HYPERBOLA

EXERCISE

1. If the latus rectum of an hyperbola be 8 and eccentricity be $3/\sqrt{5}$, then the equation of the hyperbola is

(a) $4x^2 - 5y^2 = 100$ (b) $5x^2 - 4y^2 = 100$ (c) $4x^2 + 5y^2 = 100$ (d) $5x^2 + 4y^2 = 100$

The length of the transverse axis of a hyperbola is 7 and it passes through the point (5, -2). The equation of the hyperbola is

(a) $\frac{4}{49}x^2 - \frac{196}{51}y^2 = 1$ (b) $\frac{49}{4}x^2 - \frac{51}{196}y^2 = 1$ (c) $\frac{4}{49}x^2 - \frac{51}{196}y^2 = 1$ (d) None of these

3. If $(0, \pm 4)$ and $(0, \pm 2)$ be the foci and vertices of a hyperbola, then its equation is

(a)
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$
 (b) $\frac{x^2}{12} - \frac{y^2}{4} = 1$ (c) $\frac{y^2}{4} - \frac{x^2}{12} = 1$ (d) $\frac{y^2}{12} - \frac{x^2}{4} = 1$

4. The equation of the hyperbola whose directrix is x + 2y = 1, focus (2, 1) and eccentricity 2 will be

(a)
$$x^2 - 16xy - 11y^2 - 12x + 6y + 21 = 0$$

(b) $3x^2 + 16xy + 15y^2 - 4x - 14y - 1 = 0$
(c) $x^2 + 16xy + 11y^2 - 12x - 6y + 21 = 0$
(d) None of these

5. The equation of a hyperbola, whose foci are (5, 0) and (-5, 0) and the length of whose conjugate axis is 8, is

(a) $9x^2 - 16y^2 = 144$ (b) $16x^2 - 9y^2 = 144$ (c) $9x^2 - 16y^2 = 12$ (d) $16x^2 - 9y^2 = 12$

6. The equation of the hyperbola referred to its axes as axes of coordinate and whose distance between the foci is 16 and eccentricity is $\sqrt{2}$, is

(a)
$$x^2 - y^2 = 16$$
 (b) $x^2 - y^2 = 32$ (c) $x^2 - 2y^2 = 16$ (d) $y^2 - x^2 = 16$

7. The equation of the hyperbola referred to the axis as axes of co-ordinate and whose distance between the foci is 16 and eccentricity is $\sqrt{2}$, is

(a)
$$x^2 - y^2 = 16$$
 (b) $x^2 - y^2 = 32$ (c) $x^2 - 2y^2 = 16$ (d) $y^2 - x^2 = 16$

8. What will be equation of that chord of hyperbola $25x^2 - 16y^2 = 400$, whose mid point is (5, 3)

(a) 115 x - 117 y = 17 (b) 125 x - 48 y = 481 (c) 127 x + 33 y = 341 (d) 15 x + 121 y = 105

9. The straight line $x + y = \sqrt{2}p$ will touch the hyperbola $4x^2 - 9y^2 = 36$, if

(a) $p^2 = 2$ (b) $p^2 = 5$ (c) $5p^2 = 2$ (d) $2p^2 = 5$

- 10. The equation of the director circle of the hyperbola $\frac{x^2}{16} \frac{y^2}{4} = 1$ is given by
 - (a) $x^2 + y^2 = 16$ (b) $x^2 + y^2 = 4$ (c) $x^2 + y^2 = 20$ (d) $x^2 + y^2 = 12$
- 11. The equation of the transverse and conjugate axis of the hyperbola $16x^2 y^2 + 64x + 4y + 44 = 0$ are

(a)
$$x = 2, y + 2 = 0$$
 (b) $x = 2, y = 2$ (c) $y = 2, x + 2 = 0$ (d) None of these

12. The equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13, is

(a) $25x^2 - 144y^2 = 900$ (b) $144x^2 - 25y^2 = 900$ (c) $144x^2 + 25y^2 = 900$ (d) $25x^2 + 144y^2 = 900$

- 13. The auxiliary equation of circle of hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, is (a) $x^2 + y^2 = a^2$ (b) $x^2 + y^2 = b^2$ (c) $x^2 + y^2 = a^2 + b^2$ (d) $x^2 + y^2 = a^2 - b^2$
- 14. The equation of the hyperbola whose foci are (6, 4) and (-4, 4) and eccentricity 2 is given by
 - (a) $12x^2 4y^2 24x + 32y 127 = 0$ (b) $12x^2 + 4y^2 + 24x 32y 127 = 0$
 - (c) $12x^2 4y^2 24x 32y + 127 = 0$ (d) $12x^2 4y^2 + 24x + 32y + 127 = 0$
- 15. The length of transverse axis of the parabola $3x^2 4y^2 = 32$ is

(a) $\frac{8\sqrt{2}}{\sqrt{3}}$ (b) $\frac{16\sqrt{2}}{\sqrt{3}}$ (c) $\frac{3}{32}$ (d) $\frac{64}{3}$

- 16. The latus-rectum of the hyperbola $16x^2 9y^2 = 144$, is
 - (a) $\frac{16}{3}$ (b) $\frac{32}{3}$ (c) $\frac{8}{3}$ (d) $\frac{4}{3}$
- 17. The eccentricity of the hyperbola $4x^2 9y^2 = 16$, is
 - (a) $\frac{8}{3}$ (b) $\frac{5}{4}$ (c) $\frac{\sqrt{13}}{3}$ (d) $\frac{4}{3}$

18. If the length of the transverse and conjugate axes of a hyperbola be 8 and 6 respectively, then the difference focal distances of any point of the hyperbola will be

(a) 8 (b) 6 (c) 14 (d) 2

19. The equation of the hyperbola whose directrix is 2x + y = 1, focus (1, 1) and eccentricity

 $= \sqrt{3}, is$ (a) $7x^{2} + 12xy - 2y^{2} - 2x + 4y - 7 = 0$ (b) $11x^{2} + 12xy + 2y^{2} - 10x - 4y + 1 = 0$ (c) $11x^{2} + 12xy + 2y^{2} - 14x - 14y + 1 = 0$ (d) None of these

