MULTIPLE PRODUCTS

OBJECTIVES

1. If $\overline{\mathrm{a}}=\overline{\mathrm{i}}+2 \overline{\mathrm{j}}, \overline{\mathrm{b}}=\overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}+2 \overline{\mathrm{k}}$, then $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=$
1) 8
2) 6
3) 4
4) 2
2. If $\overline{\mathrm{a}}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $\overline{\mathrm{b}}=3 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}}$, then $\overline{\mathrm{a}} \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{b}})=$
1) 0
2) 1
3) 3
4) not defined
3. The scalar $\overline{\mathrm{a}} .\{(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})\}$ is equal to
1) 0
2) $[\stackrel{-a-\bar{c}}{\mathrm{a}}]+[\mathrm{bc} \mathrm{a}]$
3) $[\stackrel{-a b c}{ }]$
4) $2[-\overline{a b c}]$
4. If $\overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{b}}$ and $\bar{c},|\overline{\mathrm{a}}|=2,|\stackrel{\rightharpoonup}{b}|=3,|\bar{c}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $2 \frac{\pi}{3}$, then $\mid[\overline{\mathrm{abc}]}]=$
1) 12
2) $12 \sqrt{3}$
3) $\frac{12}{\sqrt{3}}$
4) $12 \sqrt{2}$
5. The vector \bar{a} lies in the plane of vectors \bar{b} and \bar{c}. Which of the following is correct?
1) $\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=0$
2) $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=1$
3) $\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=-1$
4) $\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=3$
6. For three vectors $\bar{u}, \bar{v}, \bar{w}$ which of the following expressions is not equal to any of the remaining three?
1) $\bar{u} \cdot(\bar{v} \times \bar{w})$
2) $(\bar{v} \times \bar{w}) \cdot \bar{u}$
3) $\bar{v} .(\bar{u} . \bar{w})$
4) $(\bar{u} \times \bar{v}) \cdot \bar{w}$
7. Volume of the parallelepiped whose coterminous edges are $2 \overline{\mathrm{i}}-3 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}, \overline{\mathrm{i}}+2 \overline{\mathrm{j}}-2 \overline{\mathrm{k}}$, $3 \bar{i}-\overline{\mathrm{j}}+\overline{\mathrm{k}}$
1) 5 cu . Units
2) 6 cu . Units
3) 7 cu . Units
4) 8 cu . Units
8. If $[\bar{a} \bar{b} \bar{c}]=2$, then the volume of the parallelepiped whose coterminous edges are $2 \bar{a}+\bar{b}, 2 \bar{b}+\bar{c}$ and $2 \bar{c}+\bar{a}$ is
1) 9 cu . Units
2) 8 cu . Units
3) 18 cu . Units
4) 16 cu . Units
9. If $[\bar{a} \bar{b} \bar{c}]=4$, then the volume of the parallelepiped with $\bar{a}+\bar{b}, \bar{b}+\bar{c}$ and $\bar{c}+\bar{a}$ as coterminous edges is
1) 6
2) 7
3) 8
4) 5
10. If $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=12$, then $[\overline{\mathrm{a}}+\overline{\mathrm{b}} \overline{\mathrm{b}}+\overline{\mathrm{c}} \overline{\mathrm{c}}+\overline{\mathrm{a}}]=$
1) 24
2) 36
3) 48
4) 26
11. If $\bar{a}, \overline{\mathrm{~b}}, \overline{\mathrm{c}}$ are linearly independent, then $\frac{[2 \overline{\mathrm{a}}+\overline{\mathrm{b}} 2 \overline{\mathrm{~b}}+\mathrm{c} 2 \overline{\mathrm{c}}+\overline{\mathrm{a}}]}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}=$
1) 9
2) 8
3) 7
4) 6
12. If $\bar{a}, \bar{b}, \bar{c}$ are linearly independent and $\frac{[(\bar{a}+2 \bar{b}) \times(2 \bar{b}+c) \cdot(5 \bar{c}+\bar{a})]}{\bar{a} \cdot \bar{b} \times \bar{c}}=k$, then \mathbf{k} is
1) 10
2) 14
3) 18
4) 12
13. If $\bar{a}, \bar{b}, \bar{c}$ are three non-coplanar vectors, then $(\bar{a}+\bar{b}+\bar{c})[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]$ is equal to
1) 0
2) $[\bar{a} \bar{b} \bar{c}]$
3) $2[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$
4) $-[\bar{a} \bar{b} \bar{c}]$
14. If $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors and $[\bar{a}-\bar{b} \bar{b}-\bar{c} \bar{c}-\bar{a}]=k[\bar{a} \bar{b} \bar{c}]$, then $k=$
1) 1
2) 0
3) -1
4) 2
15. Let $\overline{\mathrm{a}}=\overline{\mathrm{i}}-\overline{\mathrm{k}}, \overline{\mathrm{b}}=x \overline{\mathrm{i}}+\overline{\mathrm{j}}+(1-\mathrm{x}) \overline{\mathrm{k}}$ and $\overline{\mathrm{c}}=y \overline{\mathrm{i}}+x \overline{\mathrm{j}}+(1+x+y) \overline{\mathrm{k}}$. Then $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$ depends on
1) Only x
2) Only y
3) Neither x nor y
4) Both x and y
16. The value of p such that the vectors $\bar{i}+3 \bar{j}-2 \bar{k}, 2 \bar{i}-\bar{j}+4 \bar{k}$ and $3 \bar{i}+2 \bar{j}+p \bar{k}$ are coplanar, is
1) 4
2) 2
3) 8
4) 10
17. The vectors $\lambda \overline{\mathrm{i}}+\overline{\mathrm{j}}+2 \overline{\mathrm{k}}, \overline{\mathrm{i}}+\lambda \overline{\mathrm{j}}-\overline{\mathrm{k}}$ and $2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\lambda \overline{\mathrm{k}}$ are coplanar if $\lambda=$
1) $2,1 \pm \sqrt{5}$
2) $2,1 \pm \sqrt{6}$
3) $-2,1 \pm \sqrt{3}$
4) $-3,1 \pm \sqrt{2}$
18. If $(\overline{\mathrm{a}}-\lambda \overline{\mathrm{b}}) \cdot(\overline{\mathrm{b}}-2 \overline{\mathrm{c}}) \times(\overline{\mathrm{c}}+3 \overline{\mathrm{a}})=0$ then $\lambda=$
1) $\frac{1}{6}$
2) $-\frac{1}{6}$
3) $\frac{1}{5}$
4) $-\frac{1}{5}$
19. If $\bar{a}, \bar{b}, \bar{c}$ are unit vectors perpendicular to each other, then $[\bar{a} \bar{b} \bar{c}]^{2}=$
1) 1
2) 3
3) 2
4) 4
20. If $\bar{a}=2 \bar{i}+3 \bar{j}, \bar{b}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{c}=\lambda \bar{i}+4 \bar{j}+2 \bar{k}$ are coterminous edges of a parallelepiped of volume 2 cu . Units, then a value of λ is
1) 1
2) 2
3) 3
4) 4
21. $\frac{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})}{(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \cdot \overline{\mathrm{b}}}+\frac{\overline{\mathrm{b}} .(\overline{\mathrm{a}} \times \overline{\mathrm{c}})}{\overline{\mathrm{c}} \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{b}})}$ is
1) 0
2) 1
3) -1
4) 2
22. Let $\overline{\mathrm{p}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{c}}}{[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]}, \overline{\mathrm{q}}=\frac{\overline{\mathrm{c}} \times \overline{\mathrm{a}}}{[\overline{\mathrm{a}} \overline{\mathrm{b} c} \overline{\bar{c}}]}, \overline{\mathrm{r}}=\frac{\overline{\mathrm{a}} \times \overline{\mathrm{b}}}{[\overline{\mathrm{a}} \overline{\mathrm{b} \bar{c}]}}$ a $\overline{\mathrm{b}} \overline{\mathrm{c}}$ being any three non-coplanar vectors Then $\overline{\mathrm{p}}(\overline{\mathrm{a}}+\overline{\mathrm{b}})+\overline{\mathrm{q}} \cdot(\overline{\mathrm{b}}+\overline{\mathrm{c}})+\overline{\mathrm{r}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})$ is equal to
1) -3
2) 3
3) 0
4) -2
23. If $[2 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]=\lambda[\overline{\mathrm{a} c} \overline{\mathrm{~d}}]+\mu[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]$, then $\lambda+\mu=$
1) 6
2) -6
3) 10
4) 8
24. The position vectors of the points $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are $3 \overline{\mathrm{i}}-2 \overline{\mathrm{j}}-\overline{\mathrm{k}}, 2 \overline{\mathrm{i}}+3 \overline{\mathrm{j}}-4 \overline{\mathrm{k}},-\overline{\mathrm{i}}+\overline{\mathrm{j}}+2 \overline{\mathrm{k}}$ and $4 \overline{\mathrm{i}}+5 \overline{\mathrm{j}}+\lambda \overline{\mathrm{k}}$ respectively. If $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are coplanar, then $\lambda=$
