PARABOLA

OBJECTIVES

1. The focus of the parabola $y^{2}=4 y-4 x$ is
(a) $(0,2)$
(b) $(1,2)$
(c) $(2,0)$
(d) $(2,1)$
2. Vertex of the parabola $x^{2}+4 x+2 y-7=0$ is
(a) $(-2,11 / 2)$
(b) $(-2,2)$
(c) $(-2,11)$
(d) $(2,11)$
3. The equations $x=\frac{t}{4}, y=\frac{t^{2}}{4}$ represents
(a) A circle
(b) A parabola
(c) An ellipse
(d) A hyperbola
4. The equation of parabola whose vertex and focus are $(0,4)$ and $(0,2)$ respectively, is
(a) $y^{2}-8 x=32$
(b) $y^{2}+8 x=32$
(c) $x^{2}+8 y=32$
(d) $x^{2}-8 y=32$
5. Curve $16 x^{2}+8 x y+y^{2}-74 x-78 y+212=0$ represents
(a) Parabola
(b) Hyperbola
(c)Ellipse
(d) None of these
6. If the vertex of the parabola $y=x^{2}-8 x+c$ lies on \boldsymbol{x}-axis, then the value of \boldsymbol{c} is
(a) -16
(b) -4
(c) 4
(d) 16
7. Eccentricity of the parabola $x^{2}-4 x-4 y+4=0$ is
(a) $e=0$
(b) $e=1$
(c) $e>4$
(d) $e=4$
8. The axis of the parabola $9 y^{2}-16 x-12 y-57=0$ is
(a) $3 y=2$
(b) $x+3 y=3$
(c) $2 x=3$
(d) $y=3$
9. The focus of the parabola $x^{2}=2 x+2 y$ is
(a) $\left(\frac{3}{2}, \frac{-1}{2}\right)$
(b) $\left(1, \frac{-1}{2}\right)$
(c) $(1,0)$
(d) $(0,1)$
10. The focus of the parabola $4 y^{2}-6 x-4 y=5$ is
(a) $(-8 / 5,2)$
(b) $(-5 / 8,1 / 2)$
(c) $(1 / 2,5 / 8)$
(d) $(5 / 8,-1 / 2)$
11. Equation of the parabola whose directrix is $y=2 x-9$ and focus $(\mathbf{- 8}, \mathbf{- 2})$ is
(a) $x^{2}+4 y^{2}+4 x y+16 x+2 y+259=0$
(b) $x^{2}+4 y^{2}+4 x y+116 x+2 y+259=0$
(c) $x^{2}+y^{2}+4 x y+116 x+2 y+259=0$
(d) None of these
12. Vertex of the parabola $9 x^{2}-6 x+36 y+9=0$ is
(a) $(1 / 3,-2 / 9)$
(b) $(-1 / 3,-1 / 2)$
(c) $(-1 / 3,1 / 2)$
(d) $(1 / 3,1 / 2)$
13. The equation of the parabola whose vertex is $(-1,-2)$, axis is vertical and which passes through the point $(3,6)$, is
(a) $x^{2}+2 x-2 y-3=0$
(b) $2 x^{2}=3 y$
(c) $x^{2}-2 x-y+3=0$
(d) None of these
14. The focus of the parabola $x^{2}=-16 y$ is
(a) $(4,0)$
(b) $(0,4)$
(c) $(-4,0)$
(d) $(0,-4)$
15. The equation of the parabola with focus $(\mathbf{3}, \mathbf{0})$ and the directirx $x+3=0$ is
(a) $y^{2}=3 x$
(b) $y^{2}=2 x$
(c) $y^{2}=12 x$
(d) $y^{2}=6 x$
16. Axis of the parabola $x^{2}-4 x-3 y+10=0$ is
(a) $y+2=0$
(b) $x+2=0$
(c) $y-2=0$
(d) $x-2=0$
17. The equation of the parabola with its vertex at the origin, axis on the y-axis and passing through the point $(6,-3)$ is
(a) $y^{2}=12 x+6$
(b) $x^{2}=12 y$
(c) $x^{2}=-12 y$
(d) $y^{2}=-12 x+6$
18. The latus rectum of the parabola $y^{2}=5 x+4 y+1$ is
(a) $\frac{5}{4}$
(b) 10
(c) 5
(d) $\frac{5}{2}$
19. Focus and directrix of the parabola $x^{2}=-8 a y$ are
(a) $(0,-2 a)$ and $y=2 a$
(b) $(0,2 a)$ and $y=-2 a$
(c) $(2 a, 0)$ and $x=-2 a$
(d) $(-2 a, 0)$ and $x=2 a$
20. The ends of latus rectum of parabola $x^{2}+8 y=0$ are
(a) $(-4,-2)$ and $(4,2)$
(b) $(4,-2)$ and $(-4,2)$
(c) $(-4,-2)$ and $(4,-2)$
(d) $(4,2)$ and $(-4,2)$
21. The co-ordinates of the extremities of the latus rectum of the parabola $5 y^{2}=4 x$ are
(a) $(1 / 5,2 / 5),(-1 / 5,2 / 5)$
(b) $(1 / 5,2 / 5),(1 / 5,-2 / 5)$
(c) $(1 / 5,4 / 5),(1 / 5,-4 / 5)$
(d) None of these
22. The points on the parabola $y^{2}=12 x$ whose focal distance is 4 , are
(a) $(2, \sqrt{3}),(2,-\sqrt{3})$
(b) $(1,2 \sqrt{3}),(1,-2 \sqrt{3})$
(c) $(1,2)$
(d) None of these
23. The vertex of the parabola $x^{2}+8 x+12 y+4=0$ is
(a) $(-4,1)$
(b) $(4,-1)$
(c) $(-4,-1)$
(d) $(4,1)$
24. The equation of axis of the parabola $2 x^{2}+5 y-3 x+4=0$ is
(a) $x=\frac{3}{4}$
(b) $y=\frac{3}{4}$
(c) $x=-\frac{1}{2}$
(d) $x-3 y=5$
25. The focus of the parabola $y=2 x^{2}+x$ is
(a) $(0,0)$
(b) $\left(\frac{1}{2}, \frac{1}{4}\right)$
(c) $\left(-\frac{1}{4}, 0\right)$
(d) $\left(-\frac{1}{4}, \frac{1}{8}\right)$
26. The equation of parabola whose focus is $(\mathbf{5}, \mathbf{3})$ and directrix is $3 x-4 y+1=0$, is
(a) $(4 x+3 y)^{2}-256 x-142 y+849=0$
(b) $(4 x-3 y)^{2}-256 x-142 y+849=0$
(c) $(3 x+4 y)^{2}-142 x-256 y+849=0$
(d) $(3 x-4 y)^{2}-256 x-142 y+849=0$
27. The directrix of the parabola $x^{2}-4 x-8 y+12=0$ is
(a) $x=1$
(b) $y=0$ (c) $x=-1$
(d) $y=-1$
28. The length of the latus rectum of the parabola $x^{2}-4 x-8 y+12=0$ is
(a) 4
(b) 6
(c) 8
(d) 10
29. The equation of the parabola whose vertex is at $(2,-1)$ and focus at $(2,-3)$ is
(a) $x^{2}+4 x-8 y-12=0$
(b) $x^{2}-4 x+8 y+12=0$
(c) $x^{2}+8 y=12$
(d) $x^{2}-4 x+12=0$
30. The equation of latus rectum of a parabola is $x+y=8$ and the equation of the tangent at the vertex is $x+y=12$, then length of the latus rectum is
(a) $4 \sqrt{2}$
(b) $2 \sqrt{2}$
(c) 8
(d) $8 \sqrt{2}$
31. The point of intersection of the latus rectum and axis of the parabola $y^{2}+4 x+2 y-8=0$
(a) $(5 / 4,-1)$
(b) $(9 / 4,-1)$
(c) $(7 / 2,5 / 2)$
(d) None of these
32. The equation of the latus rectum of the parabola $x^{2}+4 x+2 y=0$ is
(a) $2 y+3=0$
(b) $3 y=2$
(c) $2 y=3$
(d) $3 y+2=0$
33. The equation of the parabola with $(-\mathbf{3}, \mathbf{0})$ as focus and $x+5=0$ as directirx, is
(a) $x^{2}=4(y+4)$
(b) $x^{2}=4(y-4)$
(c)
$y^{2}=4(x+4)$
(d) $y^{2}=4(x-4)$
34. The point on the parabola $y^{2}=18 x$, for which the ordinate is three times the abscissa, is
(a) $(6,2)$
(b) $(-2,-6)$
(c) $(3,18)$
(d) $(2,6)$
35. Equation of the parabola with its vertex at $(1,1)$ and focus $(3,1)$ is
(a) $(x-1)^{2}=8(y-1)$
(b) $(y-1)^{2}=8(x-3)$
(c) $(y-1)^{2}=8(x-1)$
(d) $(x-3)^{2}=8(y-1)$
36. The point of contact of the tangent $18 x-6 y+1=0$ to the parabola $y^{2}=2 x$ is
(a) $\left(\frac{-1}{18}, \frac{-1}{3}\right)$
(b) $\left(\frac{-1}{18}, \frac{1}{3}\right)$
(c) $\left(\frac{1}{18}, \frac{-1}{3}\right)$
(d) $\left(\frac{1}{18}, \frac{1}{3}\right)$
37. The equation of a tangent to the parabola $y^{2}=4 a x$ making an angle θ with \boldsymbol{x}-axis is
(a) $y=x \cot \theta+a \tan \theta$
(b) $x=y \tan \theta+a \cot \theta$
(c) $y=x \tan \theta+a \cot \theta$
(d) None of these
38. The point of the contact of the tangent to the parabola $y^{2}=4 a x$ which makes an angle of 60° with \boldsymbol{x}-axis, is
(a) $\left(\frac{a}{3}, \frac{2 a}{\sqrt{3}}\right)$
(b) $\left(\frac{2 a}{\sqrt{3}}, \frac{a}{3}\right)$
(c) $\left(\frac{a}{\sqrt{3}}, \frac{2 a}{3}\right)$
(d) None of these
39. If $x^{2}+6 x+20 y-51=0$, then axis of parabola is
(a) $x+3=0$
(b) $x-3=0$
(c) $x=1$
(d) $x+1=0$
40. The equation of the directrix of the parabola $x^{2}+8 y-2 x=7$ is
(a) $y=3$
(b) $y=-3$
(c) $y=2$
(d) $y=0$
41. The straight line $y=2 x+\lambda$ does not meet the parabola $y^{2}=2 x$, if
(a) $\lambda<\frac{1}{4}$
(b) $\lambda>\frac{1}{4}$
(c) $\lambda=4$
(d) $\lambda=1$
42. The angle between the tangents drawn at the end points of the latus rectum of parabola $y^{2}=4 a x$, is
(a) $\frac{\pi}{3}$
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{2}$
