** |x| R $[0, \infty)$
- **30.** \sqrt{x} [0, ∞) [0, ∞)

30. Let $x \in R$, f(x) = [x] where f(x) = n (an integer) such that $n \le x < n+1$. [x+k] = [x]+k where 'k' is an integer.

- **31.** If 0(A) = m, 0(B)=n, then the number of constant functions from A to B is n
- **32.** If f(x+y) = f(x) + f(y), then f(x) is an odd function.
- 33. If f: A → B and g: R → C are functions such that gof: A → C is one one, then 'f' is necessarily one –one
- **34.** If f: A \rightarrow B and g : B \rightarrow C are functions such that gof: A \rightarrow C is onto, then 'g' is necessarily onto.

35. If 0(A) = m, 0(B) = n and m < n, then the number of onto functions form A to B is zero

36. If f(x+y) = f(x), then f(x) is a constant function

37. If
$$f(x) + f\left(\frac{1}{x}\right) = f(x)$$
. $f\left(\frac{1}{x}\right)$, then $f(x) = 1 \pm x^n$.

38. If f(xy) = f(x). f(y) then $f(x) = x^n$

39. If f(x+y) = f(x). f(y) then $f(x) = a^x$.

40. If f(x+y) = f(x) + f(y) then f(n) = nf(1) where $n \in W$

41. If
$$f(xy) = f(x) + f(y)$$
 then $f(x) = k \log x$

42. If
$$f(x+y) f(x-y) = 2f(x)f(y)$$
 then $f(x) = \frac{a^x + a^{-x}}{2}$

43. If a function is strictly increasing or decreasing then it is an injection.

44. The graph of the function y = f(x) is symmetrical about the line x=a, then f(a+x) = f(a-x).

- **45.** If f(x,y) = 0, then the image of the curve with respect to the x-axis is f(-x,y)=0
- **46.** If f(x,y) = 0 then
- i) The image of the curve with respect to the X-axis is f(-x,y) = 0
- ii) The image of the curve with respect to the Y-axis is f(x,-y) = 0
- iii) The image of the curve with respect to the to Origin is f(-x,-y)=0

$$47. f(x) = \frac{1}{a\cos x + b\sin x + c}$$

Case I: If
$$0 \notin (c - \sqrt{a^2 + b^2}, c + \sqrt{a^2 + b^2})$$
 then Range of f(x) is $\left[\frac{1}{c + \sqrt{a^2 + b^2}}, \frac{1}{c - \sqrt{a^2 + b^2}}\right]$
Case II: If $0 \in (c - \sqrt{a^2 + b^2}, c + \sqrt{a^2 + b^2})$ then Range of f(x) is $\left(-\infty, \frac{1}{c + \sqrt{a^2 + b^2}}, \infty\right)$
Case III: If $c - \sqrt{a^2 + b^2} = 0$ then Range of f(x) is $\left[\frac{1}{c + \sqrt{a^2 + b^2}}, \infty\right)$
Case IV: If $c + \sqrt{a^2 + b^2} = 0$ then Range of f(x) is $\left(-\infty, \frac{1}{c - \sqrt{a^2 + b^2}}\right]$
* * *