1) $-\frac{146}{17}$
2) $\frac{146}{17}$
3) $\frac{146}{15}$
4) $-\frac{146}{15}$
25. If the points $(1,0,3),(-1,3,4),(1,2,1)$ and $(a, 2,5)$ are coplanar, then $a=$
1) 1
2) -1
3) 2
4) -2
26. Let \bar{a} be a unit vector and \bar{b} a non zero vector not parallel to \bar{a}. Then the angle between the vectors $\overline{\mathrm{u}}=\sqrt{3}(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\bar{v}=(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{a}}$ is
1) $\frac{\pi}{4}$
2) $\frac{\pi}{3}$
3) $\frac{\pi}{2}$
4) $\frac{\pi}{6}$
27. The volume of the tetrahedron having vertices $\bar{i}+\bar{j}-\bar{k}, 2 \bar{i}+3 \bar{j}+2 \bar{k},-\bar{i}+\bar{j}+3 \bar{k}$ and $2 \overline{\mathrm{k}}$ is
1) $\frac{7}{3} \mathrm{cu}$. Units
2) $\frac{7}{6}$ cu. units
3) $\frac{7}{8} \mathrm{cu}$. Units
4) $\frac{5}{8} \mathrm{cu}$. units
28. The volume of the tetrahedron with vertices $(2,2,2),(4,3,3),(4,4,4)$ and $(5,5,6)$ is
1) $\frac{1}{2} \mathrm{cu}$. Units
2) $\frac{1}{4}$ cu. units
3) $\frac{1}{3}$ cu. units
4) $\frac{1}{5}$ cu.units
29. Volume of the tetrahedron with vertices at $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ is
1) $\frac{1}{6}$ cu.units
2) $\frac{1}{4}$ cu.units
3) $\frac{1}{3}$ cu. units
4) $\frac{1}{5} \mathrm{cu} . \mathrm{units}$
30. The volume of the tetrahedron whose vertices are $(1,-6,10),(-1,-3,7),(5,-1, \lambda)$ and $(7,-4,7)$ is 11 cu . Units, then the value of λ is
1) 2 or 6
2) 3 or 4
3) 1 or 7
4) 5 or 6
31. If $\overline{\mathrm{i}}, \overline{\mathrm{j}}, \overline{\mathrm{k}}$ are orthonormal unit vectors, then $\overline{\mathrm{i}}(\overline{\mathrm{a}} \times \overline{\mathrm{i}})+\overline{\mathrm{j}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{j}})+\overline{\mathrm{k}}(\overline{\mathrm{a}} \times \overline{\mathrm{k}})$ is
1) a
2) $2 \bar{a}$
3) $3 \bar{a}$
4) $4 \bar{a}$
32. If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}=2 \bar{i}+\bar{j}-\bar{k}$, and $\bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$ and $\bar{a} \times(\bar{b} \times \bar{c})=p \bar{i}+q \bar{j}+r \bar{k}$, then $\mathrm{p}+\mathrm{q}+\mathrm{r}=$
1) -4
2) 4
3) 2
4) -2
33. If ${ }^{\overline{\mathrm{a}}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}+\overline{\mathrm{k}}, \overline{\mathrm{b}}=\overline{\mathrm{i}}+\overline{\mathrm{j}}, \overline{\mathrm{c}}=\overline{\mathrm{i}}$ and $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\lambda \overline{\mathrm{a}}+\mu \overline{\mathrm{b}}$, then $\lambda+\mu=$
1) 1
2) 0
3) -1
4) 2
34. If $\bar{a}=2 \bar{i}-3 \bar{j}+4 \bar{k}, \bar{b}=\bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}-\bar{j}+\bar{k}$, then $\bar{a} \times(\bar{b} \times \bar{c})$ is perpendicular to
1) \bar{a}
2) \bar{b}
3) \bar{c}
4) $\bar{a} \times \bar{b}$
35. $\overline{\mathrm{a}} \times\{\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{b}})\}$ is equal to
1) $(\overline{\mathrm{a}} . \overline{\mathrm{a}})(\overline{\mathrm{b}} \times \overline{\mathrm{a}})$
2) $(\overline{\mathrm{a}} \cdot \overline{\mathrm{a}})(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$
3) $-\bar{a} \cdot \bar{a}$
4) $\bar{a} \times \bar{b}$
36. $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}}) \cdot \overline{\mathrm{d}}$ is equal to
1) $[\bar{a} \bar{b} \bar{c}]$
2) $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}](\overline{\mathrm{c}} . \overline{\mathrm{d}})$
3) $[\bar{a} \bar{b} \bar{c}](\bar{c} \cdot \bar{d})$
4) $[\overline{\mathrm{b}} \mathrm{a} \overline{\mathrm{c}}](\overline{\mathrm{b}} . \overline{\mathrm{d}})$
37. Which of the following statement is not true?
1) $\overline{\mathrm{a}}(\overline{\mathrm{b}}+\overline{\mathrm{c}})=\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$
2) $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}=\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
3) $\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}$
4) $\overline{\mathrm{a}} \times(\overline{\mathrm{b}}+\overline{\mathrm{c}})=(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+(\overline{\mathrm{a}} \times \overline{\mathrm{c}})$
38. $\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{i}})\} \mathrm{i}+\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{j}})\} \overline{\mathrm{j}}+\{\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{k}})\} \overline{\mathrm{k}}=$
1) $2(\bar{a} \times \bar{b})$
2) $3(\bar{a} \times \bar{b})$
3) $\bar{a} \times \bar{b}$
4) $(\bar{a} \times \bar{b})$
39. The position vectors of three non- collinear points A, B, C are $\bar{a}, \bar{b}, \bar{c}$ respectively. The distance of the origin from the plane through A, B, C is
1) $\frac{1}{|(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})|}$
2) $\frac{2[\bar{a} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}{|(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+(\overline{\mathrm{c}} \times \overline{\mathrm{a}})|}$
3) $\frac{[\bar{a} \bar{b} \bar{c}]}{|(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})|}$
4) $\frac{3[\bar{a} \bar{b} \bar{c}]}{|(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})|}$
40. The shortest distance between the lines $\bar{r}=(3 \bar{i}+8 \overline{\mathrm{j}}+3 \overline{\mathrm{k}})+\mathrm{s}(3 \overline{\mathrm{i}} \overline{\mathrm{j}}+\overline{\mathrm{k}})$ and $\bar{r}=(-3 \bar{i}-7 \bar{j}+6 \bar{k})+t(-3 \bar{i}+2 \bar{j}+4 \bar{k})$ is
1) $\sqrt{30}$
2) $2 \sqrt{30}$
3) $3 \sqrt{30}$
4) $4 \sqrt{30}$
41. If the four points $\bar{a}, \bar{b}, \bar{c}, \bar{d}$ are coplanar, then $[\bar{b} \bar{c} \bar{d}]+[\bar{c}-\bar{a} \bar{d}]+[\bar{a} \bar{b} \bar{d}]=$
1) 0
2) $[\bar{a} \bar{b} \bar{c}]$
3) $2[\bar{a} \overline{\mathrm{~b}} \overline{\mathrm{c}}]$
4) $3[\bar{a} \bar{b} \bar{c}]$
42. Let $\bar{a}=a_{1} \bar{i}+a_{2} \bar{j}+a_{3} \bar{k}, \bar{b}=b_{1} \bar{i}+b_{2} \bar{j}+b_{3} \bar{k}$, and $\bar{c}=c_{1} \bar{i}+c_{2} \bar{j}+c_{3} \bar{k}$ be three non-zero and non coplanar vectors such that \bar{c} is a unit vector perpendicular to both \bar{a} and \bar{b}. If the angle between \bar{a} and \bar{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=$
1) 0
2) $\pm \frac{1}{2} \sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}$
3) 1
4) -1
43. If $\bar{a} \bar{b}$ are non-zero and non-collinear vectors, then $[\bar{a} \bar{b} \bar{i}] \bar{i}+[\bar{a} \bar{b} \bar{j}] \bar{j}+[\bar{a} \bar{b} \bar{k}] \bar{k}$ is
1) $\bar{a}+\bar{b}$
2) $\bar{a} \times \bar{b}$
3) $\bar{a}-\bar{b}$
4) $\bar{b} \times \bar{a}$
44. If three unit vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are such that $\overline{\mathrm{b}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{1}{2} \overline{\mathrm{~b}}$, then the vector $\overline{\mathrm{a}}$ makes with \bar{b} and \bar{c} respectively the angles
1) $40^{\circ}, 80^{\circ}$
2) $45^{\circ}, 45^{\circ}$
3) $30^{\circ}, 60^{\circ}$
4) $90^{\circ}, 60^{\circ}$

