APPLICATIONS OF DERIVATIVES

SYNOPSIS

ERRORS AND APPROXIMATIONS

1. If $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and δ_{x} is a small change in x then the corresponding change in y (approximately) is given by f^{1} (x) δ_{x}. This is called the differential of y is denoted by dy
$\therefore \mathrm{dy}=\mathrm{f}^{1}(\mathrm{x}) \delta_{\mathrm{x}}$
2. The actual change or the actual error in y is denoted by $\delta_{\mathrm{y}}=\mathrm{f}\left(\mathrm{x}+\delta_{\mathrm{x}}\right)-\mathrm{f}(\mathrm{x})$
3. $\delta_{\mathrm{y}} \cong \mathrm{dy}=\mathrm{f}^{1}(\mathrm{x}) \delta_{\mathrm{x}}$
4. If δ_{x} be the error in x then the approximate value of $\mathrm{f}(\mathrm{x})$ is $\mathrm{f}\left(\mathrm{x}+\delta_{\mathrm{x}}\right) \cong \mathrm{f}(\mathrm{x})+\mathrm{f}^{1}(\mathrm{x}) . \delta_{\mathrm{x}}$
5. Let δ_{x} be any change in x and δ_{y} be the corresponding change in y. Then
(i) δ_{y} is called error in y
(ii) $\frac{\delta y}{y}$ is called relative error in y
(iii) $\frac{\delta y}{y} \times 100$ is called percentage error in y
6. If f $(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ then $\delta_{\mathrm{f}-\mathrm{df}}=\mathrm{a}\left(\delta_{\mathrm{x}}\right)^{2}$
7. If $y=f(x)$ is a homogeneous function of degree n or $y \quad \alpha x^{2}$ then
(i) Relative error in $\mathrm{y}=\mathrm{n}$ [Relative error in x]
(ii) $\%$ error in $\mathrm{y}=[\%$ error in x$]$

www.sakshieducation.com

RATE OF CHANGE

1. If x is any variable, $\frac{d x}{d t}$ represents the rate of change of x at time ' t '.
2. If s is the displacement of a particle at time ' t ', then $\frac{d s}{d t}$ represents the velocity of the particle at that instant.
3. If v is the velocity of a particle at time ' t ', then $\frac{d v}{d t}$ represents the acceleration of the particle at that instant.
4. A particle moving on a straight line comes to rest if $\frac{d s}{d t}=0 \& \frac{d^{2} s}{\mathrm{dt}^{2}}=0$
5. A particle moving on a straight line is at rest momentarily if $\frac{\mathrm{ds}}{\mathrm{dt}}=0 \& \frac{\mathrm{~d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}} \neq 0$
6. A particle, projected vertically upwards, attains the maximum height when $\frac{\mathrm{ds}}{\mathrm{dt}}=0$
7. A particle acquires maximum velocity if $\frac{d v}{d t}=0$
8. A particle changes it's direction if $\frac{\mathrm{ds}}{\mathrm{dt}}=0$ and $\frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}} \neq 0$
9. If v is velocity of a particle moving along a straight line and v is expressed in terms of displacement ' s ', then the acceleration of the particle $=v \frac{d v}{d s}$
10. If $p(x, y)$ is a variable point on a curve of $y=f(x)$, then its velocity at time ' t ' is

$$
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

www.sakshieducation.com

11. The equations of motion of a particle $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on a plane curve are given by $x=f(t), \quad y=g(t)$. Then the velocity of the particle is given by $\frac{\mathrm{ds}}{\mathrm{dt}}=\sqrt{\left[\mathrm{f}^{1}(\mathrm{t})\right]^{2}+\left[\mathrm{g}^{1}(\mathrm{t})\right]^{2}}$
12. If θ is a variable angle associated with a variable point P, then $\frac{d \theta}{d t}$ represents the angular velocity of P at time t .
13. The rate of change in velocity is called the acceleration of the particle at t and is denoted by a
$\therefore \mathrm{a}=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}}=\frac{d v}{d s} \frac{d s}{d t}=v . \frac{d v}{d s}$.
14. Let O be a fixed point and $O X$ be a fixed ray Let P be the position of the particle on a curve C at time t such that $\mathrm{XOP}=\theta$. Then $\frac{d \theta}{d t}$ is called the angular velocity and is denoted by $\omega, \frac{d^{2} \theta}{d t^{2}}$ is called the angular acceleration of the particle about ' O ' and is denoted by ' α '.

