ADDITION OF VECTORS SYNOPSIS

- 1. Scalar: A physical quantity which has only magnitude is called a scalar.
- 2. Vector: A physical quantity which has both magnitude and direction is called a vector. If a vector is represented by a directed line segment \overline{AB} , then A and B are called the initial and terminal points. The direction from A to B gives the direction of the vector and the distance from A to B gives its magnitude. A vector is generally denoted by bold face letter. (Example: *a*, *b*, *c* ...et) or the letters with bar: \overline{a} , \overline{b} , \overline{c} etc).
- 3. Null Vector: A vector whose magnitude is zero is called a null vector. The direction of a null vector is not defined specifically. We denote the null vector $by \overline{0}$.
- 4. Negative of a Vector: The negative vector of \overline{a} is a vector having the same modulus as that of \overline{a} , but having opposite direction. It is denoted $-\overline{a}$. If $\overline{AB} = \overline{a}$, then $\overline{BA} = -\overline{a}$.

Hence $|\overline{a}| = |-\overline{a}|$.

5. Unit vector: A vector of length one unit is called unit vector.

Note 1: Unit vector in the direction of $\overline{a} = \frac{a}{|\overline{a}|}$;

- 2: Unit vector in the opposite direction of $\overline{a} = -\frac{a}{|\overline{a}|}$
- 3. Unit vector parallel to $\overline{a} = \pm \frac{a}{|\overline{a}|}$.
- 6. Equal Vectors: Two vectors are said to be equal if they have the same magnitude and direction, irrespective of their initial and terminal points.
- 7. Like Vectors: Vectors having the same direction are called a like vectors.
- 8. Addition of Vectors : If $\overline{AB} = \overline{a}$ and $\overline{BC} = \overline{b}$, the vector \overline{AC} defines the sum of \overline{a} and \overline{b} i.e., $\overline{AC} = \overline{AB} + \overline{BC} = \overline{a} + \overline{b}$. This is called the triangle law of vector.

9. Parallelogram Law of Addition of Vectors: If two vectors are represented by two adjacent sides of a parallelogram, their sum with respect to length and direction is represented by the diagonal with the point of intersection of the adjacent sides as the initial point.

If \overline{OA} and \overline{OC} are the adjacent sides of a parallelogram \overline{OABC} and if $\overline{OA} = \overline{a}$, $\overline{OC} = \overline{b}$ then $\overline{OB} = \overline{a} + \overline{b}$ and $\overline{AC} = \overline{b} - \overline{a}$.

10. Position Vector: Let O be the point of reference and P be any point in space. Then *OP* is called the position vector of P relative to Q

If $\overline{OA} = \overline{a}$ and $\overline{OB} = \overline{b}$ then $\overline{AB} = \overline{b} - \overline{a}$.

- 11. Component of a Vector: Any vector \overline{a} in 3-d space can be represented as an ordered triads (a_1, a_2, a_3) where $a_1, a_2, a_3 \in \mathbb{R}$ are called the components of \overline{a} . The null vector $\overline{0}$ is denoted by (0, 0, 0).
- 12. Scalar Multiplication of a Vector: If m is a real number (scalar) and \overline{a} is a non zero vector, then
 - (i) The modulus of $m\bar{a}$ is $m|\bar{a}|$ when m > 0 and the direction of $m\bar{a}$ is in the direction of \bar{a} .
 - (ii) The modulus of $m\bar{a}$ is $-m|\bar{a}|$ when m < 0 and the direction of $m\bar{a}$ is opposite to \bar{a} .

(iii) $m\overline{a} = 0$ if m = 0 or $\overline{a} = \overline{0}$ and the modulus is zero.

If m and n are real numbers and \overline{a} and \overline{b} are vectors, then

- (i) m $(n\overline{a}) = (mn)\overline{a}$; (ii) $(m+n)\overline{a} = m\overline{a} + n\overline{b}$.
- (iii) $m(\overline{a} + \overline{b}) = m\overline{a} + m\overline{b}$.
- **13. Like vectors and Parallel Vectors**: Vectors which have the same direction are said to be like vectors. Two vectors having the same direction or opposite direction are called parallel vectors.
- 14. Like Parallel and Unlike Parallel Vectors: \overline{a} and \overline{b} are like parallel vectors, if they have the same direction. \overline{a} and \overline{b} are unlike parallel vectors if they have opposite direction.

