ELLIPSE

SYNOPSIS

- 1. S is a fixed point (focus) and '*l*' is a fixed line (directrix). If P is a variable point such that $\frac{SP}{PM} = e$, where e < 1 and PM is perpendicular to '*l*', the locus of P is an ellipse.
- 2.

Four Standard forms of an ellipse

. N	o. Content	I	п	III	IV
	Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = l(a > b)$ where $b^2 = a^2(l - e^2)$	$\label{eq:states} \begin{split} &\frac{x^2}{a^2} + \frac{y^2}{b^2} = l(a < b) \\ & \text{where } a^2 = b^2(l - e^2) \end{split}$	$\frac{(\mathbf{x} \cdot \boldsymbol{\alpha})^2}{\mathbf{a}^2} + \frac{(\mathbf{x} \cdot \boldsymbol{\beta})^2}{\mathbf{b}^2} = \mathbf{l}(\mathbf{a} > \mathbf{b})$ where $\mathbf{b}^2 = \mathbf{a}^2(\mathbf{l} - \mathbf{e}^2)$	$\label{eq:alpha} \begin{split} \frac{(\mathbf{x}\cdot\boldsymbol{\alpha})^2}{\mathbf{a}^2} + \frac{(\mathbf{x}\cdot\boldsymbol{\beta})^2}{\mathbf{b}^2} &= 1(\mathbf{a}<\mathbf{b})\\ \text{where } \mathbf{a}^2 &= \mathbf{b}^2\left(1-\mathbf{e}^2\right) \end{split}$
	Figure	x ¹	X ¹ X ¹ X ¹ X ¹ X ¹ X ¹ X ¹ X ¹	x' y'	x ¹ y ¹
1.	Centre (C)	(0, 0)	(0, 0)	(α., β)	(α,β)
2.	Vertices	$A, A^1 = (\pm a, 0)$	$B, B^1 = (0, \pm b)$	(α, ±a, β)	(α,β±b)
3.	Foci (S, S1)	(±ae, 0)	(0, ±be)	(α.±ae, β)	(α,β±be)
4.	Ζ,Ζ'	(±a/e,0)	(0,±b/e)	(α.±a / e, β)	(α,β±b/e)
5.	End points of latar arecta	(±ae, ±b²/a)	$(\pm a^2 / b, \pm be)$	(α.±ae, β±b² / a)	(α.±a² / b, β±be)
б.	Eqn. of major axis	y = 0	x = 0	y = β	x= a .
7.	Eqn. of minor axis	x= 0	y = 0	x= a .	y = β
8.	Eqn's of latusrectum	x = ±ae	y = ±be	x = a. ±ae	y = β±be
9.	Eqn's of directrices	x=±a/e	y = ±b/e	x= a.±ae	y = β±be
0.	Length of major axis	2 a	2b	2a	2b
1.	Length of minor axis	2b	2a	2b	2a
2.	Length of latus rectu	n 2b²/a	2a²/b	2b²/a	2a²/b
3.	Eccentricity (e)	$\sqrt{\frac{a^2-b^2}{a^2}}$	$\sqrt{\frac{b^2-a^2}{b^2}}$	$\sqrt{\frac{a^2 - b^2}{a^2}}$	$\sqrt{\frac{b^2-a^2}{b^2}}$
4.	Sum of focal distanc (focal radii) of a poin p on the ellipse	t $SP + S^{i}P = 2a$	$SP + S^{1}P = 2b$	$SP + S^{i}P = 2a$	$SP + S^{1}P = 2$
5.	Distance between the foci	SS ¹ = 2ae	SS ¹ = 2be	$SS^1 = 2ae$	SS ¹ = 2be
б.	Distance between vertices	$AA^1 = 2a$	BB ¹ = 2b	$AA^1 = 2a$	BB ¹ = 2b
7.	Distance between	$Z Z^1 = 2a/e$	$ZZ^{1} = 2b/e$	$ZZ^1 = 2a/e$	$ZZ^{1} = 2b/e$

3. Notation:

i)
$$\mathbf{S} = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$$
 ii) $\mathbf{S}_1 = \frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1$ iii) $\mathbf{S}_{11} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1$ iv) $\mathbf{S}_{12} = \frac{x_1x_2}{a^2} + \frac{y_1y_2}{b^2} - 1$

4. Let P(x₁, y₁) be a point S =
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$
 be an ellipse. Then

- i) P lies on the ellipse if $S_{11} = 0$
- ii) P lies inside the ellipse if $S_{11} < 0$
- iii) P lies outside the ellipse if $S_{11} > 0$
- 5. Two tangents can be drawn to an ellipse from an external point.
- 6. The equation of tangent at $P(x_1, y_1)$ to the ellipse S = 0 is $S_1 = 0$.
 - 7. The equation of the auxilary circle is $x^2 + y^2 = a^2$ for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b.
 - 8. The locus of the point of intersection of perpendicular tangents to an ellipse is the Director circle of the ellipse and its equation is $x^2 + y^2 = a^2 + b^2$.
 - 9. The equation of the tangent at (x_1, y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} - 1 = 0 \quad (S_1 = 0)$$

