CONTINUITY

SYNOPSIS

1. A function f is defined on deleted neighbourhood of a and also
(i) $\underset{x \rightarrow a^{-}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})$ then $\mathrm{f}(\mathrm{x})$ is left continuous at $\mathrm{x}=\mathrm{a}$.
(ii) $\underset{x \rightarrow a^{+}}{L t} \mathrm{f}(\mathrm{a})$ then $\mathrm{f}(\mathrm{x})$ is right continuous at $\mathrm{x}=\mathrm{a}$.
(iii) $\underset{x \rightarrow a^{-}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=\underset{x \rightarrow a^{+}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}) \Rightarrow \underset{x \rightarrow a}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a})$ then $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$.
2. If f is not continuous at $\mathrm{x}=\mathrm{a}$ then $\mathrm{f}(\mathrm{x})$ is called discontinuous at $\mathrm{x}=\mathrm{a}$.
3. The function $f(x)$ is discontinuous at $x=a$ if a is not in the domain of the function.
4. If $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=\mathrm{a}$ if $\underset{x \rightarrow a^{-}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{a})$ (or) $\underset{x \rightarrow a^{+}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(\mathrm{a})$ (or) $\underset{x \rightarrow a^{-}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x}) \neq \underset{x \rightarrow a^{+}}{\operatorname{Lt}} \mathrm{f}(\mathrm{x})$.
5. If f is continuous at every point in a set A then f is called continuous on A .
6. The function f is continuous on (a, b) if f is continuous at every point in (a, b).
7. The function f is said to be continuous on $[a, b]$ if
(i) f is continuous at each point of (a, b)
(ii) f is right continuous at $\mathrm{x}=\mathrm{a}$
(iii) f is left continuous at $\mathrm{x}=\mathrm{b}$.
8. $\quad L t \mathrm{f}(\mathrm{x})$ exists and is not equal to $\mathrm{f}(\mathrm{a})$, then the discontinuity is called the removable discontinuity at a.
9. $L L_{x \rightarrow a}^{L t} \mathrm{f}(\mathrm{x})$ does not exists then f has irremovable discontinuity at a.
10. f and g are continuous at a then $f+g, f-g, f g f / g$ are also continuous at a.
11. If ' f ' is continuous at $\mathrm{x}=\mathrm{a}$ and g is continuous at $\mathrm{x}=\mathrm{f}(\mathrm{a})$ then g of is continuous at $\mathrm{x}=\mathrm{a}$.
12. Every polynomial function is continuous on R.
13. Every identify function is continuous on R.
14. $\log \mathrm{x}$ is continuous on R^{+}. Constant function is continuous on $\mathrm{R} \sin \mathrm{x}, \cos \mathrm{x}, \mathrm{e}^{\mathrm{x}},|\mathrm{x}|$ are continuous on R.
15. $\log |\mathrm{x}|$ is continuous on $\mathrm{R}-\{0\} \tan \mathrm{x}$, sec x are continuous on $\mathrm{R}-\left\{(2 n+1) \frac{\pi}{2} ; n \in z\right\}$.
16. $\cot x, \operatorname{cosec} x$ are continuous on $R-\{n \pi ; n \in z\}$
17. $[x], x-[x]$ are continuous on $R-Z$.
18. $f(x)$ is continuous at $x=a$ then $|f(x)|$ is also continuous at $x=a$ the converse is not true.
19. Every differentiable function $f(x)$ at $x=a$ is continuous at $x=$ a converse need not be true.