Let $\lambda \in \mathbb{R}$ and \overline{a} be a vector. Then

If $\lambda > 0$ then \overline{a} and $\lambda \overline{a}$ are like parallel vector

If $\lambda < 0$, then \overline{a} and $\lambda \overline{a}$ unlike parallel vectors

If $\lambda = 0$ then $\lambda \overline{a}$ is a null vector.

If $\lambda \neq 0$, $\overline{a} \neq \overline{0}$, then \overline{a} and $\lambda \overline{a}$ are collinear or parallel vectors.

- **15.** Angle Between Two Vectors: If $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$ be two non-zero vectors then $\angle AOB = \theta$,
 - $0 \le \theta \le 180^{\circ}$ is defined as the angle between \overline{a} and \overline{b} is written as (a, b).
 - i) $(\overline{a}, \overline{b}) = 0^{\circ} \Leftrightarrow \overline{a}$ and \overline{b} are like vectors.
 - ii) If $(\bar{a}, \bar{b}) = \frac{\pi}{2}$, then \bar{a} and \bar{b} are orthogonal vectors.
 - iii) $(\bar{a}, \bar{b}) = \pi \Rightarrow \bar{a}$ and \bar{b} are unlike vectors.
 - iv) If $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$, then angle between \overline{a} and \overline{b} is undefined.
 - **v**) $(\overline{a}, \overline{b}) = (\overline{b}, \overline{a}).$
 - **vi**) $(\overline{a}, \overline{b}) = -\overline{a}, -\overline{b}$).
 - **vii**) $(\overline{ma}, \overline{nb}) = (\overline{a}, \overline{b}) \forall m, n > 0.$

viii) $(\overline{ma}, \overline{nb}) = 180^{\circ} - (\overline{a}, \overline{b})$ if m, n are have opposite signs.

- **16. Collinear Vectors**: Vectors lie on same line (or) parallel lines are called Collinear Vectors (or) Parallel Vectors.
 - i) \overline{a} , \overline{b} are collinear vectors $\Leftrightarrow \overline{a} = \lambda \overline{b}$, λ is a scalar.

ii)
$$\bar{a} = a_1\bar{i} + a_2\bar{j} + a_3\bar{k}$$
, $\bar{b} = b_1\bar{i} + b_2\bar{j} + b_3\bar{k}$ are collinear vectors $\Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

- 17. The points $\overline{a}, \overline{b}, \overline{c}$ are collinear if and only if there exist scalars x, y, z, not all zero such that $x\overline{a}+y\overline{b}+z\overline{c}=0$, x+y+z=0.
 - If AB = K AC then the points A,B,C are collinear

18. Coplanar and Non-Coplanar Vectors: Two or more vectors are said to be coplanar if they lie on the same plane.

Vectors equivalent to vectors lying in a plane are also called coplanar vectors.

Vectors that are not coplanar are called non-coplanar vectors.

19. To verify that three given vectors $\overline{a} = a_1\overline{i} + a_2\overline{j} + a_3\overline{k}$, $\overline{b} = b_1\overline{i} + b_2\overline{j} + b_3\overline{k}$ and $\overline{c} = c_1\overline{i} + c_2\overline{j} + c_3\overline{k}$ are linearly independent or linearly dependent:

Find
$$\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
.

i) If $\Delta \neq 0$, then they are linearly independent.

- ii) If $\Delta = 0$, then they are linearly dependent.
- 20. To show that 4 points A, B, C, D are coplanar, adopt one of the following:
 - i) Find \overline{AB} , \overline{AC} and \overline{AD} . Show that the determinant of their components is zero.
 - ii) Show that there exist scalars p, q, r, s not all zero such that $p\overline{a} + q\overline{b} + r\overline{c} + s\overline{d} = \overline{0}$ and p + q + r + s = 0.
- 21. Linear dependence and linear independence of vectors.

i) Linear Combination Of Vectors: If \bar{a} , \bar{b} , \bar{c} are vectors and x, y, z are real numbers, then the vector $\mathbf{r} = \mathbf{x}\bar{a} + \mathbf{y}\bar{b} + \mathbf{z}\bar{c}$ is called a linear combination of \bar{a} , \bar{b} and \bar{c} .

ii) A system of vectors $\overline{a_1}$, $\overline{a_2}$, ..., $\overline{a_n}$ is said to be linearly independent if there exist scalars x_1 , x_2 , ..., $x_n \ni x_1 \overline{a_1} + x_2 \overline{a_2} + \dots + x_n \overline{a_n} = 0 \Rightarrow x_1 = x_2 = \dots = x_n = 0.$