- 20. The difference of the focal distance of any point on the hyperbola $9x^2 16y^2 = 144$, is (a) 8 (b) 7 (c) 6 (d)4
- 21. The locus of the point of intersection of the lines $\sqrt{3}x y 4\sqrt{3}k = 0$ and $\sqrt{3}kx + ky 4\sqrt{3} = 0$ for different value of k is
 - (a) Circle (b) Parabola (c) Hyperbola (d) Ellipse
- 22. The equation of the tangent to the conic $x^2 y^2 8x + 2y + 11 = 0$ at (2, 1) is
 - (a) x+2=0 (b) 2x+1=0 (c) x-2=0 (d) x+y+1=0
- 23. The equation of the normal at the point (6, 4) on the hyperbola $\frac{x^2}{9} \frac{y^2}{16} = 3$, is

(a) 3x + 8y = 50 (b) 3x - 8y = 50 (c) 8x + 3y = 50 (d) 8x - 3y = 50

24. The condition that the straight line lx + my = n may be a normal to the hyperbola $b^2x^2 - a^2y^2 = a^2b^2$ is given by

(a)
$$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$$
 (b) $\frac{l^2}{a^2} - \frac{m^2}{b^2} = \frac{(a^2 + b^2)^2}{n^2}$
(c) $\frac{a^2}{l^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$ (d) $\frac{l^2}{a^2} + \frac{m^2}{b^2} = \frac{(a^2 - b^2)^2}{n^2}$

- If the eccentricities of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and $\frac{y^2}{b^2} \frac{x^2}{a^2} = 1$ be *e* and e_1 , then $\frac{1}{e^2} + \frac{1}{e^2} = \frac{1}{e^2}$ 25.
 - (a) 1 (c)3 (d)None of these (b) 2
- If e and e' are eccentricities of hyperbola and its conjugate respectively, then 26.
 - (a) $\left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 1$ (b) $\frac{1}{e} + \frac{1}{e'} = 1$ (c) $\left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 0$ (d) $\frac{1}{e} + \frac{1}{e'} = 2$
- The eccentricity of curve $x^2 y^2 = 1$ is 27.
 - (b) $\frac{1}{\sqrt{2}}$ (c)2 (d) $\sqrt{2}$ (a) $\frac{1}{2}$
- The locus of the point of intersection of lines (x + y)t = a and x y = at, where t is the 28. parameter, is
 - (c)A rectangular hyperbola (a) A circle (b) An ellipse (d)None of these
- The eccentricity of the conjugate hyperbola of the hyperbola $x^2 3y^2 = 1$, is 29.
 - (b) $\frac{2}{\sqrt{3}}$ (c)4 (d) $\frac{4}{2}$ (a) 2
- If transverse and conjugate axes of a hyperbola are equal, then its eccentricity is 30. (b) $\sqrt{2}$ (c) $1/\sqrt{2}$ (a) $\sqrt{3}$ (d)2
- The eccentricity of the hyperbola conjugate to $x^2 3y^2 = 2x + 8$ is 31.
 - (a) $\frac{2}{\sqrt{3}}$ (b) $\sqrt{3}$ (c) 2 (d)None of these
- A tangent to a hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ intercepts a length of unity from each of the co-32. ordinate axes, then the point (a, b) lies on the rectangular hyperbola (a) $x^2 - y^2 = 2$ (b) $x^2 - y^2 = 1$ (c) $x^2 - y^2 = -1$ (d) None of these
- The radius of the director circle of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, is 33.
 - (c) $\sqrt{a^2 b^2}$ (d) $\sqrt{a^2 + b^2}$ (b) $\sqrt{a-b}$ (a) a - b

34. The length of the chord of the parabola $y^2 = 4ax$ which passes through the vertex and makes an angle θ with the axis of the parabola, is

(a) $4a\cos\theta\csc^2\theta$ (b) $4a\cos^2\theta\csc\theta$ (c) $a\cos\theta\csc^2\theta$ (d) $a\cos^2\theta\csc\theta$

35. If (4, 0) and (-4, 0) be the vertices and (6, 0) and (-6, 0) be the foci of a hyperbola, then its eccentricity is

(a) 5/2 (b) 2 (c) 3/2 (d) $\sqrt{2}$

36. If the centre, vertex and focus of a hyperbola be (0, 0), (4, 0) and (6, 0) respectively, then the equation of the hyperbola is

(a) $4x^2 - 5y^2 = 8$ (b) $4x^2 - 5y^2 = 80$ (c) $5x^2 - 4y^2 = 80$ (d) $5x^2 - 4y^2 = 8$

- 37. The locus of a point which moves such that the difference of its distances from two fixed points is always a constant is
 - (a) A straight line (b) A circle (c) An ellipse (d) A hyperbola
- 38. The point of contact of the tangent y = x + 2 to the hyperbola $5x^2 9y^2 = 45$ is(a) (9/2, 5/2)(b) (5/2, 9/2)(c) (-9/2, -5/2)(d) none of these
- 39. None of these The locus of the point of intersection of any two perpendicular tangents to the hyperbola is a circle which is called the director circle of the hyperbola, then the eq^n of this circle is

(a) $x^2 + y^2 = a^2 + b^2$ (b) $x^2 + y^2 = a^2 - b^2$ (c) $x^2 + y^2 = 2ab$ (d)None of these

40. The vertices of a hyperbola are at (0, 0) and (10, 0) and one of its foci is at (18, 0). The equation of the hyperbola is

(a) $\frac{x^2}{25} - \frac{y^2}{144} = 1$ (b) $\frac{(x-5)^2}{25} - \frac{y^2}{144} = 1$ (c) $\frac{x^2}{25} - \frac{(y-5)^2}{144} = 1$ (d) $\frac{(x-5)^2}{25} - \frac{(y-5)^2}{144} = 1$

41. Centre of hyperbola $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ is (a) (1, -1) (b) (-1, 1) (c) (-1, -1) (d) (1, 1)

- 42. The equation of the tangent to the hyperbola $2x^2 3y^2 = 6$ which is parallel to the line y = 3x + 4, is
 - (a) y = 3x + 5 (b) y = 3x 5 (c) y = 3x + 5 and y = 3x 5 (d)None of these

43. A hyperbola passes through the points (3, 2) and (-17, 12) and has its centre at origin and transverse axis is along *x*-axis. The length of its transverse axis is
(a) 2 (b) 4 (c) 6 (d)None of these