43. The line $y=2 x+c$ is tangent to the parabola $y^{2}=4 x$, then $c=$
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) $\frac{1}{3}$
(d) 4
44. The locus of the point of intersection of the perpendicular tangents to the parabola $x^{2}=4 a y$ is
(a) Axis of the parabola
(b)Directrix of the parabola
(c) Focal chord of the parabola
(d)Tangent at vertex to the parabola
45. If the straight line $x+y=1$ touches the parabola $y^{2}-y+x=0$, then the co-ordinates of the point of contact are
(a) $(1,1)$
(b) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c) $(0,1)$
(d) $(1,0)$
46. The equation of common tangent to the circle $x^{2}+y^{2}=2$ and parabola $y^{2}=8 x$ is
(a) $y=x+1$
(b) $y=x+2$
(c) $y=x-2$
(d) $y=-x+2$
47. The locus of a foot of perpendicular drawn to the tangent of parabola $y^{2}=4 a x$ from focus, is
(a) $x=0$
(b) $y=0$
(c) $y^{2}=2 a(x+a)$
(d) $x^{2}+y^{2}(x+a)=0$
48. If y_{1}, y_{2} are the ordinates of two points \boldsymbol{P} and \boldsymbol{Q} on the parabola and y_{3} is the ordinate of the point of intersection of tangents at P and Q, then
(a) y_{1}, y_{2}, y_{3} are in A.P.
(b) y_{1}, y_{3}, y_{2} are in A.P.
(c) y_{1}, y_{2}, y_{3} are in G.P.
(d) y_{1}, y_{3}, y_{2} are in G.P.
49. The line $x \cos \alpha+y \sin \alpha=p$ will touch the parabola $y^{2}=4 a(x+a)$, if
(a) $p \cos \alpha+a=0$
(b) $p \cos \alpha-a=0$
(c) $a \cos \alpha+p=0$
(d) $a \cos \alpha-p=0$
50. If the line $l x+m y+n=0$ is a tangent to the parabola $y^{2}=4 a x$, then locus of its point of contact is
(a) A straight line
(b) A circle
(c) A parabola
(d) Two straight lines
51. The equation of the tangent to the parabola $y^{2}=9 x$ which goes through the point $(4,10)$, is
(a) $x+4 y+1=0$
(b) $9 x+4 y+4=0$
(c) $x-4 y+36=0$
(d) $9 x-4 y+4=0$
52. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the \boldsymbol{x}-axis, is
(a) $\sqrt{3} y=3 x+1$
(b) $\sqrt{3} y=-(x+3)$
(c) $\sqrt{3} y=x+3$
(d) $\sqrt{3} y=-(3 x+1)$
53. If The tangent to the parabola $y^{2}=a x$ makes an angle of 45° with \boldsymbol{x}-axis, then the point of contact is
(a) $\left(\frac{a}{2}, \frac{a}{2}\right)$
(b) $\left(\frac{a}{4}, \frac{a}{4}\right)$
(c) $\left(\frac{a}{2}, \frac{a}{4}\right)$
(d) $\left(\frac{a}{4}, \frac{a}{2}\right)$
54. Tangents at the extremities of any focal chord of a parabola intersect
(a) At right angles
(b) On the directrix
(c) On the tangents at vertex
(d) None of these
55. The point on the parabola $y^{2}=8 x$ at which the normal is parallel to the line $x-2 y+5=0$ is
(a) $(-1 / 2,2)$
(b) $(1 / 2,-2)$
(c) $(2,-1 / 2)$
(d) $(-2,1 / 2)$
56. The point on the parabola $y^{2}=8 x$ at which the normal is inclined at $60^{\boldsymbol{0}}$ to the \boldsymbol{x}-axis has the co-ordinates
(a) $(6,-4 \sqrt{3})$
(b) $(6,4 \sqrt{3})$
(c) $(-6,-4 \sqrt{3})$
(d) $(-6,4 \sqrt{3})$
57. The locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which passes through the origin
(a) $y^{2}=a x$
(b) $y^{2}=2 a x$
(c) $y^{2}=4 a x$
(d) $x^{2}=4 a y$
58. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$, then the possible value of the slope of this chord, are
(a) $\{-1,1\}$
(b) $\{-2,2\}$
(c) $\{-2,1 / 2\}$
(d) $\{2,-1 / 2\}$
59. If $x=m y+c$ is a normal to the parabola $x^{2}=4 a y$, then the value of \boldsymbol{c} is
(a) $-2 a m-a m^{3}$
(b) $2 a m+a m^{3}$
(c) $-\frac{2 a}{m}-\frac{a}{m^{3}}$
(d) $\frac{2 a}{m}+\frac{a}{m^{3}}$
60. If ' a ' and ' c ' are the segments of a focal chord of a parabola and b the semi-latus rectum, then
(a) a, b, c are in A.P.
(b) a, b, c are in G.P.
(c) a, b, c are in H.P.
(d) None of these
61. If a normal drawn to the parabola $y^{2}=4 a x$ at the point $(a, 2 a)$ meets parabola again on $\left(a t^{2}, 2 a t\right)$, then the value of \boldsymbol{t} will be
(a) 1
(b) 3
(c) -1
(d) -3
62. If $P S Q$ is the focal chord of the parabola $y^{2}=8 x$ such that $S P=6$. Then the length $S Q$ is
(a) 6
(b) 4
(c) 3
(d) None of these
63. If the line $2 x+y+k=0$ is normal to the parabola $y^{2}=-8 x$, then the value of \boldsymbol{k} will be
(a) -16
(b) -8
(c) -24
(d) 24
64. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then \boldsymbol{k} is
(a) 3
(b) 9
(c) -9
(d) -3
65. Tangents drawn at the ends of any focal chord of a parabola $y^{2}=4 a x$ intersect in the line
(a) $y-a=0$
(b) $y+a=0$
(c) $x-a=0$
(d) $x+a=0$
66. Equation of diameter of parabola $y^{2}=x$ corresponding to the chord $x-y+1=0$ is
(a) $2 y=3$
(b) $2 y=1$
(c) $2 y=5$
(d) $y=1$
67. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertices are at the parabola, then the length of its side is equal to
(a) $8 a$
(b) $8 a \sqrt{3}$
(c) $a \sqrt{2}$
(d) None of these
68. The equation of a straight line drawn through the focus of the parabola $y^{2}=-4 x$ at an angle of 120° to the \boldsymbol{x}-axis is
(a) $y+\sqrt{3}(x-1)=0$
(b) $y-\sqrt{3}(x-1)=0$
(c) $y+\sqrt{3}(x+1)=0$
(d) $y-\sqrt{3}(x+1)=0$
69. From the point $(-1,2)$ tangent lines are drawn to the parabola $y^{2}=4 x$, then the equation of chord of contact is
(a) $y=x+1$
(b) $y=x-1$
(c) $y+x=1$
(d) None of these
70. The ordinates of the triangle inscribed in parabola $y^{2}=4 a x$ are y_{1}, y_{2}, y_{3}, then the area of triangle is
(a) $\frac{1}{8 a}\left(y_{1}+y_{2}\right)\left(y_{2}+y_{3}\right)\left(y_{3}+y_{1}\right)$
(b) $\frac{1}{4 a}\left(y_{1}+y_{2}\right)\left(y_{2}+y_{3}\right)\left(y_{3}+y_{1}\right)$
(c) $\frac{1}{8 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
(d) $\frac{1}{4 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$
71. The point on parabola $2 y=x^{2}$, which is nearest to the point $(0,3)$ is
(a) $(\pm 4,8)$
(b) $(\pm 1,1 / 2)$
(c) $(\pm 2,2)$
(d) None of these
72. The normal meet the parabola $y^{2}=4 a x$ at that point where the abissiae of the point is equal to the ordinate of the point is
(a) $(6 a,-9 a)$
(b) $(-9 a, 6 a)$
(c) $(-6 a, 9 a)$
(d) $(9 a,-6 a)$
73. From the point $\left(\mathbf{- 1 , - 6 0)}\right.$ two tangents are drawn to the parabola $y^{2}=4 x$. Then the angle between the two tangents is
(a) 30°
(b) 45°
(c) 60°
(d) 90°
74. Let a circle tangent to the directrix of a parabola $y^{2}=2 a x$ has its centre coinciding with the focus of the parabola. Then the point of intersection of the parabola and circle is
(a) $(a,-a)$
(b) $(a / 2, a / 2)$
(c) $(a / 2, \pm a)$
(d) $(\pm a, a / 2)$
75. The equation of the lines joining the vertex of the parabola $y^{2}=6 x$ to the points on it whose abscissa is 24 , is
(a) $y \pm 2 x=0$
(b) $2 y \pm x=0$
(c) $x \pm 2 y=0$
(d) $2 x \pm y=0$
76. $P Q$ is a double ordinate of the parabola $y^{2}=4 a x$. The locus of the points of trisection of $\mathbf{P Q}$ is
(a) $9 y^{2}=4 a x$
(b) $9 x^{2}=4 a y$
(c) $9 y^{2}+4 a x=0$
(d) $9 x^{2}+4 a y=0$