45 Let $\bar{a}, \bar{b}, \bar{c}$ be three non-coplanar vectors each having a unit magnitude. If $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{1}{\sqrt{2}}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$, then the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$

1) 60°
2) 30°
3) 135°
4) 120°
46. Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be three vectors having magnitude 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{\mathrm{O}}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is
1) 30°
2) 60°
3) 45°
4) 75°
47. Let $\overline{\mathrm{p}}, \overline{\mathrm{q}}, \overline{\mathrm{r}}$ be the three mutually perpendicular vectors of the same magnitude. If a vector \bar{x} satisfies the equation $\bar{p} \times\{(\bar{x}-\bar{r}) \times \bar{p}\}+\bar{q} \times\{(\bar{x}-\bar{r}) \times \bar{q}\}+\bar{r} \times\{(\bar{x}-\bar{p}) \times \bar{r}\}=\bar{O}$, then \bar{x} is given by
1) $\frac{1}{2}(\overline{\mathrm{p}}+\overline{\mathrm{q}}-2 \overline{\mathrm{r}})$
2) $\frac{1}{2}(\overline{\mathrm{p}}+\overline{\mathrm{q}}+2 \overline{\mathrm{r}})$
3) $\frac{1}{3}(\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}})$
4) $\frac{1}{3}(2 \bar{p}+\bar{q}-\bar{r})$
48. If $\mathrm{a}(\bar{\alpha} \times \bar{\beta})+\mathrm{b}(\bar{\beta} \times \bar{\gamma})+\mathrm{c}(\bar{\gamma} \times \bar{\alpha})=\overline{\mathrm{O}}$ and at least one of a a,b and \mathbf{c} is non-zero, then vectors $\bar{\alpha}, \bar{\beta} \bar{\gamma}$
1) Parallel
2) Mutually Perpendicular
3) Coplanar
4) None of these
49. If $(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=3 \overline{\mathrm{c}}$, then $[\overline{\mathrm{b}} \times \overline{\mathrm{c}} \overline{\mathrm{c}} \times \overline{\mathrm{a}} \overline{\mathrm{a}} \times \overline{\mathrm{b}}]=$
1) 2
2) 7
3) 9
4) 11

www.sakshieducation.com

50. Vector \bar{c} is perpendicular to $\quad \bar{a} \bar{a}=2 \bar{i}+3 \bar{j}-\bar{k}$ and $\bar{b}=\bar{i}-2 \bar{j}+3 \bar{k}$. Also $\bar{c} \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})=6$. Then the value of $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]$ is
1) 36
2) -36
3) -63
4) 63
51. If \bar{b} and \bar{c} are any two non-collinear unit vectors and \bar{a} is any vector, then $(\overline{\mathrm{a}} . \overline{\mathrm{b}}) \overline{\mathrm{b}}+(\overline{\mathrm{a}} . \overline{\mathrm{c}}) \overline{\mathrm{c}}+\frac{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})}{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|^{2}}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})=$
1) $2 \bar{a}$
2) $3 \bar{a}$
3) \bar{a}
4) $4 \bar{a}$
52. The position vectors of vertices of $\triangle \mathrm{ABCare} \overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$. Given that $\stackrel{\rightharpoonup}{\mathrm{a}} \cdot \overline{\mathrm{a}}=\overline{\mathrm{b}} . \overline{\mathrm{b}}=\overline{\mathrm{c}} . \overline{\mathrm{c}}=9$ and $[\bar{a} \overline{\mathrm{~b}} \overline{\mathrm{c}}]=0$. Then the position vector of the orthocentre of $\triangle \mathrm{ABC}$ is
1) $\bar{a}-\bar{b}+\bar{c}$
2) $\bar{a}+\bar{b}-\bar{c}$
3) $\bar{a}+\bar{b}+\bar{c}$
4) $\bar{b}+\bar{c}-\bar{a}$
53. $[\bar{a} \times(3 \bar{b}+2 \bar{c}), \bar{b} \times(\bar{c}-2 \bar{c}), 2 \bar{c} \times(\bar{a}-3 \bar{b})]$
1) $-1[\overline{\mathrm{a}} \times \overline{\mathrm{b}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}, \overline{\mathrm{c}} \times \overline{\mathrm{a}}]$
2) $18[\bar{a} \bar{b} \bar{c}]^{2}$
3) $-18[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]^{2}$
4) $6[\overline{\mathrm{a}} \times \overline{\mathrm{b}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}, \overline{\mathrm{c}} \times \overline{\mathrm{a}}]$

MULTIPLE PRODUCTS

HINTS AND SOLUTIONS

Scalar and Vector Triple Products

1. (2)

$$
\bar{a} \cdot(\bar{b} \times \bar{c})\left[\overline { a } \quad \overline { b } \overline { c } \left|=\left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
1 & 0 & 2
\end{array}\right|\right.\right.
$$

$$
=1(2-0)-2(0-2)=2+4=6 \text {. }
$$

2. (4)
$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is a scalar. Hence $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})$ i.e. cross product between a vector and a scalar is not defined.
3. (1)
G.E. $=\overline{\mathrm{a}} \cdot\{(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \times(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}})\}$
$=\overline{\mathrm{a}} \cdot\{(\overline{\mathrm{b}} \times \overline{\mathrm{a}})+(\overline{\mathrm{b}} \times \overline{\mathrm{b}})+(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+(\overline{\mathrm{c}} \times \overline{\mathrm{a}})+(\overline{\mathrm{c}} \times \overline{\mathrm{b}})+(\overline{\mathrm{c}} \times \overline{\mathrm{c}})\}$
$=\overline{\mathrm{a}} \cdot\{(\overline{\mathrm{b}} \times \overline{\mathrm{a}})+(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+(\overline{\mathrm{c}} \times \overline{\mathrm{a}})+(\overline{\mathrm{c}} \times \overline{\mathrm{b}})\}$
$=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{a}})+\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{a}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}})+\overline{\mathrm{a}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{b}})$
$=[\bar{a} \bar{b} \bar{a}]+[\bar{a} \bar{b} \bar{c}]+[\bar{a} \bar{c} \bar{a}]+\left[\begin{array}{ll}\bar{a} \bar{c} \bar{b}]\end{array}\right.$
$=0+[\bar{a} \bar{b} \bar{c}]+0-[\bar{a} \bar{b} \bar{c}]=0$.
4. (2)
$\overline{\mathrm{a}} \perp \overline{\mathrm{b}}, \overline{\mathrm{a}} \perp \overline{\mathrm{c}} \Rightarrow \overline{\mathrm{a}} / /(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$
Now $|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=|\overline{\mathrm{b}}| \cdot|\overline{\mathrm{c}}| \sin 120^{\circ}$

$$
=3(4)\left(\frac{\sqrt{3}}{2}\right)=6^{\sqrt{3}} .
$$

Then $|[\overline{\mathrm{a}} \overline{\mathrm{b}} \mathrm{\bar{c}}]|=|\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})|$
$=|\overline{\mathrm{a}}| \cdot|\overline{\mathrm{b}} \times \overline{\mathrm{c}}| \cos (\overline{\mathrm{a}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}})$
$=2(6 \sqrt{3}) \cos 0^{\circ}=12 \sqrt{3}$.
5. (1)

Given $\bar{a}, \bar{b}, \bar{c}$ are coplanar. But $\bar{b} \times \bar{c}$ is a vector perpendicular to the plane containing $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$.