- iii) A system of vectors $\overline{a_1}$, $\overline{a_2}$, ..., $\overline{a_n}$ is said to be linearly dependent if $x_1\overline{a_1} + x_2\overline{a_2} + \dots + x_n\overline{a_n} = \overline{0} \implies$ at least one of the $x_i \neq 0$, $i = 1, 2, \dots, n$.
- iv) Any two collinear vectors are linearly dependent.
- v) Any set of vectors containing the null vector is linearly dependent.

vi)Any three coplanar vectors are linearly dependent. Any three non-coplanar vectors are linearly independent.

vii) If \overline{a} and \overline{b} are two non-zero, non-collinear vectors such that $x\overline{a} + y\overline{b} = 0$, then x = 0 and y = 0.

viii) Any vector \bar{r} in the plane generated by two non-collinear vectors \bar{a} and \bar{b} can be expressed in the form $\mathbf{r} = \mathbf{x}\bar{a} + \mathbf{y}\bar{b}$; $\mathbf{x}, \mathbf{y} \neq 0$.

22. Direction Cosines of a Vector: Direction Ratios:

Let \overline{i} , \overline{j} , \overline{k} be an orthogonal unit vector triad in the right handed system and \overline{r} a vector. If $\alpha = (\overline{r}, \overline{i}), \beta = (\overline{r}, \overline{j})$ and $\gamma = (\overline{r}, \overline{k})$, then $\cos \alpha \cdot \cos \beta \cdot \cos \gamma$ are called the direction cosines of \overline{r} . We denote them by *l*, *m*, *n* respectively. The numbers proportional to direction cosines of a given vector, then *kl*, *km*, *kn* are called the direction ratios of that vector, $k \in \mathbb{R}$.

Some Important Results:

i) If *l*, *m*, *n* are the direction cosines of a line, then l^2 , m^2 , $n^2 = 1$.

ii) If $\overline{OP} = \overline{r}$ and P is the ordered triad (x, y, z) then x = r cos α = lr, y = r cos β = mr and z = r cos γ = nr.

iii) The direction cosines of the vectors \overline{i} , \overline{j} , \overline{k} are respectively (1, 0, 0), (0, 1, 0), (0, 0, 1).

iv) If
$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k} = \ln \overline{i} + m\overline{j} + n\overline{k}$$
, then $\overline{r} = \frac{\overline{r}}{|\overline{r}|} = \frac{\overline{r}}{r} = 1\overline{i} + m\overline{j} + n\overline{k}$; if $|\overline{r}| = r$.

Hence the direction cosines of \bar{r} are coefficients of \bar{i} , \bar{j} , \bar{k} in the unit vector of \bar{r} .

If \overline{i} , \overline{j} , \overline{k} are three non-coplanar unit vectors along the axes OX, OY, OZ such that \overline{i} , \overline{j} , \overline{k} form a vector triad in the right handed system, then $((\overline{i}, \overline{j}) = (\overline{j}, \overline{k}) = (\overline{k}, \overline{i}) = 90^{\circ}$. If \overline{r} is any vector, there exist a unique triad of real numbers x, y, z such that $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$.

Then $\mathbf{r} = |\overline{r}| = \overline{OP} = \sqrt{x^2 + y^2 + z^2}$.

23. Division Formulae:

i) If the position vectors of the points A, B w.r.t. O are \overline{a} and \overline{b} if the point C divides the line segment \overline{AB} in the ratio m: n internally (m > 0, n > 0), then the position vector of C is $\overline{OC} = \frac{m\overline{b} + n\overline{a}}{m+n}.$

ii) If C is an externally point that divides A(\overline{a}), B(\overline{b}) in the ratio m : n, then $\overline{OC} = \frac{mb-na}{m-n}$.

iii) If the point C divides A (\overline{a}) , B (\overline{b}) in the ratio 1 : 1 (mid point), then $\overline{OC} \frac{a+b}{2}$.

iv) Points of trisection: Two points which divide a line segment into 3 equal parts are called trisecting points in ratio 1 : 2 or 2 : 1.

v) The position vector of the centroid G of the triangle ABC with vertices \bar{a} , \bar{b} , \bar{c} is $\frac{a+b+c}{2}$

and the in-centre I = $\frac{a\overline{a} + b\overline{b} + c\overline{c}}{a+b+c}$, where a = BC, b = CA and c = AB.

vi) If G is the centroid of $\triangle ABC$, then $\overline{GA} + \overline{GB} + \overline{GC} = \overline{0}$.

vii) If \overline{a} , \overline{b} , \overline{c} and \overline{d} are the position vectors of the vertices A, B, C and D respectively of a tetrahedron ABCD, the position vector of its centroid is $\frac{\overline{a}+\overline{b}+\overline{c}+\overline{d}}{4}$.