PARABOLA

HINTS AND SOLUTIONS

1. (a) $(y-2)^{2}=-4 x+4 \Rightarrow(y-2)^{2}=-4(x-1)$

Vertex is $(1,2)$ and focus $=(0,2)$.
2. (a) $(x+2)^{2}=-2 y+7+4 \Rightarrow(x+2)^{2}=-2\left(y-\frac{11}{2}\right)$

Hence vertex is $\left(-2, \frac{11}{2}\right)$.
3. (b) Eliminating t, we get $16 x^{2}=4 y \Rightarrow x^{2}=\frac{1}{4} y$, which is a parabola.
4. (c) Vertex $(0,4)$; focus $(0,2) ; \therefore \quad a=2$

Hence parabola is $(x-0)^{2}=-4.2(y-4)$ i.e., $x^{2}+8 y=32$.
5. (a) $\Delta \neq 0, h^{2}=a b$ i.e., parabola.
6. (d) The given equation can be written as $(x-4)^{2}=y-(c-16)$. Therefore the vertex of the parabola is $(4, c-16)$. The point lies on x-axis.
$\therefore c-16=0 \Rightarrow c=16$.
7. (b) Always eccentricity of parabola is $e=1$.
8. (a) Since $9 y^{2}-16 x-12 y-57=0$
$\Rightarrow\left(y-\frac{2}{3}\right)^{2}=\frac{16}{9}\left(x+\frac{61}{16}\right)$
Put $y-\frac{2}{3}=Y$ and $x+\frac{61}{16}=X \Rightarrow Y^{2}=4\left(\frac{4}{9}\right) X$
Axis of this parabola is $Y=0 \Rightarrow y-\frac{2}{3}=0 \Rightarrow 3 y=2$.
9. (c) The parabola is $x^{2}-2 x=2 y$