- 44. The distance between the foci of a hyperbola is double the distance between its vertices and the length of its conjugate axis is 6. The equation of the hyperbola referred to its axes as axes of co-ordinates is
 - (a) $3x^2 y^2 = 3$ (b) $x^2 3y^2 = 3$ (c) $3x^2 y^2 = 9$ (d) $x^2 3y^2 = 9$
- 45. The equation of the tangents to the conic $3x^2 y^2 = 3$ perpendicular to the line x + 3y = 2 is
 - (a) $y = 3x \pm \sqrt{6}$ (b) $y = 6x \pm \sqrt{3}$ (c) $y = x \pm \sqrt{6}$ (d) $y = 3x \pm 6$
- 46. Curve $xy = c^2$ is said to be

(a) Parabola (b) Rectangular hyperbola (c) Hyperbola (d) Ellipse

- 47. The distance between the directrices of a rectangular hyperbola is 10 units, then distance between its foci is
 - (a) $10\sqrt{2}$ (b) 5 (c) $5\sqrt{2}$ (d) 20
- 48. If m_1 and m_2 are the slopes of the tangents to the hyperbola $\frac{x^2}{25} \frac{y^2}{16} = 1$ which pass through the point (6, 2), then

(a) $m_1 + m_2 = \frac{24}{11}$ (b) $m_1 m_2 = \frac{20}{11}$ (c) $m_1 + m_2 = \frac{48}{11}$ (d) $m_1 m_2 = \frac{11}{20}$

- 49. If the straight line $x \cos \alpha + y \sin \alpha = p$ be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then
 - (a) $a^{2} \cos^{2} \alpha + b^{2} \sin^{2} \alpha = p^{2}$ (b) $a^{2} \cos^{2} \alpha b^{2} \sin^{2} \alpha = p^{2}$
 - (c) $a^2 \sin^2 \alpha + b^2 \cos^2 \alpha = p^2$ (d) $a^2 \sin^2 \alpha b^2 \cos^2 \alpha = p^2$

50. Let *E* be the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and *C* be the circle $x^2 + y^2 = 9$. Let *P* and *Q* be the points (1,

- 2) and (2, 1) respectively. Then
- (a) Q lies inside C but outside E (b) Q lies outside both C and E
- (c) P lies inside both C and E

(d) *P* lies inside *C* but outside *E*

51. The equation of the normal at the point $(a \sec \theta, b \tan \theta)$ of the curve $b^2 x^2 - a^2 y^2 = a^2 b^2$ is

(a) $\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = a^2 + b^2$ (b) $\frac{ax}{\tan\theta} + \frac{by}{\sec\theta} = a^2 + b^2$ (c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$ (d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$

52. The value of *m* for which y = mx + 6 is a tangent to the hyperbola $\frac{x^2}{100} - \frac{y^2}{49} = 1$, is

- (a) $\sqrt{\frac{17}{20}}$ (b) $\sqrt{\frac{20}{17}}$ (c) $\sqrt{\frac{3}{20}}$ (d) $\sqrt{\frac{20}{3}}$
- 53. The equation of the normal to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ at the point (8, $3\sqrt{3}$) is (a) $\sqrt{3}x + 2y = 25$ (b) x + y = 25 (c) y + 2x = 25 (d) $2x + \sqrt{3}y = 25$

54. The equation of the tangent to the conic $x^2 - y^2 - 8x + 2y + 11 = 0$ at (2, 1) is (a) x + 2 = 0 (b) 2x + 1 = 0 (c) x - 2 = 0 (d) x + y + 1 = 0

55. If e and e' are eccentricities of hyperbola and its conjugate respectively, then

(a) $\left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 1$ (b) $\frac{1}{e} + \frac{1}{e'} = 1$ (c) $\left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 0$ (d) $\frac{1}{e} + \frac{1}{e'} = 2$

56. The coordinates of the foci of the rectangular hyperbola $xy = c^2$ are

(a) $(\pm c, \pm c)$ (b) $(\pm c\sqrt{2}, \pm c\sqrt{2})$ (c) $\left(\pm \frac{c}{\sqrt{2}}, \pm \frac{c}{\sqrt{2}}\right)$ (d)None of these

57. If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is

(a) 1 (b) 5 (c) 7 (d) 9

- 58. The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^2 2y^2 2 = 0$ to its asymptotes is
 - (a) 1/2 (b) 2/3 (c) 3/2 (d) 2
- 59. The equation of the normal to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ at (-4, 0) is
 - (a) y = 0 (b) y = x (c) x = 0 (d) x = -y
- 60. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8
 - (a) $\frac{x^2}{12} \frac{y^2}{4} = 1$ (b) $\frac{x^2}{4} \frac{y^2}{12} = 1$
 - (c) $\frac{x^2}{8} \frac{y^2}{2} = 1$ (d) $\frac{x^2}{16} \frac{y^2}{9} = 1$
- 61. The equation of the hyperbola in the standard form (with transverse axis along the xaxis) having the length of the latus rectum = 9 units and eccentricity = 5/4 is

(a)
$$\frac{x^2}{16} - \frac{y^2}{18} = 1$$
 (b) $\frac{x^2}{36} - \frac{y^2}{27} = 1$ (c) $\frac{x^2}{64} - \frac{y^2}{36} = 1$ (d) $\frac{x^2}{36} - \frac{y^2}{64} = 1$ (e) $\frac{x^2}{16} - \frac{y^2}{9} = 1$

62. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y = \alpha x + \beta$ is a tangent to the

hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (a) A parabola (b) A hyperbola
- (c) An ellipse (d) A circle

HYPERBOLA

HINTS AND SOLUTIONS

1. (a) $\frac{2b^2}{a} = 8$ and $\frac{3}{\sqrt{5}} = \sqrt{1 + \frac{b^2}{a^2}}$ or $\frac{4}{5} = \frac{b^2}{a^2}$

$$\implies a=5, b=2\sqrt{5}.$$

Hence the required equation of hyperbola is $\frac{x^2}{25} - \frac{y^2}{20} = 1 \implies 4x^2 - 5y^2 = 100$.

