FUNCTIONS

SYNOPSIS

1. A and B are any two sets. If to every element of A exactly one element of B is associated, the association is said to form a function (mapping) from A to B , and written as $f: \mathrm{A} \rightarrow \mathrm{B}$.
2. If $f: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{A}$ is called the domain of f and B is called the codomain of f.
3. The set of all images in $f: A \rightarrow B$ i.e. the set of all values of $f(x)$ is called the range of f and is denoted by $f(\mathrm{~A})$ and $f(\mathrm{~A}) \subseteq \mathrm{B}$.
4. A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is one-one or an injection if different elements of A have different images.
5. A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is onto, if $f(\mathrm{~A})=\mathrm{B}$. i.e. if corresponding each $\mathrm{b} \in \mathrm{B}$, we can find an element $\mathrm{a} \in \mathrm{A}$ such that $f(\mathrm{a})=\mathrm{b}$.
6. If a function is both one - one and onto, then the function is a bijection.
7. A function $f: \mathrm{A} \rightarrow \mathrm{B}$ is said to be invertible if f is one-one and onto.
8. Many-one mapping : If the mapping $f: A \rightarrow B$ is such that two distinct elements a_{1}, a_{2} of A have the same f image in B, then f is called a many one mapping or many one function.
9. Into mapping: If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is such that there is at least one element of B which is not the f-image of any element of A, then f is an into function from A to B.
10. Two functions f and g are said to be equal if
(i) They are defined on the same domain A
(ii) $f(x)=g(x)$ for every $x \in A$.
11. If $f: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}, \mathrm{h}: \mathrm{C} \rightarrow \mathrm{D}$, then ho(gof) $=(\mathrm{hog})$ of.
12. The function I: $\mathrm{A} \rightarrow \mathrm{A}$ is said to be the identity function on A , if $f(\mathrm{a})=\mathrm{a}$ for every $\mathrm{a} \in \mathrm{A}$, and is denoted by I_{A}.
13. If $f: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{A}$ are such that gof $=\mathrm{I}_{\mathrm{A}}$ and fog $=\mathrm{I}_{\mathrm{B}}$, then $\mathrm{g}=\mathrm{f}^{-1}$ and also $\mathrm{f}=\mathrm{g}^{-1}$.
14. If $f: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are both one-one, then gof is also one-one (gof) is the composite function of f and g.
15. i) If $f: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are both onto, then gof : $\mathrm{A} \rightarrow \mathrm{C}$ is also onto.
ii) $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ g: $\mathrm{B} \rightarrow \mathrm{C}$ are one-one functions then gof: $\mathrm{A} \rightarrow \mathrm{C}$ is also one-one.
iii) If $0(A)=m, 0(B)=n$ and $m>n$, then the number of one-one functions from A to B is zero
16. A function $f(\mathrm{x})$ is a increasing function if $\mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow f\left(\mathrm{x}_{1}\right)>f\left(\mathrm{x}_{2}\right)$
17. A function $f(\mathrm{x})$ is a decreasing function if $\mathrm{x}_{1}>\mathrm{x}_{2} \Rightarrow f\left(\mathrm{x}_{1}\right)<f\left(\mathrm{x}_{2}\right)$.
18. If $O(A)=m, O(B)=n$, then number of mappings from A to B is n^{m}.
19. If $\mathrm{O}(\mathrm{A})=\mathrm{m}, \mathrm{O}(\mathrm{B})=\mathrm{n}$ and $\mathrm{m} \leq \mathrm{n}$, then the number of one-one functions from A to B is ${ }^{n} p_{m}$.
20. If $\mathrm{O}(\mathrm{A})=\mathrm{m}, \mathrm{O}(\mathrm{B})=\mathrm{n}$ and $\mathrm{n} \leq \mathrm{m}$, then the number of onto functions from A to B is $n^{m}-{ }^{n} c_{1}(n-1)^{m}+{ }^{n} c_{2}(n-2)^{m}-{ }^{n} c_{3}(n-3)^{m}+.$. \qquad
21. If $O(A)=n, O(B)=n$, the number of bijections from A to B is ${ }^{n} p_{n}=n$!
22. If two sets A and B have exactly same number of elements then everyone-one function from A to B is also onto and every onto function from A to B is also one-one.
23. If $\mathrm{O}(\mathrm{A})=\mathrm{n}, \mathrm{O}(\mathrm{B})=2$, the number of surjections from A to B is $2^{\mathrm{n}}-2$.
24. (i) If $\mathrm{O}(\mathrm{A})=\mathrm{n}$, the number of binary operations defined on A is $\mathrm{n}^{\mathrm{n}^{2}}$.
(ii) If $0(\mathrm{~A})=\mathrm{n}$, the number of binary operations defined on A which are commutative is