Or $x^{2}-2 x+1=2 y+1 \Rightarrow(x-1)^{2}=2\left(y+\frac{1}{2}\right)$
Here $4 a=2 \Rightarrow a=\frac{1}{2}$
Now focus is $\left(x-1=0, y+\frac{1}{2}=\frac{1}{2}\right)$ i.e.,($(1,0)$.
10. (b) Given equation of parabola written in standard form, we get

$$
4\left(y-\frac{1}{2}\right)^{2}=6(x+1) \Rightarrow\left(y-\frac{1}{2}\right)^{2}=\frac{3}{2}(x+1) \Rightarrow Y^{2}=\frac{3}{2} X
$$

Where, $Y=y-\frac{1}{2}, X=x+1$

$$
\begin{equation*}
\therefore y=Y+\frac{1}{2}, x=X-1 \tag{i}
\end{equation*}
$$

For focus $X=a, Y=0$
$\because 4 a=\frac{3}{2} \Rightarrow a=\frac{3}{8} \Rightarrow x=\frac{3}{8}-1=-\frac{5}{8}$
$y=0+\frac{1}{2}=\frac{1}{2}$, Focus $=\left(-\frac{5}{8}, \frac{1}{2}\right)$.
11. (b) Let any point on it be (x, y), then from definition of parabola, we get $\frac{\sqrt{(x+8)^{2}+(y+2)^{2}}}{\left|\frac{2 x-y-9}{\sqrt{5}}\right|}=1$

Squaring and after simplification, we get
$x^{2}+4 y^{2}+4 x y+116 x+2 y+259=0$.
12. (a) The equation can be written as $(3 x-1)^{2}=-4(9 y+2)$.

Hence the vertex is $\left(\frac{1}{3},-\frac{2}{9}\right)$.
13. (a) $(x+1)^{2}=4 a(y+2)$

Passes through $(3,6) \Rightarrow 16=4 a .8 \Rightarrow a=\frac{1}{2}$
$\Rightarrow(x+1)^{2}=2(y+2) \Rightarrow x^{2}+2 x-2 y-3=0$.
14. (d) $a=4$, vertex $=(0,0)$, focus $=(0,-4)$.
15. (c) $\because S P^{2}=P M^{2}$
$\Rightarrow(x-3)^{2}+y^{2}=\left|\frac{x+3}{\sqrt{1}}\right|^{2}$
$\Rightarrow x^{2}+9-6 x+y^{2}=x^{2}+9+6 x$

$\Rightarrow y^{2}=12 x$.
16. (d) The parabola is $(x-2)^{2}=(3 y-6)$. Hence axis is $x-2=0$.
17. (c) Since the axis of parabola is y-axis
\therefore Equation of parabola $x^{2}=4 a y$

Since it passes through $(6,-3)$
$\therefore 36=-12 a \Rightarrow a=-3$
\therefore Equation of parabola is $x^{2}=-12 y$.
18. (c) $y^{2}-4 y+4=5 x+5 \Rightarrow(y-2)^{2}=5(x+1)$

Obviously, latus rectum is 5 .
19. (a) Given equation is $x^{2}=-8 a y$. Here $A=2 a$

Focus of parabola $(0,-A)$ i.e. $(0,-2 a)$
Directrix $y=A$ i.e., $y=2 a$.
20. (c) Since the ends of latus rectum lie on parabola, so only points $(-4,-2)$ and $(4,-2)$ satisfy the parabola.
21. (b) $y^{2}=4 \cdot \frac{1}{5} x ; a=\frac{1}{5}$. Focus is $\left(\frac{1}{5}, 0\right)$ and co-ordinates of latus rectum are $y^{2}=\frac{4}{25} \Rightarrow y= \pm \frac{2}{5}$

Or end points of latus rectum are $\left(\frac{1}{5}, \pm \frac{2}{5}\right)$.
22. (b) $a=3 \Rightarrow$ abscissa is $4-3=1$ and $y^{2}=12, y= \pm 2 \sqrt{3}$.

Hence points are $(1,2 \sqrt{3}),(1,-2 \sqrt{3})$.
23. (a) Given parabola is $x^{2}+8 x+12 y+4=0$

It can be written as $(x+4)^{2}=-12 y+12$

$$
\Rightarrow(x+4)^{2}=-12(y-1), \therefore \text { vertex is }(-4,1)
$$

24. (a) Given equation of parabola is $2 x^{2}+5 y-3 x+4=0$

$$
\Rightarrow x^{2}-\frac{3}{2} x=-\frac{5}{2} y-2 \Rightarrow\left(x-\frac{3}{4}\right)^{2}=-\frac{5}{2} y-\frac{23}{16}
$$

\therefore Equation of axis is, $x-\frac{3}{4}=0 \Rightarrow x=\frac{3}{4}$.
25. (c) The given equation of parabola is

$$
\begin{align*}
& y=2 x^{2}+x \Rightarrow x^{2}+\frac{x}{2}=\frac{y}{2} \\
& \Rightarrow\left(x+\frac{1}{4}\right)^{2}=\frac{y}{2}+\frac{1}{16} \Rightarrow\left(x+\frac{1}{4}\right)^{2}=\frac{1}{2}\left(y+\frac{1}{8}\right) \tag{i}
\end{align*}
$$

It can be written as, $X^{2}=\frac{1}{2} Y$
Here $A=\frac{1}{8}$, focus of (i) is $\left(0, \frac{1}{8}\right)$ i.e. $X=0, Y=\frac{1}{8}$
$\Rightarrow x+\frac{1}{4}=0, y+\frac{1}{8}=\frac{1}{8} \Rightarrow x=-\frac{1}{4}, y=0$
i.e. focus of given parabola is $\left(-\frac{1}{4}, 0\right)$.
26. (a) $P M^{2}=P S^{2} \Rightarrow(x-5)^{2}+(y-3)^{2}=\left(\frac{3 x-4 y+1}{\sqrt{9+16}}\right)^{2}$

$\Rightarrow 25\left(x^{2}+25-10 x+y^{2}+9-6 x\right)$
$=9 x^{2}+16 y^{2}+1-12 x y+6 x-8 y-12 x y$
$\Rightarrow 16 x^{2}+9 y^{2}-256 x-142 y+24 x y+849=0$
$\Rightarrow(4 x+3 y)^{2}-256 x-142 y+849=0$.
27. (d) Equation of parabola is $x^{2}-4 x-8 y+12=0$
$\Rightarrow x^{2}-4 x+4=8 y-8$
$\Rightarrow(x-2)^{2}=8(y-1) \Rightarrow X^{2}=8 Y$
Comparing with $X^{2}=4 a Y$, we get $a=2$
\therefore Directrix is $Y=-a \Rightarrow y-1=-2 \Rightarrow y=-1$.
28. (c) The given equation of parabola is $x^{2}-4 x-8 y+12=0$

$$
\Rightarrow \quad x^{2}-4 x=8 y-12 \Rightarrow(x-2)^{2}=8(y-1)
$$

Hence the length of latus rectum $=4 a=8$.
29. (b) $v S=\sqrt{(2-2)^{2}+(-3+1)^{2}}=2$. From $(x-h)^{2}=-4 a(y-k)$