2. (c) 2a = 7 or $a = \frac{7}{2}$

Also (5, -2) satisfies it, so $\frac{4}{49}(25) - \frac{51}{196}(4) = 1$

- and $a^2 = \frac{49}{4} \implies a = \frac{7}{2}$.
- **3.** (c) Foci $(0,\pm 4) \equiv (0,\pm be) \Longrightarrow be = 4$

Vertices $(0,\pm 2) \equiv (0,\pm b) \Rightarrow b = 2 \Rightarrow a = 2\sqrt{3}$

Hence equation is
$$\frac{-x^2}{(2\sqrt{3})^2} + \frac{y^2}{(2)^2} = 1$$
 or $\frac{y^2}{4} - \frac{x^2}{12} = 1$

4. (a)
$$(x-2)^2 + (y-1)^2 = 4\left[\frac{(x+2y-1)^2}{5}\right]$$

 $\implies 5[x^2 + y^2 - 4x - 2y + 5]$

 $= 4[x^{2} + 4y^{2} + 1 + 4xy - 2x - 4y]$

$$\implies x^2 - 11y^2 - 16xy - 12x + 6y + 21 = 0 .$$

5. (b) $b = 4 \implies 2ae = 10 \implies 16 = 25 - a^2 \implies a = 3$

Hence the hyperbola is $16x^2 - 9y^2 = 144$.

6. (b)
$$2ae = 16, e = \sqrt{2} \implies a = 4\sqrt{2} \text{ and } b = 4\sqrt{2}$$

: Equation is
$$\frac{x^2}{(4\sqrt{2})^2} - \frac{y^2}{(4\sqrt{2})^2} = 1 \implies x^2 - y^2 = 32$$
.

7. (b)According to question, Transverse axis = Conjugate axis

Given that, $e = \sqrt{2}$, 2ae = 16; $\therefore a = 4\sqrt{2}$

Therefore, equation of hyperbola is $x^2 - y^2 = 32$.

8. (b)According to question, $S = 25x^2 - 16y^2 - 400 = 0$

Equation of required chord is $S_1 = T$ (i)

Here, $S_1 = 25(5)^2 - 16(3)^2 - 400$

= 625 - 144 - 400 = 81

and $T = 25 x x_1 - 16 y y_1 - 400$, where $x_1 = 5, y_1 = 3$

= 25(x)(5) - 16(y)(3) - 400 = 125 x - 48 y - 400

So from (i), required chord is

125 x - 48 y - 400 = 81 Or 125 x - 48 y = 481.

9. (d) The condition for the line y = mx + c will touch the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $c^2 = a^2m^2 - b^2$

Here m = -1, $c = \sqrt{2}p$, $a^2 = 9$, $b^2 = 4$

 \therefore We get $2p^2 = 5$.

10. (d) Equation of 'director-circle' of hyperbola is $x^2 + y^2 = a^2 - b^2$. Here $a^2 = 16, b^2 = 4$

 \therefore $x^2 + y^2 = 12$ is the required 'director circle'.

11. (c) $(4x+8)^2 - (y-2)^2 = -44 + 64 - 4$

$$\implies \frac{16(x+2)^2}{16} - \frac{(y-2)^2}{16} = 1$$

Transverse and conjugate axes are y = 2, x = -2.

12. (a) Conjugate axis is 5 and distance between foci = $13 \Rightarrow 2b = 5$ and 2ae = 13.

Now, also we know for hyperbola

$$b^{2} = a^{2}(e^{2} - 1) \implies \frac{25}{4} = \frac{(13)^{2}}{4e^{2}}(e^{2} - 1)$$
$$\implies \frac{25}{4} = \frac{169}{4} - \frac{169}{4e^{2}} \text{ or } e^{2} = \frac{169}{144} \implies e = \frac{13}{12}$$
$$\text{Or } a = 6, b = \frac{5}{2} \text{ or hyperbola is } \frac{x^{2}}{36} - \frac{y^{2}}{25/4} = 1$$
$$\implies 25x^{2} - 144y^{2} = 900 .$$

13. (a) The equation is $(x-0)^2 + (y-0)^2 = a^2$.

14. (a) Foci are (6,4) and (-4,4), e = 2 and centre is $\left(\frac{6-4}{2}, 4\right) = (1,4)$

$$\Rightarrow 6 = 1 + ae \Rightarrow ae = 5 \Rightarrow a = \frac{5}{2} \text{ and } b = \frac{5}{2}(\sqrt{3})$$

Hence the required equation is $\frac{(x-1)^2}{(25/4)} - \frac{(y-4)^2}{(75/4)} = 1$ or $12x^2 - 4y^2 - 24x + 32y - 127 = 0$

15. (a) The given equation may be written as $\frac{x^2}{32/2} - \frac{y^2}{8} = 1$ or $\frac{x^2}{(4\sqrt{2}/\sqrt{3})^2} - \frac{y^2}{(2\sqrt{2})^2} = 1$.

Comparing the given equation with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, we get $a^2 = \left(\frac{4\sqrt{2}}{\sqrt{3}}\right)^2$ or $a = \frac{4\sqrt{2}}{\sqrt{3}}$. Therefore

length of transverse axis of a hyperbola $= 2a = 2 \times \frac{4\sqrt{2}}{\sqrt{3}} = \frac{8\sqrt{2}}{\sqrt{3}}$.

16. (b) The given equation of hyperbola is

$$16x^{2} - 9y^{2} = 144 \implies \frac{x^{2}}{9} - \frac{y^{2}}{16} = 1$$

$$\therefore L.R. = \frac{2b^{2}}{2} = \frac{2.16}{2} = \frac{32}{2}.$$

17. (c) Given equation of hyperbola, $\frac{x^2}{4} - \frac{y^2}{(16/9)} = 1$,

:
$$a = 2, b = \frac{4}{3}$$
. As we know, $b^2 = a^2(e^2 - 1)$

$$\Longrightarrow \frac{16}{9} = 4(e^2 - 1) \Longrightarrow e^2 = \frac{13}{9} , \therefore e = \frac{\sqrt{13}}{3}.$$

18. (a) 2a = 8, 2b = 6

Difference of focal distances of any point of the hyperbola = 2a = 8.

19. (a) S(1,1), directrix is 2x + y = 1 and $e = \sqrt{3}$. Now let the various point be (h,k), then accordingly

$$\frac{\sqrt{(h-1)^2 + (k-1)^2}}{\frac{2h+k-1}{\sqrt{5}}} = \sqrt{3}$$

Squaring both the sides, we get

 $5[(h-1)^2 + (k-1)^2] = 3(2h+k-1)^2$

On simplification, the required locus is $7x^2 + 12xy - 2y^2 - 2x + 4y - 7 = 0$

- **20.** (c) Here coefficient of x^2 is +ve and that of y^2 is -ve *i.e.*, a hyperbola.
- **21.** (c) Multiplying both, we get $3x^2 y^2 = 48$

Or
$$\frac{x^2}{(48/3)} - \frac{y^2}{48} = 1$$
, which is a hyperbola.