$$
n^{\frac{n(n+1)}{2}}
$$

25. If $f: \mathrm{R} \rightarrow \mathrm{R}$ is such that $f(\mathrm{x})=|\mathrm{x}|$ or x^{2}, then f is neither one-one nor onto.
26. If $f: R \rightarrow R$ is such that $f(x)=x|x|$, then f is a bijection.
27. If D_{1} and D_{2} are the domains of f_{1} and f_{2}, then domain of $f_{1}+f_{2}$ is $\mathrm{D}_{1} \cap \mathrm{D}_{2}$ and the domain of $f_{1} f_{2}$ is also $D_{1} \cap D_{2}$.
28. If $f(x)=\frac{a x+b}{c x-a}$ then (fof)(x) (or) $f[f(x)]=x$

29. Function

Domain

Range

1. $\sin x \quad R$
2. $\cos x$

R
3. $\tan x$

$$
\begin{equation*}
R-\left\{(2 n+1) \frac{\pi}{2} / n \in Z\right\} \tag{-1,1}
\end{equation*}
$$

4. $\operatorname{cosec} x$

$$
\begin{equation*}
R-\{n \pi / n \in Z\} \tag{-1,1}
\end{equation*}
$$

5. $\sec x$	$\mathrm{R}-\left\{(2 \mathrm{n}+1) \frac{\pi}{2} / \mathrm{n} \in \mathrm{Z}\right\}$	R - $(-1,1)$
6. cotx	$R-\{n \pi / n \in Z\}$	R
7. $\sin ^{-1} \mathrm{x}$	$[-1,1]$	$[-\pi / 2, \pi / 2]$
8. $\cos ^{-1} \mathrm{x}$	[-1, 1]	$[0, \pi]$
9. $\tan ^{-1} \mathrm{x}$	R	$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
10. $\operatorname{cosec}^{-1} x$	R-(-1, 1)	$\left[\frac{-\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$
11. $\sec ^{-1} \mathrm{x}$	R - $(-1,1)$	$\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$
12. $\cot ^{-1} \mathrm{x}$	R	$(0, \pi)$
13. $\log x$	R^{+}	R
14. [x]	R	Z
15. e^{x}	R	R^{+}
16. $\mathrm{a}^{\mathrm{x}}(\mathrm{a}>0)$	R	$(0, \infty)$
17. $\sin h x$		R
18. $\cosh x$		$[1, \infty)$
19. tanhx	R	$(-1,1)$
20 cothx	R- 00$\}$	$\mathrm{R}-[-1,1]$
21. sech x	R	(0, 1]
22. cosech x	R - $\{0\}$	R - $\{0\}$
23. $\sinh ^{-1} x$	R	R
24. $\cosh ^{-1} x$	$[1, \infty)$	$[0, \infty)$
25. $\tanh ^{-1} x$	$(-1,1)$	R
26. $\operatorname{coth}^{-1} x$	$\mathrm{R}-[-1,1]$	$\mathrm{R}-\{0\}$
27. $\operatorname{sech}^{-1} \mathrm{x}$	$(0,1]$	$[0, \infty)$
28. $\operatorname{cosech}^{-1} \mathrm{x}$	R - $\{0\}$	R - $\{0\}$
www.sakshieducation.com		