Hence $\bar{b} \times \bar{c}$ is also perpendicular to \bar{a}
$\therefore \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=0$.
6. (3)
$\overline{\mathrm{v}} \cdot(\overline{\mathrm{u}} \cdot \overline{\mathrm{w}})$ is not equal to the remaining three.
7. (3)

Volume $=\left\|\begin{array}{ccc}2 & -3 & 4 \\ 1 & 2 & 2 \\ 3 & -1 & -1\end{array}\right\|$
$=|2(2+2)+3(1-6)+4(-1-6)|=7$
8. (3)

Volume $=\left|\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2\end{array}\right| \overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{c}}$
$=[2(4-0)-0+1(1-0)](2)=18$.
9. (3)We have
$[\bar{a}+\bar{b} \bar{b}+\bar{c} \bar{c}+\bar{a}]=2[\bar{a} \bar{b} \bar{c}]=2(4)=8$.
10. (1)
$[\bar{a}+\bar{b} \bar{b}+\bar{c} \bar{c}+\bar{a}]=2[\bar{a} \bar{b} \bar{c}]=2(12)=24$
11. (1)

$$
\left.\begin{array}{l}
{[2 \bar{a}+\bar{b} 2 \bar{b}+\bar{c} 2 \bar{c}+\bar{a}]} \\
\quad=\left|\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
1 & 0 & 2
\end{array}\right|\left[\begin{array}{l}
\bar{a} \bar{b} \bar{c}]
\end{array}\right. \\
=9[\bar{a} \bar{b} \bar{c}]
\end{array}\right\}
$$

12. (4)

$$
\frac{\left|\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1 \\
1 & 0 & 5
\end{array}\right|[\bar{a} \bar{b} \bar{c}]}{[\bar{a} \bar{b} \bar{c}]}=k \Rightarrow 12=k
$$

13. (4)

$$
\begin{aligned}
& \text { G.E. }=(\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})] \\
& (\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a} \times \bar{b})+(\bar{a} \times \bar{c})+(\bar{b} \times \bar{a})+(\bar{b} \times \bar{c})] \\
& =\bar{a}(\bar{a} \times \bar{c})+\bar{a}(\bar{b} \times \bar{a})+\bar{a}(\bar{b} \times \bar{c})+\bar{b}(\bar{a}+\bar{c})+\bar{b}(\bar{b}+\bar{a})+\bar{b}(\bar{b} \times \bar{c})+\bar{c}(\bar{a} \times \bar{c})+\bar{c}(\bar{b} \times \bar{a})+\bar{c}(\bar{b} \times \bar{c}) \\
& (\because \bar{a} \times \bar{a}=\overline{0}) \\
& =0+0+[\overline{\mathrm{a}} \bar{b} \bar{c}]-[\bar{b} \bar{a} \bar{c}]+0+0+0+[\bar{c} \bar{b} \bar{a}]+0 \\
& =[\bar{a} \bar{b} \bar{c}]-[\bar{b} \bar{c} \bar{a}]-[\bar{c} \bar{a} \bar{b}] \\
& =[\bar{b} \bar{c} \bar{a}]-[\bar{b} \bar{c} \bar{a}]-[\bar{a} \bar{b} \bar{c}]=-[\bar{a} \bar{b} \bar{c}]
\end{aligned}
$$

14. (2)

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right|[\bar{a} \bar{b} \bar{c}]=k[\bar{a} \bar{b} \bar{c}] \\
& \Rightarrow 0=k[\bar{a} \bar{b} \bar{c}] \\
& \Rightarrow k=0\{\because[\bar{a} \bar{b} \bar{c}] \neq 0\}
\end{aligned}
$$

15. (3)
$[\bar{a} \bar{b} \bar{c}]=\left|\begin{array}{ccc}1 & 0 & -1 \\ x & 1 & 1-x \\ y & x & 1+x-y\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1+x\end{array}\right|$
Applying: $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1}$

$$
=1(1+x)-1 \cdot x=1+x-x=1
$$

(Expanding along R_{1})
This depends neither on x nor on y .
16. (2)

Given vectors are coplanar
$\Rightarrow\left|\begin{array}{ccc}1 & 3 & -2 \\ 2 & -1 & 4 \\ 3 & 2 & \mathrm{p}\end{array}\right|=0$
$\Rightarrow 1(-\mathrm{p}-8)-2(3 \mathrm{p}+4)+3(12-2)=0$
$\Rightarrow 7 \mathrm{p}+14=0 \Rightarrow \mathrm{p}=2$.
17. (3)

Given vectors are coplanar \Leftrightarrow

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\lambda & 1 & 2 \\
1 & \lambda & -1 \\
2 & -1 & \lambda
\end{array}\right|=0 \\
& \Rightarrow \lambda\left(\lambda^{2}-1\right)-1(\lambda+2)+2(-1-2 \lambda)=0 \\
& \Rightarrow \lambda^{3}-6 \lambda-4=0
\end{aligned}
$$

By inspection one value of λ is -2 .
$\therefore(\lambda+2)\left(\lambda^{2}-2 \lambda-2\right)=0$.
Now $\lambda^{2}-2 \lambda-2=0 \Rightarrow \lambda=\frac{2 \pm \sqrt{4+8}}{2}$

$$
=\frac{2 \pm 2 \sqrt{3}}{2}=1 \pm \sqrt{3}
$$

$\therefore \lambda=-2,1 \pm \sqrt{3}$
18. (2)

$$
\begin{aligned}
& {[\bar{a}-\lambda \bar{b} \bar{b}-2 \bar{c} \bar{c}+3 \bar{a}]=0} \\
& \Rightarrow\left|\begin{array}{ccc}
1 & -\lambda & 0 \\
0 & 1 & -2 \\
3 & 0 & 1
\end{array}\right|[\bar{a} \bar{b} \bar{c}]=0 \\
& \Rightarrow 1(1-0)+\lambda(0+6)=0
\end{aligned}
$$

Since $[\bar{a} \bar{b} \bar{c}] \neq 0 \Rightarrow \lambda=-1 / 6$.
19. (1)

Given
$|\overline{\mathrm{a}}|=|\overline{\mathrm{b}}|=|\overline{\mathrm{c}}|=1$ and $\overline{\mathrm{a}} \perp \overline{\mathrm{b}}, \overline{\mathrm{b}} \perp \overline{\mathrm{c}}, \overline{\mathrm{c}} \perp \overline{\mathrm{a}}$.
Now $\overline{\mathrm{b}} \times \overline{\mathrm{c}}=|\overline{\mathrm{b}}| \cdot|\overline{\mathrm{c}}| \sin 90^{\circ} \overline{\mathrm{n}}$
$=1 \cdot 1 \cdot 1 \cdot \overline{\mathrm{n}} \Rightarrow \overline{\mathrm{n}}$ is $\perp \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$
But \bar{a} is \perp to \bar{b} and $\bar{c} \Rightarrow \bar{a} \| \bar{n}$
$\therefore \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \cdot \overline{\mathrm{n}}=|\overline{\mathrm{a}}| \cdot|\overline{\mathrm{n}}| \cos 0^{\circ}$
or $|\overline{\mathrm{a}} \| \overline{\mathrm{n}}| \cos \pi=1$ or -1 .
$\Rightarrow[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]= \pm 1$
$\Rightarrow[\bar{a} \bar{b} \bar{c}]^{2}=1$.
20. (4)

$$
\begin{aligned}
& \text { Volume }=\left\|\begin{array}{lll}
2 & 3 & 0 \\
1 & 1 & 1 \\
\lambda & 4 & 2
\end{array}\right\|=2 \text { (given) } \\
& \Rightarrow|2(2-4)-3(2-\lambda)+0|=2 \\
& \Rightarrow|3 \lambda-10|=2 \\
& 3 \lambda-10=2 \Rightarrow 3 \lambda=12 \Rightarrow \lambda=4
\end{aligned}
$$