- 22. (c) Equation of the tangent to $x^2 y^2 8x + 2y + 11 = 0$ at (2, 1) is 2x y 4(x + 2) + (y + 1) + 11 = 0 or x = 2.
- **23.** (a)Equation of normal at any point (x_1, y_1) on hyperbola is,

$$\frac{a^2(x-x_1)}{x_1} = \frac{b^2(y-y_1)}{-y_1}$$

Here, $a^2 = 267, b^2 = 48$ and $(x_1, y_1) = (6, 4)$

$$\therefore \frac{27(x-6)}{6} = -\frac{48(y-4)}{4} \implies 3(x-6) = -8(y-4)$$
$$\implies 3x+8y = 50.$$

24. (a) Any normal to the hyperbola is

$$\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2 \qquad \dots \dots (i)$$

But it is given by lx + my - n = 0(ii)

Comparing (i) and (ii), we get

sec
$$\theta = \frac{a}{l} \left(\frac{-n}{a^2 + b^2} \right)$$
 and $\tan \theta = \frac{b}{m} \left(\frac{-n}{a^2 + b^2} \right)$

Hence eliminating θ , we get $\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$

25. (a)
$$e = \sqrt{1 + \frac{b^2}{a^2}} \implies e^2 = \frac{a^2 + b^2}{a^2}$$

 $e_1 = \sqrt{1 + \frac{a^2}{b^2}} \implies e_1^2 = \frac{b^2 + a^2}{b^2} \implies \frac{1}{e_1^2} + \frac{1}{e^2} = 1.$

26. (a)Let hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (i)

Then its conjugate will be, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ (ii)

If *e* is eccentricity of hyperbola (i), then $b^2 = a^2(e^2 - 1)$

or
$$\frac{1}{e^2} = \frac{a^2}{(a^2 + b^2)}$$
(iii)

Similarly if e' is eccentricity of conjugate (ii), then $a^2 = b^2(e^{-1})$ or $\frac{1}{e^{-2}} = \frac{b^2}{(a^2 + b^2)}$(iv)

Adding (iii) and (iv), $\frac{1}{(e')^2} + \frac{1}{e^2} = \frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2} = 1.$

- **27.** (d) Since it is a rectangular hyperbola, therefore eccentricity $e = \sqrt{2}$.
- **28.** (c) Multiplying both, we get $x^2 y^2 = a^2$. This is equation of rectangular hyperbola as a = b.
- **29.** (a)Eccentricity of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $e = \sqrt{\frac{a^2 + b^2}{a^2}}$

Eccentricity of conjugate hyperbola, $e' = \sqrt{\frac{a^2 + b^2}{b^2}}$

Write the given equation in standard form,

$$\frac{x^2}{1} - \frac{y^2}{1/3} = 1 \implies a^2 = 1, \ b^2 = \frac{1}{3}$$
$$\therefore \ e' = \sqrt{\frac{1+1/3}{1/3}} = \sqrt{4} = 2.$$

30. (b) Hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Here, transverse and conjugate axis of a hyperbola is equal.

i.e., $a = b \therefore x^2 - y^2 = a^2$; which is a rectangular hyperbola. Hence, eccentricity $e = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{2}$.

31. (c)Given, equation of hyperbola is $x^2 - 3y^2 = 2x + 8$

$$\implies x^2 - 2x - 3y^2 = 8$$

$$\implies (x-1)^2 - 3y^2 = 9 \implies \frac{(x-1)^2}{9} - \frac{y^2}{3} = 1$$

Conjugate of this hyperbola is $-\frac{(x-1)^2}{9} + \frac{y^2}{3} = 1$

and its eccentricity $(e) = \sqrt{\left(\frac{a^2 + b^2}{b^2}\right)}$

Here,
$$a^2 = 9$$
, $b^2 = 3$; $\therefore e = \sqrt{\frac{9+3}{3}} = 2$

32. (b) Tangent at $(a \sec \theta, b \tan \theta)$ is,

$$\frac{x}{(a / \sec \theta)} - \frac{y}{(b / \tan \theta)} = 1 \text{ Or } \frac{a}{\sec \theta} = 1, \frac{b}{\tan \theta} = 1$$

 $\Rightarrow a = \sec \theta$, $b = \tan \theta$ or (a,b) lies on $x^2 - y^2 = 1$.

33. (c) Equation of director-circle of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } x^2 + y^2 = a^2 - b^2$$

So, radius = $\sqrt{a^2 - b^2}$.

34. (a) $y = x \tan \theta$ will be equation of chord. The points of intersection of chord and parabola are

$$(0, 0), \left(\frac{4a}{\tan^2\theta}, \frac{4a}{\tan\theta}\right)$$

Hence length of chord = $4a\sqrt{\left(\frac{1}{\tan^2\theta}\right)^2 + \frac{1}{\tan^2\theta}}$

$$=\frac{4a}{\tan\theta}\sqrt{\frac{1+\tan^2\theta}{\tan^2\theta}}=4a\operatorname{cosec}^2\theta\cos\theta.$$

35. (c) Vertices $(\pm 4, 0) \equiv (\pm a, 0) \implies a = 4$

Foci
$$(\pm 6, 0) \equiv (\pm ae, 0) \implies e = \frac{6}{4} = \frac{3}{2}$$
.

36. (c) Centre (0, 0), vertex $(4,0) \Rightarrow a = 4$ and focus (6,0)

$$\Rightarrow ae = 4 \Rightarrow e = \frac{3}{2}$$
. Therefore $b = 2\sqrt{5}$

Hence required equation is $\frac{x^2}{16} - \frac{y^2}{20} = 1$

i.e.,
$$5x^2 - 4y^2 = 80$$

- **37.** (d) It is obvious.
- **38.** (c) Hyperbola is $\frac{x^2}{9} \frac{y^2}{5} = 1$.

