AREAS

SYNOPSIS

- 1. The area of the region bounded by the curve y = f(x), X-axis and the lines x = a, x = bis $\left| \int_{a}^{b} f(x) dx \right|$. (If curve does not cut x-axis between x = a and x = b).
- 2. The area of the region bounded by the curve x = f(y), Y-axis and the line y = c, y = dis $\left| \int_{c}^{d} f(y) dy \right|$. (If curve does not cut y-axis between y = c and y = d).
- 3. If f(x) > 0, $\forall x \in [a, c]$ and f(x) < 0, $\forall x \in [c, b]$, then the area bounded by the curve y = f(x), X-axis, the lines x = a, x = b is $\int_a^c f(x)dx \int_c^b f(x)dx$.
- 4. Let y = f(x) and y = g(x) are two curves. Then the area between the two curves and the lines x = a, x = b is $\left| \int_{a}^{b} (f(x) g(x)) dx \right|$.
- 5. Let y = f(x), y = g(x) are two curves intersect at x = c (a < c < b) then the area bounded between the given curves and x = a and x = b is $\left| \int_{a}^{c} (f(x) - g(x)) dx \right| + \left| \int_{c}^{b} (f(x) - g(x)) dx \right|$.
- 6. The area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16ab}{3}$ sq. units.
- 7. The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is π ab sq. units.
- 8. The area of the circle $x^2 + y^2 = a^2$ is πa^2 sq. units.

9. The area of the region bounded by one arch of sin ax or cos ax and X-axis is $\frac{2}{a}$ sq. units.

10. The area of the region bounded by the curve $y = \sin ax$ or $\cos ax$ and X-axis in $[0, n\pi]$ is $\frac{2n}{a}$ sq. units.

www.sakshieducation.com

www.sakshieducation.com

- 11. The area of the region bounded by $y^2 = 4ax$ and y = mx is $\frac{8a^2}{3m^3}$ sq. units.
- 12. The area of the region bounded by $x^2 = 4ay$ and y = mx is $\frac{8}{3}a^2m^3$ sq. units.

www.sakshieducation.com