21. (1)

$$
\text { G.E. } \begin{aligned}
& =\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{c} \bar{a} \bar{b}]}+\frac{[\bar{b} \bar{a} \bar{c}]}{[\bar{c} \bar{a} \bar{b}]} \\
& =\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{c} \overline{\mathrm{c}} \overline{\mathrm{~b}}]}-\frac{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}{[\bar{c} \overline{\mathrm{c}} \overline{\mathrm{~b}}]}=0
\end{aligned}
$$

22. (2)

$$
\text { G.E. }=\frac{(\overline{\mathrm{b}} \times \overline{\mathrm{c}}) \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}+
$$

$$
\frac{(\bar{c} \times \bar{a}) \cdot(\bar{b}+\bar{c})}{[\bar{a} \bar{b} \bar{c}]}+\frac{(\bar{a} \times \bar{b}) \cdot(\bar{c}+\bar{a})}{[\bar{a} \bar{b} \bar{c}]}
$$

$$
=\frac{\left[\begin{array}{c}
\bar{a} \cdot(\bar{a} \times \bar{c})+\bar{b} \cdot(\bar{b} \times \bar{c})+\bar{b} \cdot(\bar{c} \times \bar{a})+ \\
\bar{c} \cdot(\bar{c} \times \bar{a})+\bar{c}(\bar{a} \times \bar{b})+\bar{a}(\bar{a} \times \bar{b})
\end{array}\right]}{[\bar{a} \bar{b} \bar{c}]}
$$

$$
=\frac{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]+0+[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]+0+[\overline{\mathrm{c}} \overline{\mathrm{a}} \overline{\mathrm{~b}}]+0}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}
$$

$$
=\frac{3[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}{[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]}=3 .
$$

23. (1)
$(2 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}) \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=2(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \times \overline{\mathrm{d}})+4(\overline{\mathrm{~b}} \cdot \overline{\mathrm{c}} \times \overline{\mathrm{d}})$
$=2[\overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{d}}]+4[\overline{\mathrm{~b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]+\lambda[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]+\mu[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{d}}]$
$\Rightarrow \lambda=2, \mu=4$
$\Rightarrow \lambda+\mu=6$.
24. (1)

Giyen $\mathrm{A}(3,-2,-1), \mathrm{B}(2,3,-4)$,
$\mathrm{C}=(-1,1,2), \mathrm{D}=(4,5, \lambda)$
$\overline{\mathrm{AB}}=(-1,5,-3), \overline{\mathrm{AC}}=(-4,3,3), \overline{\mathrm{AD}}=(1,7, \lambda+1)$
Given A, B, C, D are coplanar
$\Rightarrow[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]=0 \Rightarrow\left|\begin{array}{ccc}-1 & 5 & -3 \\ -4 & 3 & 3 \\ 1 & 7 & \lambda+1\end{array}\right|=0$
$\Rightarrow 17 \lambda=-146 \Rightarrow \lambda=-146 / 17$.
25. (2)

Let $\mathrm{A}=(1,0,3), \mathrm{B}=(-1,3,4)$,
$\mathrm{C}=(1,2,1), \mathrm{D}=(\mathrm{a}, 2,5)$
Then $\overline{\mathrm{AB}}=(-2,3,1), \overline{\mathrm{AC}}=(0,2,-2)$

$$
\overline{\mathrm{AD}}=(\mathrm{a}-1,2,2)
$$

Given points are coplanar

$$
\begin{aligned}
& \Rightarrow[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]=0 \\
& \Rightarrow 8 \mathrm{a}=-8 \Rightarrow \mathrm{a}=-1 .
\end{aligned}
$$

26. (3)

If θ is the angle between the given vectors, then $\cos \theta=\frac{\sqrt{3}(\bar{a} \times \bar{b}) \cdot\{(\bar{a} \times \bar{b}) \times \bar{a}\}}{\sqrt{3}|\bar{a} \times \bar{b}| \cdot|(\bar{a} \times \bar{b}) \times \bar{a}|}$

$$
\begin{aligned}
& =\frac{\sqrt{3}(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \overline{\mathrm{a}}}{\sqrt{3}|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| \cdot \mid(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{a}}}=0 \\
& \Rightarrow \theta=90^{\circ}=\pi / 2 .
\end{aligned}
$$

27. (1)

Let $\mathrm{A}=(1,1,-1), \mathrm{B}=(2,3,2)$,
$\mathrm{C}=(-1,1,3), \mathrm{D}=(0,0,2)$

$$
\begin{aligned}
& \overline{\mathrm{AB}}=(2-1,3-1,2+1)=(1,2,3) \\
& \overline{\mathrm{AC}}=(-2,0,4), \overline{\mathrm{AD}}=(-1,-1,3)
\end{aligned}
$$

Volume $=\frac{1}{6}[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]$
$=\frac{1}{6}\left|\begin{array}{ccc}1 & 2 & 3 \\ -2 & 0 & 4 \\ -1 & -1 & 3\end{array}\right|=\frac{1}{6}(14)=\frac{7}{3}$ cu.units
28. (3)

Let $\mathrm{A}=(2,2,2), \mathrm{B}=(4,3,3), \mathrm{C}=(4,4,4)$ and $\mathrm{D}=(5,5,6)$, be the vertices. Then volume of the tetrahedron
$=\frac{1}{6}[\overline{\mathrm{AB}} \overline{\mathrm{AC}} \overline{\mathrm{AD}}]$
$=\frac{1}{6}|[(2,1,1),(2,2,2),(3,3,4)]|$
$=\frac{1}{6}\left\|\begin{array}{lll}2 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 4\end{array}\right\|=\frac{1}{6}(2)=\frac{1}{3}$ cu.units.
29. (1)

Volume $=\frac{1}{6}[\overline{\mathrm{OA}} \overline{\mathrm{OB}} \overline{\mathrm{OC}}]$ where $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ are the given points.
$\Rightarrow \mathrm{V}=\frac{1}{6}\left\|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right\|=\frac{1}{6}(1)=\frac{1}{6}$ cut.units.
30. (3)

Let $\mathrm{A}=(1,-6,10), \mathrm{B}=(-1,-3,7)$,
$\mathrm{C}=(5,-1, \lambda), \mathrm{D}=(7,-4,7)$
Then $\overline{\mathrm{AB}}=(-2,3,-3), \overline{\mathrm{AC}}=(4,5, \lambda-10)$ and $\overline{\mathrm{AD}}=(6,2,-3)$
Volume $=\frac{1}{6}\left|\begin{array}{ccc}-2 & 4 & 6 \\ 3 & 5 & 2 \\ -3 & \lambda-10 & -3\end{array}\right|=11$
$\Rightarrow 22 \lambda-88= \pm 66 \Rightarrow \lambda=7$ or 1
31. (2)

$$
\begin{aligned}
\text { G.E. }= & (\overline{\mathrm{i}} \cdot \overline{\mathrm{i}}) \mathrm{a}-(\overline{\mathrm{i}} \cdot \overline{\mathrm{a}})+(\overline{\mathrm{j}} \cdot \overline{\mathrm{j}}) \overline{\mathrm{a}} \\
& -(\overline{\mathrm{j}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{j}}+(\overline{\mathrm{k}} \cdot \overline{\mathrm{k}}) \overline{\mathrm{a}}-(\overline{\mathrm{k}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{k}} \\
=3 \overline{\mathrm{a}}- & {[(\overline{\mathrm{i}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{i}}+(\overline{\mathrm{j}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{j}}+(\overline{\mathrm{k}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{k}}] } \\
=3 \overline{\mathrm{a}}-\overline{\mathrm{a}}= & 2 \overline{\mathrm{a}}
\end{aligned}
$$