Hence point of contact is $\left[\frac{-9(1)}{\sqrt{9-5}}, \frac{-5}{\sqrt{9-5}}\right] = \left[\frac{-9}{2}, \frac{-5}{2}\right].$

39. (b) Equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Any tangent to hyperbola are $y = mx \pm \sqrt{a^2m^2 - b^2}$

Also tangent perpendicular to this is $y = \frac{-1}{m}x \pm \sqrt{\frac{a^2}{m^2} - b^2}$

Eliminating *m*, we get $x^2 + y^2 = a^2 - b^2$.

40. (b) 2a = 10, $\therefore a = 5$

$$ae - a = 8$$
 Or $e = 1 + \frac{8}{5} = \frac{13}{5}$
 $\therefore b = 5\sqrt{\frac{13^2}{5^2} - 1} = 5 \times \frac{12}{5} = 12$

and centre of hyperbola = (5,0) $\therefore \frac{(x-5)^2}{5^2} - \frac{(y-0)^2}{12^2} = 1$.

41. (b) Centre is given by

$$\left(\frac{hf-bg}{ab-h^2},\frac{gh-af}{ab-h^2}\right) = \left(\frac{+16.9}{-9.16},\frac{-9(16)}{-9(16)}\right) = (-1,1).$$

42. (c) Let tangent be y = 3x + c

$$c = \pm \sqrt{a^2 m^2 - b^2} = \pm \sqrt{3.9 - 2} = \pm 5 \implies y = 3x \pm 5$$
.

43. (a) Let the equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

But it passes through $(3, 2) \Rightarrow \frac{9}{a^2} - \frac{4}{b^2} = 1$ (i)

Also its passes through (-17, 12)

$$\Rightarrow \frac{(-17)^2}{a^2} - \frac{(12)^2}{b^2} = 1 \qquad \dots \dots (ii)$$

Solving these, we get a = 1 and $b = \sqrt{2}$

Hence length of transverse axis = 2a = 2.

44. (c) According to given conditions, 2ae = 2.2a or e = 2 and $2b = 6 \Rightarrow b = 3$. Hence, $a = \frac{3}{\sqrt{3}} = \sqrt{3}$

Therefore, equation is $\frac{x^2}{3} - \frac{y^2}{9} = 1$ *i.e.*, $3x^2 - y^2 = 9$.

- 45. (a) Tangent to $\frac{x^2}{1} \frac{y^2}{3} = 1$ and perpendicular to x + 3y 2 = 0 is given by $y = 3x \pm \sqrt{9-3} = 3x \pm \sqrt{6}$.
- 46. (b) $xy = c^2$. Rectangular hyperbola $a^2 = b^2$.
- 47. (d) \therefore Distance between directrices $=\frac{2a}{e}$.
 - \therefore Eccentricity of rectangular hyperbola = $\sqrt{2}$.
 - \therefore Distance between directrics $=\frac{2a}{\sqrt{2}}$.
 - Given that, $\frac{2a}{\sqrt{2}} = 10 \implies 2a = 10\sqrt{2}$

Now, distance between foci = $2ae = (10\sqrt{2})(\sqrt{2}) = 20$.

48. (a,b) The line through (6,2) is

 $y-2 = m(x-6) \Longrightarrow y = mx + 2 - 6m$

Now from condition of tangency, $(2-6m)^2 = 25m^2 - 16$

 $\implies 36m^2 + 4 - 24m - 25m^2 + 16 = 0$

$$\Longrightarrow 11m^2 - 24m + 20 = 0$$

Obviously its roots are m_1 and m_2 , therefore

$$m_1 + m_2 = \frac{24}{11}$$
 and $m_1 m_2 = \frac{20}{11}$.

49. (b) $x \cos \alpha + y \sin \alpha = p \Rightarrow y = -\cot \alpha$. $x + p \csc \alpha$

It is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Therefore, $p^2 \operatorname{cosec}^2 \alpha = a^2 \operatorname{cot}^2 \alpha - b^2 \Rightarrow a^2 \operatorname{cos}^2 \alpha - b^2 \sin^2 \alpha = p^2$.

50. (d) The given ellipse is $\frac{x^2}{9} + \frac{y^2}{4} = 1$. The value of the expression $\frac{x^2}{9} + \frac{y^2}{4} - 1$ is positive for x = 1, y = 2 and negative for x = 2, y = 1. Therefore *P* lies outside *E* and *Q* lies inside *E*. The value of the expression $x^2 + y^2 - 9$ is negative for both the points *P* and *Q*. Therefore *P* and *Q* both lie inside *C*. Hence *P* lies inside *C* but outside *E*.

51. (c)Equation of normal to hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at $(a \sec \theta, b \tan \theta)$ is $\frac{a^2x}{a \sec \theta} + \frac{b^2y}{b \tan \theta} = a^2 + b^2$.

- 52. (a) If y = mx + c touches $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 - b^2$. Here c = 6, $a^2 = 100$, $b^2 = 49$ $\therefore 36 = 100m^2 - 49 \Rightarrow 100m^2 = 85 \Rightarrow m = \sqrt{\frac{17}{20}}$.
- 53. (d) Applying the formula, the required normal is

$$\frac{16x}{8} + \frac{9y}{3\sqrt{3}} = 16 + 9 \ i.e., \ 2x + \sqrt{3}y = 25$$

- 54. (c) Equation of the tangent to $x^2 y^2 8x + 2y + 11 = 0$ at (2, 1) is 2x y 4(x + 2) + (y + 1) + 11 = 0 or x = 2.
- 55. (a) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 \implies \frac{1}{e^2} = \frac{a^2}{(a^2 + b^2)}$ (i) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \implies \frac{1}{e'^2} = \frac{b^2}{(a^2 + b^2)}$ (ii)

$$\frac{1}{(e')^2} + \frac{1}{e^2} = \frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2} = 1. \ xy = c^2 \text{ as } c^2 = \frac{a^2}{2}.$$

56. (b) focus = $(ae\cos 45^\circ, ae\sin 45^\circ) \equiv (c\sqrt{2}, c\sqrt{2}), \{\because e = \sqrt{2}, a = c\sqrt{2}\}$

Similarly other focus is $(-c\sqrt{2}, -c\sqrt{2})$

57. (c)Hyperbola is $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$

$$a = \sqrt{\frac{144}{25}}, \ b = \sqrt{\frac{81}{25}}, \ e_1 = \sqrt{1 + \frac{81}{144}} = \sqrt{\frac{225}{144}} = \frac{15}{12} = \frac{5}{4}$$

Therefore, foci = $(ae_1, 0) = \left(\frac{12}{5}, \frac{5}{4}, 0\right) = (3, 0)$

Therefore, focus of ellipse =(4e,0) *i.e.* (3,0)

$$\Rightarrow e = \frac{3}{4}$$
. Hence $b^2 = 16\left(1 - \frac{9}{16}\right) = 7$.