29. $|x|$
R
$[0, \propto)$
30. \sqrt{x}
$[0, \propto)$
$[0, \propto)$
31. Let $\mathrm{x} \in \mathrm{R}, \mathrm{f}(\mathrm{x})=[\mathrm{x}]$ where $\mathrm{f}(\mathrm{x})=\mathrm{n}$ (an integer) such that $\mathrm{n} \leq \mathrm{x}<\mathrm{n}+1 .[\mathrm{x}+\mathrm{k}]=[\mathrm{x}]+\mathrm{k}$ where ' k ' is an integer.
32. If $0(A)=m, O(B)=n$, then the number of constant functions from A to B is n
33. If $f(x+y)=f(x)+f(y)$, then $f(x)$ is an odd function.
34. If $f: A \rightarrow B$ and $g: R \rightarrow C$ are functions such that gof: $A \rightarrow C$ is one - one, then ' f ' is necessarily one-one
35. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that gof: $A \rightarrow C$ is onto, then ' g ' is necessarily onto.
36. If $0(A)=m, 0(B)=n$ and $m<n$, then the number of onto functions form A to B is zero
37. If $f(x+y)=f(x)$, then $f(x)$ is a constant function
38. If $f(x)+f\left(\frac{1}{x}\right)=f(x) . f\left(\frac{1}{x}\right)$, then $f(x)=1 \pm x^{n}$.
39. If $f(x y)=f(x)$. $f(y)$ then $f(x)=x^{n}$
40. If $f(x+y)=f(x)$. $f(y)$ then $f(x)=a^{x}$.
41. If $f(x+y)=f(x)+f(y)$ then $f(n)=n f(1)$ where $n \in W$
42. If $f(x y)=f(x)+f(y)$ then $f(x)=k \log x$
43. If $f(x+y) f(x-y)=2 f(x) f(y)$ then $f(x)=\frac{a^{x}+a^{-x}}{2}$
44. If a function is strictly increasing or decreasing then it is an injection.
45. The graph of the function $y=f(x)$ is symmetrical about the line $x=a$, then $f(a+x)=f(a-x)$.
46. If $f(x, y)=0$, then the image of the curve with respect to the x-axis is $f(-x, y)=0$
47. If $f(x, y)=0$ then
i) The image of the curve with respect to the X-axis is $f(-x, y)=0$
ii) The image of the curve with respect to the Y-axis is $f(x,-y)=0$
iii) The image of the curve with respect to the to Origin is $f(-x,-y)=0$
48. $f(x)=\frac{1}{a \cos x+b \sin x+c}$

Case I: If $0 \notin\left(c-\sqrt{a^{2}+b^{2}}, c+\sqrt{a^{2}+b^{2}}\right)$ then Range of $f(x)$ is $\left[\frac{1}{c+\sqrt{a^{2}+b^{2}}}, \frac{1}{c-\sqrt{a^{2}+b^{2}}}\right]$
Case II: If $0 \in\left(c-\sqrt{a^{2}+b^{2}}, c+\sqrt{a^{2}+b^{2}}\right)$ then Range of $f(x)$ is

$$
\left(-\infty, \frac{1}{c-\sqrt{a^{2}+b^{2}}}\right] \cup\left[\frac{1}{c+\sqrt{a^{2}+b^{2}}}, \alpha\right)
$$

Case III: If $c-\sqrt{a^{2}+b^{2}}=0$ then Range of $f(x)$ is $\left[\frac{1}{c+\sqrt{a^{s}+b^{2}}}, \infty\right)$
Case IV: If $c+\sqrt{a^{2}+b^{2}}=0$ then Range of $f(x)$ is $\left(-\infty, \frac{1}{c-\sqrt{a^{2}+b^{2}}}\right]$