32. (1)

$$
\begin{aligned}
& (\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{c}}=\mathrm{p} \overline{\mathrm{i}}+\mathrm{q} \overline{\mathrm{i}}+\mathrm{r} \overline{\mathrm{k}} \\
& \Rightarrow(1-6+6)(2 \overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}})- \\
& (2-2+3)(\overline{\mathrm{i}}+3 \overline{\mathrm{j}}-2 \overline{\mathrm{k}})=\mathrm{p} \overline{\mathrm{i}}+\mathrm{q} \overline{\mathrm{j}}+\mathrm{r} \overline{\mathrm{k}} \\
& \Rightarrow-\overline{\mathrm{i}}-8 \overline{\mathrm{j}}+5 \overline{\mathrm{k}}=\mathrm{p} \overline{\mathrm{i}}+\mathrm{q} \overline{\mathrm{j}}+\mathrm{r} \overline{\mathrm{k}} \\
& \Rightarrow \mathrm{p}+\mathrm{q}+\mathrm{r}=-1-8+5=-4
\end{aligned}
$$

33. (2)

$$
\begin{aligned}
& (\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}) \overline{\mathrm{b}}-(\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}}) \overline{\mathrm{a}}=\lambda \overline{\mathrm{a}}+\mu \overline{\mathrm{b}} \\
& \Rightarrow \lambda=-(\overline{\mathrm{c}} \cdot \overline{\mathrm{~b}})=-1
\end{aligned}
$$

$$
\text { and } \mu=\overline{\mathrm{c}} \cdot \overline{\mathrm{a}}=1 \Rightarrow \lambda+\mu=-1+1=0
$$

34. (1)
$\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}$
$=(2-3+4)(\overline{\mathrm{i}}+\overline{\mathrm{j}}-\overline{\mathrm{k}})-(2+3-4)(\overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})$
$=2 \overline{\mathrm{i}}+4 \overline{\mathrm{j}}-4 \overline{\mathrm{k}}$
Now $\bar{a} \times(\bar{b} \times \bar{c}) \perp \bar{a}$
$\sin \operatorname{ce}[\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})] \cdot \overline{\mathrm{a}}=4+12-16=0$
35. (1)

$$
\begin{aligned}
& \bar{a} \times\{\bar{a} \times(\bar{a} \times \bar{b})\}=\bar{a}\{(\bar{a} \cdot \bar{b}) \bar{a}-(\bar{a} \cdot \bar{a}) \bar{b}\} \\
& (\bar{a} \times \bar{a})(\bar{a} \cdot \bar{b})-(\bar{a} \cdot \bar{a})(\bar{a} \times \bar{b}) \\
& =\overline{0}+(\bar{a} \cdot \bar{a})(\bar{b} \times \bar{a})=(\bar{a} \cdot \bar{a})(\bar{b} \times \bar{a})
\end{aligned}
$$

36. (3)

$$
\begin{aligned}
& (\bar{a} \times \bar{b}) \times(\bar{a} \times \bar{c}) \cdot \bar{d} \\
& =[\{(\bar{a} \times \bar{b}) \bar{c}\} \bar{a}-\{(\bar{a} \times \bar{b}) \bar{a}\} \bar{c}] \bar{d} \\
& =\{[\bar{a} \bar{b} \bar{c}] \bar{a}-[\bar{a} \bar{b} \bar{a}] \bar{c}\} \bar{d}=[\bar{a} \bar{b} \bar{c}](\bar{a} \cdot \bar{d}) .
\end{aligned}
$$

37. (2)
$(\bar{a} \times \bar{b}) \times \bar{c} \neq \bar{a} \times(\bar{b} \times \bar{c})$.
Hence (2) is not true.
38. (3)
G.E. $=\{\bar{a} \cdot(\bar{b} \times \overline{\mathrm{i}})\} \mathrm{i}+\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{j}})\} \overline{\mathrm{j}}+\{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{k}})\} \overline{\mathrm{k}}$

Interchanging • and \times, we get
$=\{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{i}}\} \overline{\mathrm{i}}+\{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{j}}\} \overline{\mathrm{j}}+\{(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{k}}\} \overline{\mathrm{k}}$
Let $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=x \overline{\mathrm{i}}+\mathrm{y} \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}$
$\Rightarrow(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{i}}=x,(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{j}}=y,(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{k}}=\mathrm{z}$
Hence
G.E. $=\left[\begin{array}{ll}\bar{a} & \bar{b} \\ \bar{i}\end{array}\right] \overline{\mathrm{i}}+[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{j}}] \overline{\mathrm{j}}+[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{k}}] \overline{\mathrm{k}}$

$$
=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}} .
$$

39. (3)

The equation of the plane passing through the points $A(\bar{a}), B(\bar{b}), C(\bar{c})$ is
$\bar{r} \cdot\{(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})\}=[\bar{a} \bar{b} \bar{c}]$
\therefore Distance from the origin to the plane
$=\frac{[\bar{a} \bar{b} \bar{c}]}{\mid(\bar{a} \times \bar{b})+(\bar{b} \times \bar{c})+(\bar{c} \times \bar{a})}$.
40. (3)

Here $\bar{a}=3 \overline{\mathrm{i}}+8 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}, \overline{\mathrm{b}}=3 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}}$,

$$
\overline{\mathrm{c}}=-3 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}+6 \overline{\mathrm{k}}, \overline{\mathrm{~d}}=-3 \overline{\mathrm{i}}+2 \overline{\mathrm{j}}+4 \overline{\mathrm{k}}
$$

$$
\overline{\mathrm{b}} \times \overline{\mathrm{d}}=\left|\begin{array}{ccc}
\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\
3 & -1 & 1 \\
-3 & 2 & 4
\end{array}\right|
$$

$$
=\overline{\mathrm{i}}(-4-2)-\overline{\mathrm{j}}(12+3)+\overline{\mathrm{k}}(6-3)
$$

$$
=-6 \overline{\mathrm{i}}-15 \overline{\mathrm{j}}+3 \overline{\mathrm{k}}
$$

41. (2)

Points $\mathrm{A}(\overline{\mathrm{a}}), \mathrm{B}(\overline{\mathrm{b}}), \mathrm{C}(\overline{\mathrm{c}}), \mathrm{D}(\overline{\mathrm{d}})$ are coplanar.
$\Rightarrow \overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}}$ are coplanar
$\Rightarrow[\overline{\mathrm{AB}}, \overline{\mathrm{AC}}, \overline{\mathrm{AD}}]=0$
$\Rightarrow[\bar{b}-\bar{a} \bar{c}-\bar{a} \bar{d}-\bar{a}]=0$
$\Rightarrow(\bar{b}-\bar{a}) \times(\bar{c}-\bar{a}) \cdot(\bar{d}-\bar{a})=0$
$\Rightarrow\{(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-(\overline{\mathrm{b}} \times \overline{\mathrm{a}})-(\overline{\mathrm{a}} \times \overline{\mathrm{c}})\} \cdot(\overline{\mathrm{d}}-\overline{\mathrm{a}})=0$
$\Rightarrow\{(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-(\overline{\mathrm{a}} \times \overline{\mathrm{b}})+(\overline{\mathrm{c}} \times \overline{\mathrm{a}})\} \cdot(\overline{\mathrm{d}}-\overline{\mathrm{a}})=0$
$\Rightarrow(\bar{b} \times \bar{c}) \cdot \bar{d}-(\bar{b} \times \bar{c}) \cdot \bar{a}+(\bar{a} \times \bar{b}) \cdot \bar{d}-(\bar{a} \times \bar{b}) \cdot \bar{a}+(\bar{c} \times \bar{a}) \cdot \bar{d}-(\bar{c} \times \bar{a}) \cdot \bar{a}=0$
$\Rightarrow[\bar{b} \bar{c} \bar{d}]+\left[\begin{array}{ll}\bar{a} & \bar{b} \bar{d}]\end{array}+[\bar{c} \bar{a} \bar{d}]=\left[\begin{array}{ll}\bar{a} & \bar{b} \\ \mathrm{c}\end{array}\right]\right.$
since $[\bar{a} \bar{b} \bar{c}]=0$ and $[\bar{c} \bar{a} \bar{a}]=0$ and
$(\bar{b} \times \bar{c}) \cdot \bar{a}=\bar{a} \cdot(\bar{b} \times \bar{c})$.
42. (2)
$\overline{\mathrm{c}} \|(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $|\overline{\mathrm{c}}|=1$. Also $(\overline{\mathrm{a}}, \overline{\mathrm{b}})=30^{\circ}$
$\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=[\bar{a} \bar{b} \bar{c}]=\bar{c} \cdot(\bar{a} \times \bar{b})$
$=|\overline{\mathrm{c}}| .|\overline{\mathrm{a}} \times \overline{\mathrm{b}}| \cos 0^{\circ}$ or $\cos 180^{\circ}$
$= \pm 1 \cdot|\overline{\mathrm{a}}| \cdot|\overline{\mathrm{b}}| \sin 30^{\circ}$
$= \pm \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}} \frac{1}{2}$
$= \pm \frac{1}{2} \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}$
43. (2)