58. (b) Given equation is $\frac{x^2}{2} - \frac{y^2}{1} = 1$ (i)

Product of length of perpendiculars drawn from any point on the hyperbola (i) to the asymptotes is $\frac{a^2b^2}{a^2+b^2} = \frac{2\times 1}{2+1} = \frac{2}{3}$.

59. (a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1 \Rightarrow \frac{2x}{16} - \frac{2y}{9} \frac{dy}{dx} = 0$$

 $\Rightarrow \frac{dy}{dx} = \frac{2x \times 9}{16 \times 2y} = \frac{9}{16} \frac{x}{y} \Rightarrow \left(\frac{-dx}{dy}\right)_{(-4,0)} = \frac{-16}{9} \frac{y}{x} = 0$

Hence, equation of normal

 \implies $(y-0)=0(x+4) \implies y=0.$

60. (b) Distance between foci = 8

- $\therefore 2ae = 8$ also e = 2; $\therefore 2a = 4$
- $\Rightarrow a=2 \Rightarrow a^2=4$; $\therefore b^2=4(4-1)=12$
- : Equation of hyperbola is $\frac{x^2}{4} \frac{y^2}{12} = 1$.
- **61.** (c) :: $\frac{2b^2}{a^2} = 9 \implies 2b^2 = 9a$ (i)
 - Now $b^2 = a^2(e^2 1) = \frac{9}{16}a^2 \Longrightarrow a = \frac{4}{3}b \dots(ii), (:: e = \frac{5}{4})$

From (i) and (ii), b = 6, a = 8

Hence, equation of hyperbola $\frac{x^2}{64} - \frac{y^2}{36} = 1$.

62. (b) If y = mx + c is tangent to the hyperbola then $c^2 = a^2m^2 - b^2$. Here $\beta^2 = a^2\alpha^2 - b^2$. Hence locus of $P(\alpha, \beta)$ is $a^2x^2 - y^2 = b^2$, which is a hyperbola.

HYPERBOLA

PRACTICE EXERCISE

1.	The foci of hyperbola $9x^2 - 16y^2 + 72x - 32y - 16 = 0$ are												
	1) (1, 1), (9,1) 2) (1,	-1), (9, -1)	3) (1, -1), (-9, -1) 4) (-1, 1) (-9, 1)										
2.	The eccentricity of the conic represented by $x = a (t + 1/t)$; $y = a(t-1/t)$ is												
	1) $\sqrt{2}$	2) $\sqrt{3}$	3) 2	4) 3									
3.	The length of the latusrectum of the hyperbola $4x^2 - 9y^2 - 8x - 32 = 0$ is												
	1) 2/3	2) 4/3	3) 8/3	4) 10/3									
4.	The centre of the hyp	Derbola $\frac{(3x-4y-225)}{225}$	$\frac{(4x+3y+1)^2}{100}$	$\frac{2)^2}{2} = 1$ is									
	1) (1, 1)	2) (2, 2)	3) (1, 2)	$4)\left(-\frac{12}{25},-\frac{84}{25}\right)$									
5.	The eccentricity of a hyperbola is 4/3. Then the eccentricity of its conjugate hyperbola												
	is												
	1) 1/√7	2) 2/√7	3) 3/\(\sqrt{7})	4) 4/\(\sqrt{7})									
6.	If e ₁ and e ₂ are eccen	tricities of two hy	perbolas $x^2 - y^2$	$= a^2$, $xy = c^2$, then	$e_1^2 + e_2^2 =$								
	1) 1	2) 2	3) 3	4) 4									
7.	The equation of the r	normal at $\theta = \pi/3$	to the hyperbola	$3x^2 - 4y^2 = 12$ is									
G	1) x+y=1	2) x+y=3	3) x+y=5	4) x+y=7									
8.	The line $x+2y+3=0$ meets the hyperbola $x^2-y^2=4$ in A and B. The mid point of the chord AB												
	is												
	1) (1, -2)	2) (-1, 2)	3) (-3, 0)	4) (1, 2)									

- 9. One asymptote of the hyperbola $2x^2+3xy-2y^2-7x + y+6=0$ is x+2y-3=0. Then the other asymptote is
 - 1) 2x-y+4=0 2) 2x-y+3=0 3) 2x-y+1=0 4) 2x-y-1=0
- 10. The line x+y+1 = 0 is an asymptote of $x^2 y^2 + x y 2 = 0$. The other asymptote is

1) x+y=0 2) x-y=0 3) x-y=1 4) x-y+1=0

11. If (5, 12) and (24, 7) are the foci of the hyperbola passing through the origin, then the eccentricity is

1)
$$\frac{\sqrt{368}}{38}$$
 2) $\frac{\sqrt{386}}{13}$ 3) $\frac{\sqrt{386}}{25}$ 4) $\frac{\sqrt{386}}{12}$

- 12. The locus of the point of intersection of the lines $x\sqrt{3} y 4\sqrt{3}k = 0$ and $kx\sqrt{3} + ky = 4\sqrt{3}$ is a hyperbola of eccentricity
 - 1) 1 2) 2 3) 3 4) 4
- 13. If a circle cuts the rectangular hyperbola xy = 1 at the points (x_r, y_r) ; r = 1,2,3,4, then $x_1x_2x_3x_4 + y_1y_2y_3y_4 =$
 - 1) zero 2) 1 3) 2 4) -1
- 14. If the latusrectum through one focus subtends a right angle at the farther vertex of the hyperbola, then the eccentricity is
 - 1) 4 2) $\sqrt{3}$ 3) 2 4) $\sqrt{2}$
- 15. If the latusrectum through one focus of a hyperbola subtends an angle $\frac{\pi}{3}$ at the other

1)
$$\frac{1+2\sqrt{3}}{\sqrt{3}}$$
 2) $\frac{2\sqrt{3}-1}{\sqrt{3}}$ 3) $\sqrt{3}$ 4) $\frac{3\sqrt{3}}{2}$

16. If the latusrectum through one focus of a hyperbola subtends an angle $\frac{\pi}{2}$ at the centre, then e =

1)
$$\frac{2+\sqrt{5}}{2}$$
 2) $\frac{1+\sqrt{5}}{2}$ 3) $\frac{\sqrt{5}-1}{2}$ 4) $\frac{\sqrt{5}}{2}$

17. **I** : The product of the perpendiculars from any point on the hyperbola to its asymptotes is a constant.