INCREASING AND DECREASING FUNCTIONS

1.A function $f(x)$ is an increasing function of x if, as x increases, $f(x)$ increases. i.e. $f(x)$ is an increasing function of x if, $x_{1}>x_{2} \Leftrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$.
2. A function $f(x)$ is a decreasing function of x, if, as x increases, $f(x)$ decreases i.e. if $x_{1}>x_{2} \Leftrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$.
3. A function $f(x)$ is an increasing function of x if $f^{1}(x)>0$.
4. A function $f(x)$ is a decreasing function of x if $f^{1}(x)<0$.
5. a^{x} is increasing function of x if $\mathrm{a}>1$ and decreasing if $0<\hat{\mathrm{a}}<1$).
6. $\log _{a} x$ is an increasing function of x if $a>1$ and decreasing function if $0<a<1$)
7. If both f and g are either increasing or decreasing, then fog and g of are increasing.
8.If any one of f and g are increasing and an other one is decreasing, then g of and fog are decreasing.

MAXIMA AND MINIMA

1. Let f be a real function which is differentiable at ' a '. If $f^{1}(a)=0$ then we say that $f(x)$ is stationary at $x=a,(a, f(a))$ is called stationary point $f(a)$ is called stationary value.
2. If there exists $\delta>0$ such that $\mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{a})$ for every $\mathrm{a}-\delta<\mathrm{x}<\mathrm{a}+\delta$ then f is said to have relative maximum at ' a '. $f(a)$ is called relative (local) maximum value.

If there exists $\delta>0$ such that $f(x) \geq f(a)$ for every $a-\delta<x<a+\delta$ then f is said to have relative minimum at ' a '. $f(a)$ is called relative (local) minimum value.
3. The points at which a function attains either maximum or minimum are called extreme points or turning points of the function. Maximum or minimum values of a function are called extreme values or turning values of the function.
4. Necessary condition for extreme value of function:

If a function $f(x)$ has extreme value $f(a)$ then $f^{1}(a)=0$, if it exists.
5. Sufficient conditions for extreme values:

Let $\mathrm{f}(\mathrm{x})$ be derivable at $\mathrm{x}=\mathrm{a}$
a) $x=$ a is point of relative maximum of $f(x)$ if f^{1} (a) changes sign from $+v e$ to -ve as x passes through the point $\mathrm{x}=\mathrm{a}$ from left nbd to right nbd.
b) $x=a$ is a point of relative minimum of $f(x)$ if $f^{1}(a)$ changes sign from $-v e$ to $+v e$ as x passes through the point $x=a$ from left nbd to right nbd.

Note: If $f^{1}(a)$ has the same sign in the entire neighbourhood of $x=a$ then $x=a$ is not extremum.
6. Sufficient conditions for extreme values.