Let $\bar{a} \times \bar{b}=x \bar{i}+y \bar{j}+z \bar{k}$
$\therefore(\bar{a} \times \bar{b}) \cdot \bar{i}=x,(\bar{a} \times \bar{b}) \cdot \bar{j}=y,(\bar{a} \times \bar{b}) \cdot \bar{k}=z$
$\therefore[\bar{a} \bar{b} \bar{i}] i+[\bar{a} \bar{b} \bar{j}] \bar{j}+[\bar{a} \bar{b} \bar{k}] \bar{k}$

$$
=x \overline{\mathrm{i}}+y \overline{\mathrm{j}}+\mathrm{z} \overline{\mathrm{k}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}
$$

44. (4)

Given $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\overline{\mathrm{b}}}{2}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=\frac{\overline{\mathrm{b}}}{2}$
Taking dot product with \bar{b},
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{b}} \cdot \overline{\mathrm{b}})-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{c}} \cdot \overline{\mathrm{b}})=\frac{1}{2}(\overline{\mathrm{~b}} \cdot \overline{\mathrm{~b}})$
$\Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{c}} \cdot \overline{\mathrm{b}})=\frac{1}{2}$
In (1) take dot product with $\overline{\mathrm{c}}$:
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{c}} \cdot \overline{\mathrm{c}})=\frac{\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}}{2}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})=\frac{\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}}{2}$
$\Rightarrow\left[\frac{1}{2}+(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})\right](\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})-\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\frac{\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}}{2}$
Using (2)

$$
\begin{aligned}
& \Rightarrow \frac{\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}}{2}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})^{2}-\overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=\frac{\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}}{2} \\
& \Rightarrow(\overline{\mathrm{~b}} \cdot \overline{\mathrm{c}})^{2}=1 \\
& \Rightarrow \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}}=1 \text { or } \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0 \\
& \therefore \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=\frac{1}{2} \Rightarrow 1 \cdot 1 \cos (\overline{\mathrm{a}}, \overline{\mathrm{c}})=\frac{1}{2} \\
& \Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})=60^{\circ} \text { and } \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0 \\
& \Rightarrow(\overline{\mathrm{a}}, \overline{\mathrm{~b}})=90^{\circ}
\end{aligned}
$$

45. (3)

Given $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{1}{\sqrt{2}}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=\frac{1}{\sqrt{2}}(\overline{\mathrm{~b}}+\overline{\mathrm{c}})$
Taking cross product with $\overline{\mathrm{b}}$:
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{b}} \times \overline{\mathrm{b}})-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$

$$
=\frac{1}{\sqrt{2}}(\bar{b} \times \bar{b}+\bar{b} \times \bar{c})
$$

$\Rightarrow-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}})(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{1}{\sqrt{2}}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})$
$\Rightarrow(\overline{\mathrm{b}} \times \overline{\mathrm{c}})\left(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}+\frac{1}{\sqrt{2}}\right)=0$
$\Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=-\frac{1}{\sqrt{2}}(\because \overline{\mathrm{c}} \times \overline{\mathrm{b}} \neq 0)$
$\Rightarrow 1 \cdot 1 \cos \theta=-\frac{1}{\sqrt{2}} \Rightarrow \theta=135^{\circ}$
46. (1)

Given $|\bar{a}|=1,|\bar{b}|=1$ and $|\bar{c}|=2$
Also given $\bar{a} \times(\bar{a} \times \bar{c})+\bar{b}=\overline{0}$
$\Rightarrow(\bar{a} \cdot \bar{c}) \bar{a}-(\bar{a} \cdot \bar{a}) \bar{c}+\bar{b}=\overline{0}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}-\overline{\mathrm{c}}=-\overline{\mathrm{b}}$
$\Rightarrow \overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=-\overline{\mathrm{b}}$
$\Rightarrow|\bar{a} \times(\bar{a} \times \bar{c})|=|-\bar{b}|=1$
$\operatorname{But}(\overline{\mathrm{a}}, \overline{\mathrm{a}} \times \overline{\mathrm{c}})=\pi / 2|\overline{\mathrm{a}}| \cdot|\overline{\mathrm{a}} \times \overline{\mathrm{c}}| \sin \frac{\pi}{2}=1$
$\Rightarrow|\overline{\mathrm{a}}| \cdot|\overline{\mathrm{c}}| \sin \theta=1$
$\Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}-\overline{\mathrm{c}}=-\overline{\mathrm{b}}$ [From (1)]
$\Rightarrow\{(\bar{a} \cdot \bar{c}) \bar{a}-\bar{c}\} \cdot\{(\bar{a} \cdot \bar{c}) \bar{a}-\bar{c}\}=\bar{b} \cdot \bar{b}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})^{2}(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})+\overline{\mathrm{c}} \cdot \overline{\mathrm{c}}-2(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})=1$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})^{2}+4-2(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})^{2}=1$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}})^{2}=3 \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=\sqrt{3}$
$\Rightarrow|\bar{a}| \cdot|\bar{c}| \cos (\bar{a}, \bar{c})=\sqrt{3}$
$\Rightarrow \cos (\overline{\mathrm{a}}, \overline{\mathrm{c}})=\frac{\sqrt{3}}{1.2}=\cos \frac{\pi}{6}$
$\Rightarrow(\overline{\mathrm{a}}, \overline{\mathrm{c}})=30^{\circ}$
47. (2)

Given $|\overline{\mathrm{p}}|=|\overline{\mathrm{q}}|=|\overline{\mathrm{r}}|=\lambda$ (say) and
$\overline{\mathrm{p}} \cdot \overline{\mathrm{q}}=0, \overline{\mathrm{p}} \cdot \overline{\mathrm{r}}=0, \overline{\mathrm{q}} \cdot \overline{\mathrm{r}}=0$

```
\(\overline{\mathrm{p}} \times\{(\overline{\mathrm{x}}-\overline{\mathrm{q}}) \times \overline{\mathrm{p}}\}+\overline{\mathrm{q}} \times\{(\overline{\mathrm{x}}-\overline{\mathrm{r}}) \times \overline{\mathrm{q}}\}+\overline{\mathrm{r}} \times\{(\overline{\mathrm{x}}-\overline{\mathrm{p}}) \times \overline{\mathrm{r}}\}=\overline{0}\)
\(\Rightarrow(\overline{\mathrm{p}} \cdot \overline{\mathrm{p}})(\overline{\mathrm{x}}-\overline{\mathrm{q}})-\{\overline{\mathrm{p}} \cdot(\overline{\mathrm{x}}-\overline{\mathrm{q}})\} \cdot \overline{\mathrm{p}}+(\overline{\mathrm{q}} \cdot \overline{\mathrm{q}})(\overline{\mathrm{x}}-\overline{\mathrm{r}})-\{\overline{\mathrm{q}} \cdot(\overline{\mathrm{x}}-\overline{\mathrm{r}})\}+(\overline{\mathrm{r}} \cdot \overline{\mathrm{r}})(\overline{\mathrm{x}}-\overline{\mathrm{p}})-\{\overline{\mathrm{r}} \cdot(\overline{\mathrm{x}}-\overline{\mathrm{p}})\} \cdot \overline{\mathrm{r}}=\overline{0}\)
\(\Rightarrow \lambda^{2}(\overline{\mathrm{x}}-\overline{\mathrm{q}}+\overline{\mathrm{x}}-\overline{\mathrm{r}}+\overline{\mathrm{x}}-\overline{\mathrm{p}})-(\overline{\mathrm{p}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{p}}+(\overline{\mathrm{p}} \cdot \overline{\mathrm{q}}) \overline{\mathrm{p}}-(\overline{\mathrm{q}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{q}}+(\overline{\mathrm{q}} \cdot \overline{\mathrm{r}}) \overline{\mathrm{q}}-(\overline{\mathrm{r}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{r}}+(\overline{\mathrm{r}} \cdot \overline{\mathrm{p}}) \overline{\mathrm{r}}=\overline{0}\)
\(\Rightarrow \lambda^{2}\{3 \overline{\mathrm{x}}-(\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}})\}-[(\overline{\mathrm{p}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{p}}+(\overline{\mathrm{q}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{q}}+(\overline{\mathrm{r}} \cdot \overline{\mathrm{x}}) \overline{\mathrm{r}}]=\overline{0}\)
```