- 10. The line y = mx + c is a tangent to the ellipse if $c^2 = a^2m^2 + b^2$
- 11. The line lx + my + n = 0 is a tangent to the ellipse if $a^2l^2 + b^2m^2 = n^2$
- 12. If m is the slope of any tangent to the ellipse, then its equation is $y=mx\pm\sqrt{a^2m^2+b^2}$
- 13. If tangents are drawn from (x_1, y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then their slopes are obtained from $m^2(x_1^2 - a^2) - 2mx_1y_1 + (y_1^2 - b^2) = 0$

14. If '\alpha' is the angle between the tangents drawn from (x₁, y₁) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $\tan^2 \alpha = \frac{4s_{11}}{\left(x_1^2 + y_1^2 - a^2 - b^2\right)^2}$

15. The tangent at any point p on the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 meets the tangents at A, A' in L and M respectively. Then AL.A'M = b²

- 16. The minimum area of the triangle formed by any tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the coordinate axes is ab
- 17. The equation of the normal at (x_1, y_1) is $\frac{a^2x}{x_1} \frac{b^2y}{y_1} = a^2 b^2$
- 18. Equation of normal drawn at (ae, b^2/a) is x ey = ae³.
- 19. The line lx + my + n = 0 is a normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, if $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 b^2)^2}{n^2}$.
- 20. The normal at one end of latusrectum of the ellipse passes through one end of minor axis. Then $e^4 + e^2 = 1$
- 21. The maximum distance of any normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from the centre is a-b
- 22. The tangents at the ends of the focal chord meet on the directrix.
- 23. The foot of the perpendicular from any focus to any tangent to the ellipse lies on the auxilary circle of the ellipse.
- 24. The product of the perpendiculars from the foci on any tangent to the ellipse is the square of the semi minor axis.
- 25. From any point, four normals can be drawn to an ellipse.
- 26. The equation of the chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ joining the points (a cos θ , b sin θ), (acos ϕ , bsin ϕ) is $\left(\frac{x}{a}\cos\frac{\theta+\phi}{2} + \frac{y}{b}\sin\frac{\theta+\phi}{2}\right) = \cos\frac{\theta-\phi}{2}$
- 27. If θ and ϕ are the ends of a focal chord, then $e \cos\left(\frac{\theta + \phi}{2}\right) = \cos\left(\frac{\theta \phi}{2}\right)$.
- 28. If the chord joining the variable points θ and ϕ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ subtends a right

angle at the point (a, 0), then
$$\tan\frac{\theta}{2} \cdot \tan\frac{\phi}{2} = \frac{-b^2}{a^2}$$

- 29. The equation of the tangent at ($a \cos\theta$, $b\sin\theta$) to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$
- 30. The equation of the normal at $(a \cos\theta, b \sin\theta)$ is $\frac{ax}{\cos\theta} \frac{by}{\sin\theta} = a^2 b^2$

31. The equation of the chord of contact of tangents from (x_1, y_1) to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $S_1 = 0$

32. The equation of the polar of
$$(x_1, y_1)$$
 w.r.t. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $S_1 = 0$

- 33. The pole of the line lx + my + n = 0 w.r.t. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\left(\frac{-a^2l}{n}, \frac{-b^2m}{n}\right)$
- 34. Two lines $l_1x + m_1y + n_1 = 0$, $l_2x + m_2y + n_2 = 0$ are conjugate lines w.r.t. the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $a^2 l_1 l_2 + b^2 m_1 m_2 = n_1 n_2$.
- 35. The midpoint of the chord of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ on the line lx + my + n = 0 is

$$\frac{-a^{2} \ln}{a^{2} l^{2} + b^{2} m^{2}}, \frac{-b^{2} mn}{a^{2} l^{2} + b^{2} m^{2}}$$

- 36. Length of the chord intercepted by y = mx + c on the ellipse is $\frac{2ab\sqrt{b^2 + a^2m^2 c^2}}{b^2 + a^2m^2}\sqrt{1 + m^2}$
- 37. The centre of the ellipse or hyperbola is obtained by solving the equations ax+hy+g=0, hx+by+f=0.
- 38. From any point, 4 normals can be drawn to an ellipse and the sum of eccentric angles of the feet of the normals is an odd multiple of π .
- 39. A circle cuts an ellipse in 4 points real or imaginary and the sum of the eccentric angles of the points of intersection is an even multiple of π .
- 40. If the normals at (x_1, y_1) (x_2, y_2) (x_3, y_3) (x_4, y_4) to an ellipse are concurrent, then $(x_1+x_2+x_3+x_4)\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}\right) = 4.$
- 41. Area of the ellipse with axes 2a, 2b is πab .

42. The maximum area of a rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with sides parallel to the axes is 2ab.

43. The foci of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are S and S', P(θ) is a point on the ellipse then the in centre of Δ SPS'= $\left(\operatorname{aecos} \theta, \frac{\operatorname{besin} \theta}{1 + e} \right)$

- 44. If P is a variable point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci S and S', then maximum area of Δ SPS' = abe
- 45. A, A' are the vertices and S, S' are the foci of an ellipse. The normal at any point P on the ellipse is the angular bisector of \angle S'PS
- 46. P is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and Q is the corresponding point on the auxiliary circle. If the normals at P and Q meet in R, then the equation of locus of R is $x^2 + y^2 = (a + b)^2$
- 47. The tangents at the ends of the focal chord meet on the directrix.
- 48. The maximum area of a rectangle that can be inscribed in the ellipse S = 0 is 2ab sq. units and the sides are $a\sqrt{2}$, $b\sqrt{2}$.
- 49. Area of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab sq. units.