AREAS

SYNOPSIS

1. The area of the region bounded by the curve $y=f(x), X$-axis and the lines $x=a, x=b$ is $\int_{a}^{b} f(x) d x \mid$. (If curve does not cut x -axis between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$).
2. The area of the region bounded by the curve $x=f(y), Y$-axis and the line $y=c, y=d$ is $\int_{c}^{d} f(y) d y \mid$. (If curve does not cut y -axis between $\mathrm{y}=\mathrm{c}$ and $\mathrm{y}=\mathrm{d}$).
3. If $\mathrm{f}(\mathrm{x})>0, \forall \mathrm{x} \in[\mathrm{a}, \mathrm{c}]$ and $\mathrm{f}(\mathrm{x})<0, \forall \mathrm{x} \in[\mathrm{c}, \mathrm{b}]$, then the area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$, X-axis, the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is $\int_{a}^{c} f(x) d x-\int_{c}^{b} f(x) d x$.
4. Let $y=f(x)$ and $y=g(x)$ are two curves. Then the area between the two curves and the lines $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.
5. Let $y=f(x), y=g(x)$ are two curves intersect at $x=c(a<c<b)$ then the area bounded between the given curves and $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is $\left|\int_{a}^{c}(f(x)-g(x)) d x\right|+\left|\int_{c}^{b}(f(x)-g(x)) d x\right|$.
6. The area of the region bounded by $y^{2}=4 a x$ and $x^{2}=4 b y$ is $\frac{16 a b}{3}$ sq. units.
7. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is π ab sq. units.
8. The area of the circle $x^{2}+y^{2}=a^{2}$ is πa^{2} sq. units.
9. The area of the region bounded by one arch of \sin ax or \cos ax and X-axis is $\frac{2}{a}$ sq. units.
10. The area of the region bounded by the curve $\mathrm{y}=\sin \mathrm{ax}$ or \cos ax and X -axis in $[0, \mathrm{n} \pi]$ is $\frac{2 n}{a}$ sq. units.
11. The area of the region bounded by $y^{2}=4 a x$ and $y=m x$ is $\frac{8 a^{2}}{3 m^{3}}$ sq. units.
12. The area of the region bounded by $x^{2}=4 a y$ and $y=m x$ is $\frac{8}{3} a^{2} m^{3}$ sq. units.