Clearly this is satisfied by $\overline{\mathrm{x}}=\frac{1}{2}(\overline{\mathrm{p}}+\overline{\mathrm{q}}+\overline{\mathrm{r}})$
48. (3)

Given $\mathrm{a}(\bar{\alpha} \times \bar{\beta})+\mathrm{b}(\bar{\beta} \times \bar{\gamma})+\mathrm{c}(\bar{\gamma} \times \bar{\alpha})=\overline{\mathrm{O}}$
Taking dot product with $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ respectively
$\mathrm{a}[\bar{\alpha} \bar{\beta} \bar{\gamma}]=0, \mathrm{~b}[\bar{\alpha} \bar{\beta} \bar{\gamma}]=0, \mathrm{c}[\bar{\alpha} \bar{\beta} \bar{\gamma}]=0$
Also given that at least one of $\bar{a}, \bar{b}, \bar{c}$ is non-zero.
Hence $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ are coplanar.
49. (3)

Given $(\bar{b} \times \bar{c}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=3 \overline{\mathrm{c}}$
$\Rightarrow\{(\bar{b} \times \bar{c}) \cdot \bar{a}\} \bar{c}-\{(\bar{b} \times \bar{c}) \cdot \bar{c}\} \bar{a}=3 \bar{c}$
$\Rightarrow[\bar{b} \bar{c} \bar{a}] \bar{c}-[\bar{b} \bar{c} \bar{c}] \bar{a}=3 \bar{c}$
$\Rightarrow[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}] \overline{\mathrm{c}}=3 \overline{\mathrm{c}}$
$\{\therefore[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{c}}]=0\} \Rightarrow[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]=3$
$[\overline{\mathrm{b}} \times \overline{\mathrm{c}}, \overline{\mathrm{c}} \times \overline{\mathrm{a}}, \overline{\mathrm{a}} \times \overline{\mathrm{b}}]=[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]^{2}=[\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{a}}]^{2}=9$
50. (4)

Given \bar{c} is \perp to \bar{a} and \bar{b}
$\Rightarrow \overline{\mathrm{c}}$ is parallel to $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\left|\begin{array}{ccc}\overline{\mathrm{i}} & \overline{\mathrm{j}} & \overline{\mathrm{k}} \\ 2 & 3 & -1 \\ 1 & -2 & 3\end{array}\right|$
$=\overline{\mathrm{i}}(9-2)-\overline{\mathrm{j}}(6+1)+\overline{\mathrm{k}}(-4-3)$
$=7 \overline{\mathrm{i}}-7 \overline{\mathrm{j}}-7 \overline{\mathrm{k}}=7(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
$\therefore \overline{\mathrm{c}}$ is parallel to $\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}}$.
Let $\overline{\mathrm{c}}=\lambda(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
Also given $\overline{\mathrm{c}} \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})=6$
$\Rightarrow \lambda(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}}) \cdot(2 \overline{\mathrm{i}}-\overline{\mathrm{j}}+\overline{\mathrm{k}})=6$
$\Rightarrow \lambda(2+1-1)=6 \Rightarrow 2 \lambda=6$
$\therefore \lambda=3$
Hence $\overline{\mathrm{c}}=3(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
Now $[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}$
$=7(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}}) \cdot 3(\overline{\mathrm{i}}-\overline{\mathrm{j}}-\overline{\mathrm{k}})$
$=21(1+1+1)=63$
51. (3)

We know that \bar{b}, \bar{c} and $\bar{b} \times \bar{c}$ are mutually \perp vectors.
\therefore Any vector $\overline{\mathrm{a}}$ can be expressed in terms of $\overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}$

$$
\begin{equation*}
\Rightarrow \overline{\mathrm{a}}=x \overline{\mathrm{~b}}+y \overline{\mathrm{c}}+\mathrm{z}(\overline{\mathrm{~b}} \times \overline{\mathrm{c}}) \tag{1}
\end{equation*}
$$

Taking dot product on (1) with $\bar{b} \times \bar{c}$, we get
$\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\mathrm{x}\{\overline{\mathrm{b}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})\}+\mathrm{y}\{\overline{\mathrm{c}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})\}+\mathrm{z}(\overline{\mathrm{b}} \times \overline{\mathrm{c}})^{2}$
$=x(0)+y(0)+z(\bar{b} \times \overline{\mathrm{c}})^{2}=z(\overline{\mathrm{~b}} \times \overline{\mathrm{c}})^{2}$
$\Rightarrow \mathrm{z}=\frac{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})}{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|^{2}}$
Given $|\overline{\mathrm{b}}|=1,|\overline{\mathrm{c}}|=1$
Again taking dot product on (1) with $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$
$\Rightarrow \bar{a} \cdot \bar{b}=x(\bar{b} \cdot \bar{b})+y(\bar{c} \cdot \bar{b})+z(\bar{b} \times \bar{c}) \cdot \bar{c}$
$=x(1)+y(0)+z[\bar{b} \bar{c} \bar{c}]=x+y(0)+z(0)=x$
Also $\bar{a} \cdot \bar{c}=x(\bar{b} \cdot \bar{c})+y(\bar{c} \cdot \bar{c})+z(\bar{b} \times \bar{c}) \cdot \bar{c}$
$=x(0)+y(1)+z[\bar{b} \bar{c} \bar{c}]=0+y+0=y$
$\therefore \overline{\mathrm{a}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{b}}+(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}+\frac{\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})}{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|^{2}}$.
52. (3)O, A, B, C are coplanar since $[\bar{a} \bar{b} \bar{c}]=0$
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC} \Rightarrow|\overline{\mathrm{a}}|=|\overline{\mathrm{b}}|=|\overline{\mathrm{c}}|=3$
$\left(\because|\overline{\mathrm{a}}|^{2}=|\overline{\mathrm{b}}|^{2}=|\overline{\mathrm{c}}|^{2}=9\right.$ given $)$
Hence origin O is the circumcentre.
P.V. op G i.e., centroid $=\frac{\bar{a}+\bar{b}+\bar{c}}{3}$

We know that orthocenter H divides GO in the ratio $3: 2$ externally

$$
\therefore \text { P.V.of } H=\frac{\frac{3(\overline{\mathrm{a}} \times \overline{\mathrm{b}} \times \overline{\mathrm{c}})}{3}-2(\overline{\mathrm{O}})}{3-2}=\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}
$$

53. (3)
G.E. $=[3(\bar{a} \times \bar{b})+2(\bar{a} \times \bar{c}), \bar{b} \times \bar{c}-2(\bar{b} \times \bar{a}), 2(\bar{c} \times \bar{a})-6(\bar{c} \times \bar{b})]$

Let $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{p}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}=\overline{\mathrm{q}}, \overline{\mathrm{c}} \times \overline{\mathrm{a}}=\overline{\mathrm{r}}$
\therefore G.E. $=[3 \overline{\mathrm{p}}-2 \overline{\mathrm{r}}, \overline{\mathrm{q}}+2 \overline{\mathrm{p}}, 2 \overline{\mathrm{r}}+6 \overline{\mathrm{q}}]$
$=\left|\begin{array}{ccc}3 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 6 & 2\end{array}\right|\left[\begin{array}{c}\mathrm{p} \\ \mathrm{q} \\ \mathrm{r}\end{array}\right]$
$=[3(2-0)-0-2(12-0)][\overline{\mathrm{p}} \overline{\mathrm{q}} \overline{\mathrm{r}}]$
$=-18[\overline{\mathrm{p}} \overline{\mathrm{q}} \overline{\mathrm{r}}]=-18[\overline{\mathrm{a}} \times \overline{\mathrm{b}}, \overline{\mathrm{b}} \times \overline{\mathrm{c}}, \overline{\mathrm{c}} \times \overline{\mathrm{a}}]$
$=-18[\bar{a} \bar{b} \bar{c}]^{2}$