Parabola is,

$(x-2)^{2}=-4.2(y+1)$
$\Rightarrow(x-2)^{2}=-8(y+1)$

$\Rightarrow x^{2}+4-4 x=-8 y-8$
$\Rightarrow x^{2}-4 x+8 y+12=0$.
30. (d) Clearly; $a=\left|\frac{-8}{\sqrt{1+1}}\right|-\left|\frac{-12}{\sqrt{1+1}}\right|=\frac{4}{\sqrt{2}}$

Length of latus rectum $=4 a=4 \times \frac{4}{\sqrt{2}}=8 \sqrt{2}$.
31. (a) The required point is nothing but the focus of the parabola. Therefore
$(y+1)^{2}=-(4 x-9)=-4\left(x-\frac{9}{4}\right)$
$S \equiv\left(-1+\frac{9}{4},-1\right)$ or $\left(\frac{5}{4},-1\right)$.
32. (c) $(x+2)^{2}=-2(y-2)$

Equation of latus rectum is $y-2=-\frac{1}{2} \Rightarrow y=\frac{3}{2}$.
33. (c) Directrix $=x+5=0$

Focus is $(-3,0) \Rightarrow 2 a=(-5+3)=2 \Rightarrow a=1$
Vertex is $\left(\frac{-3+(-5)}{2}, 0\right)=(-4,0)$
Therefore, equation is $(y-0)^{2}=4(x+4)$.
34. (d) Let $y=3 x$, then $(3 x)^{2}=18 x$
$\Rightarrow 9 x^{2}=18 x \Rightarrow x=2$ and $y=6$.
35. (c) Given, vertex of parabola $(h, k) \equiv(1,1)$ and its focus $(a+h, k) \equiv(3,1)$ or $a+h=3$ or $a=2$. We know that as the y-coordinates of vertex and focus are same, therefore axis of parabola is parallel to x-axis. Thus equation of the parabola is $(y-k)^{2}=4 a(x-h)$ or $(y-1)^{2}=4 \times 2(x-1)$ or $(y-1)^{2}=8(x-1)$.
36. (d) Let point of contact be (h, k), then tangent at this point is $k y=x+h$.
$x-k y+h=0 \equiv 18 x-6 y+1=0$
Or $\frac{1}{18}=\frac{k}{6}=\frac{h}{1}$ or $k=\frac{1}{3}, h=\frac{1}{18}$.
37. (c) $m=\tan \theta$. The tangent to $y^{2}=4 a x$ is $y=x \tan \theta+c$

Hence $c=\frac{a}{\tan \theta}=a \cot \theta$
\therefore The equation of tangent is $y=x \tan \theta+a \cot \theta$.
38. (a) $m=\tan \theta=\tan 60^{\circ}=\sqrt{3}$

The equation of tangent at (h, k) to $y^{2}=4 a x$ is $y k=2 a(x+h)$
Comparing, we get $m=\sqrt{3}=\frac{2 a}{k}$ or $k=\frac{2 a}{\sqrt{3}}$ and $h=\frac{a}{3}$.
39. (a) Given equation of parabola is $x^{2}+6 x+20 y-51=0$

$$
\begin{aligned}
& \Rightarrow x^{2}+6 x=-20 y+51 \\
& \Rightarrow(x+3)^{2}=-20 y+60 \Rightarrow(x+3)^{2}=-20(y-3)
\end{aligned}
$$

$\Rightarrow(x+3)^{2}=-4.5(y-3)$
\therefore Axis of parabola is $x+3=0$.
40. (a) Given, equation of parabola is $x^{2}+8 y-2 x=7 \Rightarrow x^{2}-2 x+8 y-7=0$

$$
\begin{aligned}
& \Rightarrow x^{2}-2 x+1+8 y-7-1=0 \Rightarrow(x-1)^{2}+8 y=8 \\
& \Rightarrow(x-1)^{2}=-8(y-1) \Rightarrow(x-1)^{2}=-4.2(y-1)
\end{aligned}
$$

Here, $a=2$.
\therefore Equation of directrix is $y-1=2$ i.e., $y=3$.
41. (b) $y=2 x+\lambda$ does not meet, if $\lambda>\frac{a}{m}=\frac{1}{2.2}=\frac{1}{4} \Rightarrow \lambda>\frac{1}{4}$.
42. (d) End points are $(a, \pm 2 a)$.
\therefore Tangents are, $\pm 2 a y=2 a(x+a)$ or $m= \pm \frac{2 a}{2 a}= \pm 1$
Hence angle between them is $\frac{\pi}{2}$.
43. (b) $\because c=\frac{a}{m}, \therefore c=\frac{1}{2}$.
44. (b) It is a fundamental property.
45. (c) m of tangent $=-1$.

Also from equation of parabola, we get gradient at (h, k) as the slope of parabola

$$
=\frac{d y}{d x}=\frac{-1}{2 y-1}=\frac{-1}{2 k-1}
$$

Since line and parabola touch at (h, k)
$\Rightarrow \frac{-1}{2 k-1}=-1 \Rightarrow-2 k+1=-1 \Rightarrow k=1$
Putting this value in $x+y=1$, we have $h=0$, so the point of contact is $(0,1)$.
46. (b) $y^{2}=8 x, \therefore 4 a=8 \Rightarrow a=2$

Any tangent of parabola is,
$y=m x+\frac{a}{m}$ or $m x-y+\frac{2}{m}=0$
If it is a tangent to the circle $x^{2}+y^{2}=2$, then perpendicular from centre $(0,0)$ is equal to radius $\sqrt{2}$.
$\therefore \frac{2 / m}{\sqrt{m^{2}+1}}=\sqrt{2}$ or $\frac{4}{m^{2}}=2\left(m^{2}+1\right)$
$\Rightarrow m^{4}+m^{2}-2=0 \Rightarrow\left(m^{2}+2\right)\left(m^{2}-1\right)=0$ or $m= \pm 1$
Hence the common tangent are $y= \pm(x+2)$
$\therefore y=x+2$.
47. (a) Tangent to parabola is, $y=m x+\frac{a}{m} \ldots$.(i)

A line perpendicular to tangent and passing from focus $(a, 0)$ is, $y=-\frac{x}{m}+\frac{a}{m}$
Solving both lines (i) and (ii) $\Rightarrow x=0$.
48. (b) Let the co-ordinates of P and Q be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ respectively. Then $y_{1}=2 a t_{1}$ and $y_{2}=2 a t_{2}$. The co-ordinates of the point of intersection of the tangents at P and Q are $\left\{a t_{1} t_{2}, a\left(t_{1}+t_{2}\right)\right\}$
$\therefore y_{3}=a\left(t_{1}+t_{2}\right)$
$\Rightarrow y_{3}=\frac{y_{1}+y_{2}}{2} \Rightarrow y_{1}, y_{3}$ and y_{2} are in A.P.
49. (a) $x \cos \alpha+y \sin \alpha-p=0$
$2 a x-y y_{1}+2 a\left(x_{1}+2 a\right)=0$
From (i) and (ii), $\frac{\cos \alpha}{2 a}=\frac{\sin \alpha}{-y}=\frac{-p}{2 a(x+2 a)}$
$\Rightarrow y=-2 a \tan \alpha$ and $x=-p \sec \alpha-2 a$
$\therefore y^{2}=4 a(x+a) \Rightarrow 4 a^{2} \tan ^{2} \alpha=-4 a(p \sec \alpha+a)$
$\Rightarrow p \cos \alpha+a=0$.
50. (c) Standard condition.
51. (c, d) Given that $y^{2}=9 x$. Here, $a=\frac{9}{4}$.