24. Rotation of a Vector about an Axis:

Let $\overline{a} = (a_1, a_2, a_3)$. If the system is rotated about

i) X-axis through an angle α , then the new coordinates of \overline{a} are $(a_1, a_2 \cos \alpha + \sin \alpha, -a_2 \sin \alpha + a_3 \cos \alpha)$

ii) Y-axis through an angle α , then the new coordinates of \overline{a} are $(-a_3 \sin \alpha + a_1 \cos \alpha, a_2, a_3 \cos \alpha + a_1 \sin \alpha)$.

iii) Z-axis through an angle α , then the new coordinates of \overline{a} are $(a_1 \cos \alpha + a_2 \sin \alpha, -a_1 \sin \alpha + a_2 \cos \alpha, a_3)$.

25. Let O be the origin, $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$ be two vectors. Then the point $\overline{OC} = p\overline{a} + q\overline{b}$ lies

- i) Inside $\triangle ABC$, if p > 0, q > 0 and p + q < 1.
- ii) Outside $\triangle OAB$ but inside $\angle AOB$ if p > 0, q > 0 and p + q > 1.
- iii) Outside $\triangle OAB$ but inside $\angle AOB$ if p < 0, q > 0 and p + q > 1.

iv)Outside $\triangle OBA$ but inside $\angle OBA$ if p > 0, q < 0 and p + q < 1.

26. If ABCD is a parallel such that $\overline{AB} = \overline{a}, \ \overline{BC} = \overline{b}$ then $\overline{AC} = \overline{b} + \overline{a}, \ \overline{BD} = \overline{b} - \overline{a}.$

27. Unit vector bisecting the angle between $\overline{OA} = \overline{a}$, $\overline{OB} = \overline{b}$ is $\frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$. The vector bisecting angle between $\overline{OA} = \overline{a}$; $\overline{OB} = \overline{b}$ is of the form $\lambda(\hat{a} + \hat{b})$.

28. Vector Equation of a Line:

i) Vector equation of a line parallel to the vector \overline{b} and passing through the point A with position vector \overline{a} is $\overline{r} = \overline{a} + t \overline{b}$.

ii) Vector equation of a straight line parallel to \bar{b} and passing through the origin is $\bar{r} = t\bar{b}$; $t \in \mathbb{R}$.

iii) Vector equation of a straight line passing through A (\bar{a}) , B (\bar{b}) is $\bar{r} = (1 - t) \bar{a} + t\bar{b}$, $t \in \mathbb{R}$.

29. Cartesian Equation of a Line:

i) Cartesian equation to the straight line passing through the point (a_1, a_2, a_3) and parallel to the vector $b_1\bar{i} + b_2\bar{j} + b_3\bar{k}$ is $\frac{x-a_1}{b_1} = \frac{y-a_2}{b_2} = \frac{z-a_3}{b_3}$.

ii) Cartesian equation of the straight line passing through two given points (a_1, a_2, a_3) and (b_1, a_2, b_3) is

$$\frac{x-a_1}{b_1-a_1} = \frac{y-a_2}{b_2-a_2} = \frac{z-a_3}{b_3-a_3} \text{ or}$$
$$= \frac{y-b_2}{b_2-a_2} = \frac{z-b_3}{b_3-a_3}$$

30. Vector Equation of Plane:

i) Vector equation of a plane passing through a point $A(\bar{a})$ and parallel to the non-collinear vectors \bar{b} and \bar{c} is $\bar{r} = \bar{a} + s\bar{b} + t\bar{c}$; s, t $\in \mathbb{R}$.

ii) Vector equation of plane passing through the origin and parallel to \overline{b} , \overline{c} is $\overline{r} = s\overline{b} + t\overline{c}$; s, $t \in \mathbb{R}$.

iii) Vector equation of a plane passing through three non collinear points A (\bar{a}) , B (\bar{b}) and C (\bar{c}) is $\bar{r} = (1 - s - t)\bar{a} + s\bar{b} + t\bar{c}$; s, t \in R.

iv) Vector equation of a plane passing through the points $A(\bar{a}) \cdot B(\bar{b})$ and parallel to $C(\bar{c})$ is $\bar{r} = (1 - s) \bar{a} + s\bar{b} + t\bar{c}$; s, $t \in \mathbb{R}$.