
APPLICATIONS OF DERIVATIVES 

SYNOPSIS 

  ERRORS AND APPROXIMATIONS 

 

1. If y = f (x) and x is a small change in x then the corresponding change in y 

(approximately) is given by f1 (x) x. This is called the differential of y is denoted 

by dy 

 dy = f1 (x) x                        

2.     The actual change or the actual error in y is denoted by y = f (x + x) – f (x) 

3. y dy = f1 (x) x 

4. If x be the error in x then the approximate value of f (x) is                                       

f (x + x)  f (x) + f1 (x). x 

5. Let x be any change in x and y be the corresponding change in y. Then 

  

         (i) y is called error in y 

 (ii) is called relative error in y 

 (iii) 100 is called percentage error in y 

6.      If f (x) = ax2 + bx + c then f- df = a ( x)2 

7. If y = f (x) is a homogeneous function of degree n or y  x2 then 

 (i) Relative error in y = n [Relative error in x] 

 (ii) % error in y = [% error in x] 
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RATE OF CHANGE 

 

 1. If x is any variable, 
dx

dt
represents the rate of change of x at time ‘t’. 

   2. If s is the displacement of a particle at time ‘t’, then 
ds

dt
 represents the velocity of 

the particle at that instant. 

 3. If v is the velocity of a particle at time ‘t’, then  
dv

dt
 represents the acceleration of 

the particle at that instant. 

 4. A particle moving on a straight line comes to rest if 
ds

dt

d s

dt
= =0 0

2

2
&  

 5. A particle moving on a straight line is at rest momentarily if 
ds

dt

d s

dt
= ≠0 0

2

2
&  

 6. A particle, projected vertically upwards, attains the maximum height when         

ds

dt
 = 0 

 7. A particle acquires maximum velocity if 
dv

dt
 = 0 

 8. A particle changes it’s direction if 
ds

dt
 = 0 and 

d s

dt

2

2
≠ 0 

 9. If v is velocity of a particle moving along a straight line and v is expressed in 

terms of displacement ‘s’ ,  then the acceleration of the particle = v
dv

ds
 

 10. If p (x,y) is a variable point on a curve of  y = f(x) ,  then its velocity at time 't' is  

      

22

dt

dy

dt

dx
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 11.  The equations of motion of a particle P(x, y) on a plane curve are given by          

x = f(t),   y = g(t). Then the velocity of the particle is given by 

( )[ ] ( )[ ]ds

dt
f t g t= +1 2 1

2

 

 12. If θ is a variable angle associated with a variable point P, then 
dt

dθ represents the 

angular velocity of P at time t. 

13. The rate of change in velocity is called the acceleration of the particle at t and is 

denoted by a  

 ∴ a = 
dt

dυ
 = 









dt

ds

dt

d
 = 

2

2

dt

sd
 = 

dt

ds

ds

dυ
= υ . 

ds

dυ
. 

 

14. Let O be a fixed point and OX be a fixed ray. Let P be the position of the particle 

on a curve C at time t such that XOP = θ. Then 
dt

dθ
 is called the angular velocity 

and is denoted by ω, 
2

2

dt

d θ
 is called the angular acceleration of the particle about 

‘O’ and is denoted by ‘α’. 
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INCREASING AND DECREASING FUNCTIONS 

  

1.A function f(x) is an increasing function of x if, as x increases, f(x) increases. i.e. f(x) 

is an increasing function of x if, x1> x2⇔  f(x1) > f(x2). 

2. A function f(x) is a decreasing function of x, if, as x increases, f(x) decreases           

i.e. if  x1> x2  ⇔  f(x1) < f(x2). 

3.A function f(x) is an increasing function of x if f1(x) > 0. 

4. A function f(x) is a decreasing function of x if f1(x) < 0. 

5. ax is increasing function of x if a > 1 and decreasing if 0 < a < 1). 

6. loga x is an increasing function of x if a > 1 and decreasing function if 0<a < 1) 

  7. If both f and g are either increasing or decreasing, then fog and g of are increasing. 

8.If any one of f and g are increasing and an other one is decreasing, then g of and fog are 

decreasing. 
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MAXIMA AND MINIMA 

 

 

1. Let f be a real function which is differentiable at ‘a’. If f1 (a) = 0 then we say that 

f(x) is stationary at x = a, (a, f(a)) is called stationary point f(a) is called stationary 

value. 

 

2. If there exists δ> 0 such that f(x) ≤f(a) for every a – δ< x < a + δ then f is said to 

have relative maximum at ‘a’. f(a) is called relative (local) maximum value. 

 If there exists δ> 0 such that f(x) ≥f(a) for every a – δ< x < a + δ then f is said to 

have relative minimum at ‘a’. f(a) is called relative (local) minimum value. 

 

3. The points at which a function attains either maximum or minimum are called 

extreme points or turning points of the function. Maximum or minimum values of 

a function are called extreme values or turning values of the function. 

 

4. Necessary condition for extreme value of function: 

 If a function f(x) has extreme value f(a) then f1(a) = 0, if it exists. 