II: Equation to the tangent at $\theta = \pi/3$ are the hyperbola $3x^2 - 4y^2 = 12$ is x - y = 12.

Which of the statements is correct?

1) Only I is true

3) Both I and II are true

4) Neither I nor II true

2) Only II is true

18. Observe the following lists:

List - I

List - II

A) The locus of the point $\left(\frac{e^{t} + e^{-t}}{2}, \frac{e^{t} - e^{-t}}{2}\right)$ is 1) $x^{2} + y^{2} = 36$

B) Equation to the auxiliary circle of $\frac{x^2}{36} - \frac{y^2}{76} = 1$ is 2) hyperbola

C) The locus of the points (a $\cosh\theta$, b $\sinh\theta$) is 3) Rectangular hyperbola

D) Equation to the director circle of $\frac{x^2}{36} + \frac{y^2}{14} = 1$ 4) $x^2 + y^2 = 76$

5) $x^2 + y^2 = 50$

Correct match for List-1 from List-II is

19. Assertion (A): PSP' is a focal chord of $\frac{x^2}{25} + \frac{y^2}{16} = 1$. If SP = 8 then S¹P = 2

Reason (R): The semi latus-rectum of an ellipse is the harmonic mean between the segments of a focal chord.

- 1) Both A and R are true and R is correct explanation of A
- 2) Both A and R are true but R is not the correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true.
- **20.** I : If P(x₁, y₁) is a point on b² x² + a² y² = a² b², then area Δ SPS = ae $\sqrt{a^2 x_1^2}$.

II : A tangent to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the axes in P and Q. Then

 $\frac{a^2}{CP^2} - \frac{b^2}{CQ^2} = 1$, where C is the centre of the conic.

- 1) Only I is true
- 3) Both I and II are true

4) Neither I nor II true

2) Only II is true

21. The normal at any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ cuts the axes in Q and R. The

equation to the locus of the mid point of QR is

1) $a^{2}x^{2} - b^{2}y^{2} = (a^{2} + b^{2})^{2}$ 2) $a^{2}x^{2} - b^{2}y^{2} = 4(a^{2} + b^{2})^{2}$ 3) $4a^{2}x^{2} - 4b^{2}y^{2} = (a^{2} + b^{2})^{2}$ 4) $\left(\frac{1}{a^{2} + b^{2}}\right)^{2} \left(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\right)^{2} \left(\frac{a^{6}}{x^{2}} - \frac{b^{6}}{y^{2}}\right) = 1$

22. The locus of the middle points of all chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ which are parallel to the line $y = m_1 x$ is the straight line $y = m_2 x$ such that

1)
$$m_1 - m_2 = \frac{2a^2}{b}$$
 2) $\frac{m_1}{m_2} = \frac{2b^2}{a}$ 3) $m_1 + m_2 = \frac{2b^2}{a}$ 4) $m_1m_2 = \frac{b^2}{a^2}$

- 23. The asymptotes of a hyperbola are parallel to x+y+3=0, 2x-3y+6=0, its centre is (1,2). Then the equation of a hyperbola passing through origin is
 - 1) $2x^2 xy 3y^2 2x 5y = 0$ 2) $2x^2 + xy + 3y^2 2x 5y = 0$ 3) $2x^2 + xy + 3y^2 + 2x + 5y = 0$ 4) $2x^2 xy 3y^2 2x + 13y = 0$
- 24. The product of the perpendiculars from any point on $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ to its asymptotes is
 - 1) $\frac{a^2b^2}{a^2+b^2}$ 2) $\frac{2a^2b^2}{a^2+b^2}$ 3) $\frac{ab}{a^2+b^2}$ 4) $\frac{2ab}{a^2+b^2}$
- 25. The product of the distances from any point on the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ to its two

asymptotes is

- 1) 144/25 2) 25/144 3) 140/25 4) None
- 26. The points of intersection of the asymptotes of the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ with its directricies lie on
 - 1) $x^2 + y^2 = 5$ 2) $x^2 + y^2 = 9$ 3) 3x 4 = 0 4) x 3 = 0
- 27. If the latusrectum subtends a right angle at the centre of the hyperbola, then its eccentricity

1)
$$e = \frac{(\sqrt{13})}{2}$$
 2) $e = \frac{(\sqrt{5}-1)}{2}$ 3) $e = \frac{(\sqrt{5}+1)}{2}$ 4) $e = \frac{(\sqrt{3}+1)}{2}$

28. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then its eccentricity e =

1)
$$\frac{\sqrt{5}+1}{2}$$
 2) $\frac{\sqrt{11}+1}{2}$ 3) $\frac{\sqrt{13}+1}{2\sqrt{3}}$ 4) $\frac{\sqrt{13}-1}{2\sqrt{3}}$

- 29. If the latusrectum of a hyperbola through one focus subtends 60^0 at the other focus, then its eccentricity e =
 - 1) $\sqrt{2}$ 2) $\sqrt{3}$ 3) $\sqrt{5}$ 4) $\sqrt{6}$

- 30. If PQ is a double ordinate of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
 - 1) $1 < e < \frac{2}{\sqrt{3}}$ 2) $e = \frac{2}{\sqrt{3}}$ 3) $e = \frac{\sqrt{3}}{2}$ 4) $e > \frac{2}{\sqrt{3}}$

31. The tangent at any point P on $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the lines bx-ay =0 and bx +ay=0 in the

 points Q and R. Then CQ.CR =

 1) a^2b^2 2) $a^2 - b^2$ 3) $a^2 + b^2$ 4) None of these

32. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and that of the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b² is

1) 1 2) 5 3) 7 4) 9

PRACTICE EXERCISE KEY

1	2	3	4	5	6	7	8	9	10
3	1	3	4	4	4	4	1	4	2
11	12	13	14	15	16	17	18	19	20
4	2	3	3	3	2	1	4	1	2
21	22	23	24	25	26	27	28	29	30
3	4	1	1	1	2	3	3	2	4
31	32								

3

3