Now, equation of tangent to the parabola $y^{2}=9 x$ is
$y=m x+\frac{9 / 4}{m}$
If this tangent goes through the point $(4,10)$, then $10=4 m+\frac{9}{4 m} \Rightarrow(4 m-9)(4 m-1)=0 \Rightarrow m=\frac{9}{4}, \frac{1}{4}$
\therefore Equation of tangents are, $4 y=x+36$
and $4 y=9 x+4$
Or $x-4 y+36=0$ and $9 x-4 y+4=0$.
52. (c) Any tangent to $y^{2}=4 x$ is $y=m x+\frac{1}{m}$. It touches the circle, if $3=\left|\frac{3 m+\frac{1}{m}}{\sqrt{1+m^{2}}}\right|$

Or $9\left(1+m^{2}\right)=\left(3 m+\frac{1}{m}\right)^{2}$
www.sakshieducation.com

Or $\frac{1}{m^{2}}=3, \therefore m= \pm \frac{1}{\sqrt{3}}$.
For the common tangent to be above the x-axis, $m=\frac{1}{\sqrt{3}}$
\therefore Common tangent is, $y=\frac{1}{\sqrt{3}} x+\sqrt{3} \Rightarrow \sqrt{3} y=x+3$.
53. (d) Parabola is $y^{2}=a x$ i.e., $y^{2}=4\left(\frac{a}{4}\right) x$
\because Let point of contact is $\left(x_{1}, y_{1}\right)$
\therefore Equation of tangent is $y-y_{1}=\frac{2\left(\frac{a}{4}\right)}{y_{1}}\left(x-x_{1}\right)$
$\Rightarrow y=\frac{a}{2 y_{1}}(x)-\frac{a x_{1}}{2 y_{1}}+y_{1}$
Here, $m=\frac{a}{2 y_{1}}=\tan 45^{\circ} \Rightarrow \frac{a}{2 y_{1}}=1 \Rightarrow y_{1}=\frac{a}{2}$
From (i), $x_{1}=\frac{a}{4} . \quad \therefore$ Point is $\left(\frac{a}{4}, \frac{a}{2}\right)$.
54. (a,b) It is a fundamental concept
55. (d) It is obvious.
56. (a) Normal at (h, k) to the parabola $y^{2}=8 x$ is

$$
y-k=-\frac{k}{4}(x-h)
$$

Gradient $=\tan 60^{\circ}=\sqrt{3}=-\frac{k}{4} \Rightarrow k=-4 \sqrt{3}$ and $h=6$
Hence required point is $(6,-4 \sqrt{3})$.
57. (b) Any line through origin $(0,0)$ is $y=m x$. It intersects $y^{2}=4 a x$ in $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$.

Mid point of the chord is $\left(\frac{2 a}{m^{2}}, \frac{2 a}{m}\right)$
$x=\frac{2 a}{m^{2}}, y=\frac{2 a}{m} \Rightarrow \frac{2 a}{x}=\frac{4 a^{2}}{y^{2}}$ or $y^{2}=2 a x$, which is a parabola.
58. (a) From diagram, $\theta=45^{\circ}$
\Rightarrow Slope $= \pm 1$.

59. (a) The equation of the normal to $x^{2}=4 a y$ is of the form $x=m y-2 a m-a m^{3}$. Therefore $c=-2 a m-a m^{3}$.
60. (c) Semi latus rectum is harmonic mean between segments of focal chords of a parabola.
$\therefore b=\frac{2 a c}{a+c} \Rightarrow a, b, c$ are in H.P.
61. (d) We know that $t_{2}=-t_{1}-\frac{2}{t_{1}}$

Put $t_{1}=1$ and $t_{2}=t$. Hence $t=-3$.
62. (c) Since the semi-latus rectum of a parabola is the harmonic mean between the segments of any focal chord of a parabola, therefore $S P, 4, S Q$ are in H.P.

$$
\Rightarrow 4=2 \cdot \frac{S P \cdot S Q}{S P+S Q} \Rightarrow 4=\frac{2(6)(S Q)}{6+S Q} \Rightarrow S Q=3
$$

63. (d) $y=-2 x-k$ is normal to $y^{2}=-8 x$
or $-k=-\left\{-4(-2)-2(-2)^{3}\right\}=-(8+16) \Rightarrow k=24$.
64. (b) Any normal is $y+t x=6 t+3 t^{3}$. It is identical with $x+y=k$ if $\frac{t}{1}=\frac{1}{1}=\frac{6 t+3 t^{3}}{k}$
$\therefore t=1$ and $1=\frac{6+3}{k} \Rightarrow k=9$.
65. (c) Semi latus rectum is harmonic mean between segments of focal chords of a parabola.
$\therefore b=\frac{2 a c}{a+c} \Rightarrow a, b, c$ are in H.P.
66. (b) Equation of diameter of parabola is $y=\frac{2 a}{m}$

Here $a=\frac{1}{4}, m=1 \Rightarrow y=\frac{2 \times 1 / 4}{1} \Rightarrow 2 y=1$.
67. (b) $L_{1}=\sqrt{3} y-x=0$, solving L_{1} and $S_{1} \equiv y^{2}-4 a x=0$

Then $y=4 a \sqrt{3}$ and $x=12 a$

Hence $L=\sqrt{144 a^{2}+48 a^{2}}$

$$
=a \sqrt{192}=8 a \sqrt{3} .
$$

68. (c) $m=\tan \left(120^{\circ}\right)=-\sqrt{3}$
$=$ Slope of the line which passes through $(-1,0)$.