 

5. Sufficient conditions for extreme values: 

 Let f(x) be derivable at x = a 

 a)  x = a is point of relative maximum of f(x) if f1(a) changes sign from +ve to –ve 

as x passes through the point x = a from left nbd to right nbd. 

 b)  x = a is a point of relative minimum of f(x) if f1(a) changes sign from –ve to 

+ve as x passes through the point x = a from left nbd to right nbd. 

  

           Note: If f1(a) has the same sign in the entire neighbourhood of x = a then x = a is 

not extremum. 
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6. Sufficient conditions for extreme values. 

 Let f(x) be derivable at x = a and f11(a) exists and is non-zero. 

 a) f1(a) = 0 and f11(a) < 0 ⇒ x = a is a point of relative maximum. 

 b) f1(a) = 0 and f11(a) > 0 ⇒ x = a is a point of relative minimum. 

7. If f(x) is increasing in [a, b] then f(a) = Minimum value and f(b) = Maximum 

value of f(x) in [a, b]. 

 If f(x) is decreasing in [a, b] then f(a) = Maximum value and f(b) = Minimum 

value of f(x) in [a, b]. 

8. 1. The maximum value of a cos2x + b sin2x is ‘a’ and minimum value = b (If a > b) 

 2. The minimum value of f(x) = a tan x + b cot x is 2 aband attains at                 

tan x = b/a . 

 3. The minimum value of f(x) = a2 sec2 x + b2 cosec2 x is (a + b)2 and attained at 

tan x = b/a  

 4.  The minimum value of f(x) = a sec x + b cosec x is (a2/3 + b2/3)3/2 and it is 

attained at tan x = (a/b)1/3. 

 5. The maximum value of f(x) = sinmx .cosn x is 
( )

/2 /2

2

.m n

m n

m n

m n
+

+
 = 

( )
.m n

m n

m n

m n
++

 and 

attained at tan x = 
m

n
 

9. 1. The sum of two numbers is k. If the sum of their squares is minimum. Then the 

numbers are K/2, K/2.  

 2. The sum of two numbers is k and the least sum of their squares is K2/2. 

 3.  The sum of two numbers is K. If their product is maximum, then the numbers 

are k/2, k/2. 

 4. The product of two positive numbers is K. If the sum of their squares is 

minimum, then the numbers aeK , K . 

 5.  Sum of two numbers is k. If the product of the square of the first and cube of 

the second is maximum then the numbers 2k/5, 3k/5. 
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10. 1. If a > 0, b > 0, x > 0, the least value of f(x) = ax +
b

x
 is 2 ab . 

 2. If x > 0, the least value of f(x) = x + 
1

x
 is 2. 

11. 1. The maximum rectangle inscribed in a circle is square. 

 2. The maximum area of rectangle in a cube of radius r is 2r2. 

12. 1. The maximum triangle inscribed in a circle is equilateral triangle. 

 2. The maximum area of a triangle in a circle of radius r is 
3 3

4
 r2 sq. units. 

13. 1. The perimeter of a sector is ‘C’ cms. Then maximum area of sector is             

2

16

C
 sq. cm. 

 2. Perimeter of sector is given. The area of sector is maximum. Then the angle of 

sector is 2 radians. 

 3. The area of sector is ‘a’ sq. cm. Then the least perimeter of sector is 4a  cm. 

 

14. 1. The hypotenuse of a right angled triangle is ‘a’. If the area of triangle is 

maximum. Then the sides are 
2

a
, 

2

a
. 

 2. Two sides of a triangle are given. The area of the triangle is maximum. Then the 

angle between sides is π/2. 

 3. The sum of hypotenuse and one side of right angled triangle is given. The area 

is maximum. Then the angle between the sides is π/3. 

 

15. 1. An open box of maximum volume is made from a square piece of tin of side ‘a’ 

by cutting for four equal square pieces from four corners and folding up the tin 

then the length of square cut is 
' '

6

a
. 
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 2. An open box of maximum volume is made from a rectangular piece of tin of 

length ‘a’ and breath ‘b’ by cutting four equal square pieces from four corners and 

folding up the tin. Then the length of box is 1/6( ){ }2 2a b a b ab+ − + − . 

16. 1. The area of the greatest rectangle inscribed in an ellipse 
2

2

x

a
 + 

2

2

y

b
 = 1 is 2ab and 

the sides are a2 , b 2 .  

 2. Maximum area of ∆ formed by a line through (x1, y1) and coordinate axes is 

2|x1, y1|. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



MEANVALUE THEOREMS 

 

Rolle'sTheorem: If a function f : [a, b]R is such that 

 i)  It is continuous on [a, b] 

 ii) It is derivable on (a, b) and 

 iii) f(a) = f(b) then there exists at least one ( , )c a b∈  such that  ( ) 0f c′ = .  

 

Lagrange's mean -value theorem or first mean - value theorem: 

 If a function f : [a, b]  R is such that 

 i) It is continuous on [a, b].  

ii) It is derivable on (a, b) then there exists at least one ( , )c a b∈  such that  

( ) ( )
( )

f b f a
f c

b a

− ′=
−  
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