Let $f(x)$ be derivable at $x=a$ and $f^{11}(a)$ exists and is non-zero.
a) $f^{1}(a)=0$ and $f^{11}(a)<0 \Rightarrow x=a$ is a point of relative maximum.
b) $f^{1}(a)=0$ and $f^{11}(a)>0 \Rightarrow x=a$ is a point of relative minimum.
7. If $f(x)$ is increasing in $[a, b]$ then $f(a)=$ Minimum value and $f(b)=$ Maximum value of $f(x)$ in $[a, b]$.
If $f(x)$ is decreasing in $[a, b]$ then $f(a)=$ Maximum value and $f(b)=$ Minimum value of $f(x)$ in $[a, b]$.
8. 1. The maximum value of $a \cos ^{2} x+b \sin ^{2} x$ is ' a ' and minimum value $=b$ (If $a>b$)
2. The minimum value of $f(x)=a \tan x+b \cot x$ is $2 \sqrt{a b}$ and attains at $\tan \mathrm{x}=\sqrt{\mathrm{b} / \mathrm{a}}$.
3. The minimum value of $f(x)=a^{2} \sec ^{2} x+b^{2} \operatorname{cosec}^{2} x$ is $(a+b)^{2}$ and attained at $\tan \mathrm{x}=\sqrt{\mathrm{b} / \mathrm{a}}$
4. The minimum value of $f(x)=a \sec x+b \operatorname{cosec} x$ is $\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$ and it is attained at $\tan x=(a / b)^{1 / 3}$.
5. The maximum value of $\mathrm{f}(\mathrm{x})=\sin ^{\mathrm{m}} \mathrm{X} \cdot \cos ^{\mathrm{n}} \mathrm{x}$ is $\frac{m^{m / 2} \cdot n^{n / 2}}{(m+n)^{\frac{m+n}{2}}}=\sqrt{\frac{m^{m} \cdot n^{n}}{(m+n)^{m+n}}}$ and attained at $\tan \mathrm{x}=\sqrt{\frac{m}{n}}$
9. 1. The sum of two numbers is k . If the sum of their squares is minimum. Then the numbers are $\mathrm{K} / 2, \mathrm{~K} / 2$.
2. The sum of two numbers is k and the least sum of their squares is $\mathrm{K}^{2} / 2$.
3. The sum of two numbers is K. If their product is maximum, then the numbers are $\mathrm{k} / 2, \mathrm{k} / 2$.
4. The product of two positive numbers is K . If the sum of their squares is minimum, then the numbers ae \sqrt{K}, \sqrt{K}.
5. Sum of two numbers is k. If the product of the square of the first and cube of the second is maximum then the numbers $2 \mathrm{k} / 5,3 \mathrm{k} / 5$.
10. 1. If $\mathrm{a}>0, \mathrm{~b}>0, \mathrm{x}>0$, the least value of $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\frac{b}{x}$ is $2 \sqrt{a b}$.
2. If $x>0$, the least value of $f(x)=x+\frac{1}{x}$ is 2 .
11. 1. The maximum rectangle inscribed in a circle is square.
2. The maximum area of rectangle in a cube of radius r is $2 r^{2}$.
12. 1. The maximum triangle inscribed in a circle is equilateral triangle.
2. The maximum area of a triangle in a circle of radius r is $\frac{3 \sqrt{3}}{4} r^{2}$ sq. units.
13. 1. The perimeter of a sector is ' C ' cms . Then maximum area of sector is $\frac{C^{2}}{16}$ sq. cm.
2. Perimeter of sector is given. The area of sector is maximum. Then the angle of sector is 2 radians.
3. The area of sector is ' a ' sq. cm . Then the least perimeter of sector is $4 \sqrt{a} \mathrm{~cm}$.
14. 1. The hypotenuse of a right angled triangle is ' a '. If the area of triangle is maximum. Then the sides are $\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}$.
2. Two sides of a triangle are given. The area of the triangle is maximum. Then the angle between sides is $\pi / 2$.
3. The sum of hypotenuse and one side of right angled triangle is given. The area is maximum. Then the angle between the sides is $\pi / 3$.
15. 1. An open box of maximum volume is made from a square piece of tin of side ' a ' by cutting for four equal square pieces from four corners and folding up the tin then the length of square cut is $\frac{a^{\prime}}{6}$.

www.sakshieducation.com

2. An open box of maximum volume is made from a rectangular piece of tin of length ' a ' and breath ' b ' by cutting four equal square pieces from four corners and folding up the tin. Then the length of box is $1 / 6\left\{(a+b)-\sqrt{a^{2}+b^{2}-a b}\right\}$.
3. 4. The area of the greatest rectangle inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is 2 ab and the sides are $\mathrm{a} \sqrt{2}, \mathrm{~b} \sqrt{2}$.
1. Maximum area of Δ formed by a line through ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and coordinate axes is $2\left|\mathrm{x}_{1}, \mathrm{y}_{1}\right|$.

www.sakshieducation.com

MEANVALUE THEOREMS

Rolle'sTheorem: If a function $f:[a, b] R$ is such that
i) It is continuous on $[a, b]$
ii) It is derivable on (a, b) and
iii) $f(a)=f(b)$ then there exists at least one $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Lagrange's mean -value theorem or first mean - value theorem:

If a function $f:[a, b] R$ is such that
i) It is continuous on $[a, b]$.
ii) It is derivable on (a, b) then there exists at least one $c \in(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$