Required equation, $y-0=-\sqrt{3}(x+1)$
$y+\sqrt{3}(x+1)=0$.
69. (b) Chord of contact of $(-1,2)$ is $y y_{1}=2 a\left(x+x_{1}\right)$ or $y=x-1$.
70. (c) Points $\left(\frac{y_{1}^{2}}{4 a}, y_{1}\right),\left(\frac{y_{2}^{2}}{4 a}, y_{2}\right),\left(\frac{y_{3}^{2}}{4 a}, y_{3}\right)$

Use area formula and get $\Delta=\frac{1}{8 a}\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)$.
71. (c) Checking from options point $(\pm 2,2)$ is nearest. Hence option (c) is correct.
72. (d) If normal drawn to point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ of a parabola $y^{2}=4 a x$ meets at point $\left(a t_{2}^{2}, 2 a t_{2}\right)$ of same parabola then, $t_{2}=-t_{1}-2 / t_{1}$

In question $x=y$ (given)
Because abscissa and ordinate are equal.
$\therefore y^{2}=4 a x \Rightarrow y^{2}=4 a y$
[We use relation $x=y$]
$\Rightarrow y^{2}=4 a y=0 \Rightarrow y(y-4 a)=0 \Rightarrow y=0$ or $y=4 a$
Therefore point $(x=0, y=0)$ and ($x=4 a, y=4 a)$
$2 a t_{1}=4 a \Rightarrow t_{1}=\frac{4 a}{2 a}=2 ; t_{2}=-2-\frac{2}{2}=-2-1=-3$
$\therefore\left(a t_{2}^{2}, 2 a t_{2}\right)=\left[a \times(-3)^{2}, 2 a(-3)\right)=(9 a,-6 a)$.
73. (d) The given point $(-1,-60)$ lies on the directrix $x=-1$ of the parabola $y^{2}=4 x$. Thus the tangents are at right angle.
74. (c) Given parabola is $y^{2}=2 a x$
\therefore Focus $(a / 2,0)$ and directrix is given by $x=-a / 2$,
As circle touches the directrix.
\therefore Radius of circle $=$ distance from the point $(a / 2,0)$ to the line
$(x=-a / 2)=\frac{\left|\frac{a}{2}+\frac{a}{2}\right|}{\sqrt{1}}=a$

\therefore Equation of circle be $\left(x-\frac{a}{2}\right)^{2}+y^{2}=a^{2}$
Also $y^{2}=2 a x$
Solving (i) and (ii) we get $x=\frac{a}{2},-\frac{3 a}{2}$
Putting these values in $y^{2}=2 a x$ we get
$y= \pm a$ and $x=-3 a / 2$ gives imaginary values of y.
\therefore Required points are $(a / 2, \pm a)$.
75. (b,c) $y^{2}=6.24 \Rightarrow y= \pm 12$

Therefore, the points are $(24,12),(24,-12)$
Hence lines are $y= \pm \frac{12}{24} x \Rightarrow 2 y= \pm x$.
76. (a) Centre $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)$.

PARABOLA

PRACTICE EXERCISE

1. The parabola $(y-1)^{2}=a(x-2)$ passes through the point $(1,-2)$. The equation of its directrix is
1) $4 x-9=0$
2) $4 x+9=0$
3) $x-9=0$
4) $4 x=17$
2. The focus is at $(2,3)$ and the foot of the perpendicular from the focus on the directrix is $(4,5)$. The equation of the parabola is
1) $(x-2)^{2}+(y-3)^{2}=(x+y-9)^{2}$
2) $(x-2)^{2}+(y-3)^{2}=(x+y+9)^{2}$
3) $(x-2)^{2}+(y-3)^{2}=(x-y-9)^{2}$
4) $2\left[(x-2)^{2}+(y-3)^{2}\right]=(x+y-9)^{2}$
3. The equation of the parabola whose axis is parallel to x-axis and passing through $(1,2),(\mathbf{4}, \mathbf{1})$, $(2,3)$ is
1) $y^{2}+2 x+3 y+4=0$
2) $y^{2}-2 x+3 y+4=0$
3) $y^{2}+2 x-3 y+4=0$
4) $y^{2}-2 x-3 y+4=0$
4. If the ordinate of a point on the parabola $y^{2}=4 x$ is twice the latusrectum, then the point is
1) $(16,8)$
2) $(16,-8)$
3) $(-16,8)$
4) $(-16,-8)$
5. The length of the latusrectum of the parabola whose focus is $(3,3)$ and directrix is $3 x-4 y-2=0$ is
1) 2
2) 1
3) 4
4) 3
6. The focal distance of a point on $y^{2}=8 x$ is 10 , then its coordinates are
1) $(2, \pm 2)$
2) $(3, \pm 3)$
3) $(5, \pm 5)$
4) $(8, \pm 8)$
7. The latusrectum of a parabola whose focal chord is $P S Q$ such that $S P=3$ and $S Q=2$ is given by
1) $24 / 5$
2) $12 / 5$
3) $6 / 5$
4) $5 / 24$
8. A tangent to the parabola $y^{2}=4 a x$ makes an angle 45^{0} with the x-axis. Then its point of contact is
1) (a, 2a)
2) ($-\mathrm{a},-2 \mathrm{a})$
3) $(a,-2 a)$
4) $(-a, 2 a)$
9. The equation of the tangent to $y^{2}=7 x$ which is perpendicular to $x-4 y-7=0$ is
1) $4 x+y+7=0$
2) $8 x+2 y+7=0$
3) $64 x+16 y+7=0$
4) $16 x+64 y+7=0$
10. If $x+y+k=0$ is a tangent to the parabola $x^{2}=4 y$, then $k=$
1) 1
2) 2
3) -1
4) 4
11. The equation of the common tangent to $x^{2}+y^{2}=8$ and $y^{2}=16 x$ is
1) $y= \pm(x+2)$
2) $y= \pm(x+4)$
3) $2 x+3 y+36=0$
4) $3 x+2 y+24=0$
12. The slopes of two tangents drawn from $(1,4)$ to the parabola $y^{2}=12 x$ are
1) 1,4
2) 1, 3
3) 1,2
4) 2,3
13. Two tangents are drawn from $(-2,-1)$ to the parabola $y^{2}=4 x$. If ' α ' is the angle between them, then $\boldsymbol{\operatorname { t a n }} \alpha=$
1) 3
2) $1 / 3$
3) 2
4) $1 / 2$
14. The product of slopes of the tangents to the parabola $y^{2}=x$ drawn from the point $(1,-2)$ is
1) -2
2) $1 / 4$
3) $-1 / 2$
4) 1
15. The locus of the point of intersection of perpendicular tangents to the parabola $\mathbf{y}^{\mathbf{2}}=8 \mathbf{x}$ is
1) $x-2=0$
2) $y-2=0$
3) $x+2=0$
4) $y+2=0$
16. The length of the chord $4 y=3 x+8$ intercepted by $y^{2}=8 x$ is
1) $80 / 9$
2) $40 / 9$
3) $20 / 9$
4) $70 / 9$
17. The normal at $(16,16)$ to the parabola $y^{2}=16 x$ again meets at
1) $(36,-24)$
2) $(36,24)$
3) $(-36,24)$
4) $(18,24)$
18. The feet of the normals to $\mathbf{y}^{2}=4 \mathbf{a x}$ drawn from $(6 a, 0)$ are
1) $(0,0)(4 a, 4 a)(4 a,-4 a)$
2) $(0,0)(a, 2 a)(a,-2 a)$
3) $(0,0)(6 a, 9 a)(6 a,-9 a)$
4) $(0,0)(a, ~ a)(-a, ~ a)$
19. If t_{1}, t_{2}, t_{3} are the feet of the normals drawn from $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=\mathbf{4 a x}$, then $t_{1} t_{2}+t_{2} t_{3}+t_{3} t_{1}=$
1) 0
2) y_{1} / a
3) $\left(2 a-x_{1}\right) / a$
4) $\left(x_{1}-2 a\right) / a$
20. If a normal chord of $y^{2}=4 x$ makes an angle of 45° with the axis of parabola, then its length is
1) 8
2) $8 \sqrt{2}$
3) 4
4) $4 \sqrt{2}$
21. The normals at $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ on the parabola $y^{2}=12 x$, meet again on the parabola, then $\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{y}_{1} \mathbf{y}_{\mathbf{2}}=$
1) 147
2) 108
3) 274$)-27$
22. The length of the chord of the parabola $y^{2}=4 a x$ which is a normal at one end of a latusrectum is
1) $a \sqrt{2}$
2) $4 a \sqrt{2}$
3) $8 a \sqrt{2}$
4) $8 a$
23. The midpoint of the chord $2 x-y-2=0$ of the parabola $y^{2}=8 x$ is
1) $(1,0)$
2) $(2,2)$
3) $(3,4)$
4) $(0,-2)$
24. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ with one vertex at the origin. The radius of the circum circle of that triangle is
1) 2 a
2) $4 a$
3) $6 a$
4) $8 a$
25. I : The length of the latus rectum of the parabola $y^{2}+8 x-2 y+17=0$ is 8 .

II : The focal distance of the point $(9,6)$ on the parabola $y^{2}=4 x$ is 12 .

1) Only I is true
2) Only II is true
3) Both I and II are true
4) Neither I nor II true
26. If the chord of contact of $(3,-2)$ with respect to the parabola $y^{2}=x$ is $a x+b y+c=0$, then the ascending order of a, b, c is
1) a, b, c
2) a, c, b
3) c, a, b
4) b, a, c
27. If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ are the ends of the focal chord of the parabola $y^{2}=4 a x$, then match the following.
I) $\mathrm{x}_{1}, \mathrm{x}_{2}=$
a) a^{2}
II) $y_{1} y_{2}=$
b) $5 \mathrm{a}^{2}$
III) $\mathbf{x}_{1} x_{2}+y_{1} y_{2}=$
c) $-3 a^{2}$
IV) $\mathrm{x}_{1} \mathrm{x}_{\mathbf{2}}-\mathrm{y}_{1} \mathrm{y}_{2}=$
d) $-4 a^{2}$
1) a, b, c, d
2) b, c, a, d
3) a, d, c, b
4) b, d, a, c
28. Match the following:
$P\left(a t_{1}^{2}, 2 a t_{1}\right), Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ are two points on the parabola $y^{2}=4 a x$
List - I

List - II

A) $P Q$ is a focal chord
B) $P Q$ subtends a right angle at the vertex

1) $t_{1} t_{2}=1$
C) The normals at P and Q meet on the parabola
2) $t_{1} t_{2}=4$
D) The tangents at P and Q meet on the latusrectum
3) $t_{1} t_{2}=-1$
4) $t_{1} t_{2}=-4$
5) $t_{1} t_{2}=2$

Correct match from List- I to List - II

	A	B	C	D
1)	2	3	4	5
2)	5	4	3	2
$3)$	3	1	5	4
$4)$	3	4	5	1

29. I : The focus and directrix of a parabola are $(3,-4)$ and $x+y+7=0$. Then its latusrectum is equal to $4 \sqrt{2}$.
II : The focus and vertex of a parabola are $(4,5)$ and $(3,6)$ respectively. Then the equation of the directrix is $2 x-2 y+10=0$.

Which of the statement is correct?

1) Only I is true
2) Only II is true
3) Both I and II are true
4) Neither I nor II true
30. Assertion (A): The tangents drawn to the parabola $y^{2}=4 a x$ at the ends of any focal chord intersect on the directrix
Reason (R): The point of intersection of the tangents at drawn at $P\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ on the parabola $y^{2}=4 a x$ is $\left[\mathrm{at}_{1} \mathrm{t}_{2}, a\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right.$]
1) Both A and R are true and R is correct explanation of A
2) Both A and R are true but R is not the correct explanation of A
3) A is true but R is false
4) A is false but R is true.
31. Assertion (A): The centroid of the triangle formed by the conormal points on a parabola lies on its axis.

Reason (\mathbf{R}): $\mathbf{A}\left(\mathbf{t}_{1}\right), \mathbf{B}\left(\mathbf{t}_{2}\right), \mathbf{C}\left(\mathbf{t}_{3}\right)$ are the feet of the normals drawn from a point P to the parabola $y^{2}=\mathbf{4 a x}$. Then $t_{1}+t_{2}+t_{3}=\mathbf{0}$

1) Both A and R are true and R is correct explanation of A
2) Both A and R are true but R is not the correct explanation of A
3) A is true but R is false
4) A is false but R is true
32. I: The length of the focal chord of $y^{2}=4 a x$ and which makes an angle θ with x-axis is $4 \operatorname{acosec}^{2} \theta$.
II: The normals at two points on a parabola $y^{2}=4 a x$ intersect on the curve.
Then the product of their ordinates is $4 \mathrm{a}^{2}$.
Which of the statements is correct?
1) Only I is true
2) Only II is true
3) Both I and II are true
4) Neither I nor II true
33. The equation of the common tangent to the parabolas $y^{2}=32 x$ and $x^{2}=108 y$ is
1) $2 x+3 y+36=0$
2) $3 x+2 y+108=0$
3) $3 x+2 y-36=0$
4) $2 x+3 y-108=0$
34. The locus of the point of intersection of two tangents to the parabola $y^{2}=4 a x$ which make an angle 45° with one another is
1) $3\left(y^{2}-4 a x\right)=(x+a)^{2}$
2) $y^{2}-4 a x=3(x+a)^{2}$
3) $y^{2}-4 a x=(x+a)^{2}$
4) $y^{2}-4 a x=2(x+a)^{2}$
35. The tangents at P, Q, R on the parabola $y^{2}=4 a x$ make angles $30^{\circ}, 45^{\circ}, 60^{\circ}$ with the x-axis. Then their ordinates form a
1) A.P.
2) G.P.
3) H.P.
4) A.G.P
36. If y_{1}, y_{2} are the ordinates of two points P and Q on the parabola and y_{3} is the ordinate of the point of intersection of tangents at P and Q, then
1) y_{1}, y_{2}, y_{3} are in AP
2) y_{1}, y_{3}, y_{2} are in AP
3) y_{1}, y_{2}, y_{3} are in GP
4) y_{1}, y_{3}, y_{2} are in GP
37. The area of the triangle formed by the tangents from $(1,3)$ to the parabola $y^{2}=4 x$ and their chord of contact is
1) $15 / 2$
2) $3 \sqrt{ } 5 / 2$
3) $5 \sqrt{ } 5 / 2$
4) $7 \sqrt{ } 5 / 2$

PRACTICE EXERCISE KEY

1	2	3	4	5	6	7	8	9	10
4	4	4	1	1	4	1	1	3	1
11	12	13	14	15	16	17	18	19	20
2	2	1	2	3	1	1	1	3	2
21	22	23	24	25	26	27	28	29	30
2	3	2	4	1	2	3	4	3	1
31	32	33	34	35	36	37			
1	1	1	3	2	2	3			

