HYPERBOLA

EXERCISE

1. If the latus rectum of an hyperbola be 8 and eccentricity be $3 / \sqrt{5}$, then the equation of the hyperbola is
(a) $4 x^{2}-5 y^{2}=100$
(b) $5 x^{2}-4 y^{2}=100$
(c) $4 x^{2}+5 y^{2}=100$
(d) $5 x^{2}+4 y^{2}=100$
2. The length of the transverse axis of a hyperbola is 7 and it passes through the point $(5,-2)$. The equation of the hyperbola is
(a) $\frac{4}{49} x^{2}-\frac{196}{51} y^{2}=1$
(b) $\frac{49}{4} x^{2}-\frac{51}{196} y^{2}=1$
(c) $\frac{4}{49} x^{2}-\frac{51}{196} y^{2}=1$
(d) None of these
3. If $(0, \pm 4)$ and $(0, \pm 2)$ be the foci and vertices of a hyperbola, then its equation is
(a) $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
(b) $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
(c) $\frac{y^{2}}{4}-\frac{x^{2}}{12}=1$
(d) $\frac{y^{2}}{12}-\frac{x^{2}}{4}=1$
4. The equation of the hyperbola whose directrix is $x+2 y=1$, focus $(\mathbf{2}, \mathbf{1})$ and eccentricity 2 will be
(a) $x^{2}-16 x y-11 y^{2}-12 x+6 y+21=0$
(b) $3 x^{2}+16 x y+15 y^{2}-4 x-14 y-1=0$
(c) $x^{2}+16 x y+11 y^{2}-12 x-6 y+21=0$
(d) None of these
5. The equation of a hyperbola, whose foci are $(5,0)$ and $(-5,0)$ and the length of whose conjugate axis is 8 , is
(a) $9 x^{2}-16 y^{2}=144$
(b) $16 x^{2}-9 y^{2}=144$
(c) $9 x^{2}-16 y^{2}=12$
(d) $16 x^{2}-9 y^{2}=12$
6. The equation of the hyperbola referred to its axes as axes of coordinate and whose distance between the foci is $\mathbf{1 6}$ and eccentricity is $\sqrt{2}$, is
(a) $x^{2}-y^{2}=16$
(b) $x^{2}-y^{2}=32$
(c) $x^{2}-2 y^{2}=16$
(d) $y^{2}-x^{2}=16$
7. The equation of the hyperbola referred to the axis as axes of co-ordinate and whose distance between the foci is 16 and eccentricity is $\sqrt{2}$, is
(a) $x^{2}-y^{2}=16$
(b) $x^{2}-y^{2}=32$
(c) $x^{2}-2 y^{2}=16$
(d) $y^{2}-x^{2}=16$
8. What will be equation of that chord of hyperbola $25 x^{2}-16 y^{2}=400$, whose mid point is $(\mathbf{5}, \mathbf{3})$
(a) $115 x-117 y=17$
(b) $125 x-48 y=481$
(c) $127 x+33 y=341$
(d) $15 x+121 y=105$
9. The straight line $x+y=\sqrt{2} p$ will touch the hyperbola $4 x^{2}-9 y^{2}=36$, if
(a) $p^{2}=2$
(b) $p^{2}=5$
(c) $5 p^{2}=2$
(d) $2 p^{2}=5$
10. The equation of the director circle of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$ is given by
(a) $x^{2}+y^{2}=16$
(b) $x^{2}+y^{2}=4$
(c) $x^{2}+y^{2}=20$
(d) $x^{2}+y^{2}=12$
11. The equation of the transverse and conjugate axis of the hyperbola $16 x^{2}-y^{2}+64 x+4 y+44=0$ are
(a) $x=2, y+2=0$
(b) $x=2, y=2$
(c) $y=2, x+2=0$
(d) None of these
12. The equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13 , is
(a) $25 x^{2}-144 y^{2}=900$
(b) $144 x^{2}-25 y^{2}=900$
(c) $144 x^{2}+25 y^{2}=900$
(d) $25 x^{2}+144 y^{2}=900$
13. The auxiliary equation of circle of hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, is
(a) $x^{2}+y^{2}=a^{2}$
(b) $x^{2}+y^{2}=b^{2}$
(c) $x^{2}+y^{2}=a^{2}+b^{2}$
(d) $x^{2}+y^{2}=a^{2}-b^{2}$
14. The equation of the hyperbola whose foci are $(6,4)$ and $(-4,4)$ and eccentricity 2 is given by
(a) $12 x^{2}-4 y^{2}-24 x+32 y-127=0$
(b) $12 x^{2}+4 y^{2}+24 x-32 y-127=0$
(c) $12 x^{2}-4 y^{2}-24 x-32 y+127=0$
(d) $12 x^{2}-4 y^{2}+24 x+32 y+127=0$
15. The length of transverse axis of the parabola $3 x^{2}-4 y^{2}=32$ is
(a) $\frac{8 \sqrt{2}}{\sqrt{3}}$
(b) $\frac{16 \sqrt{2}}{\sqrt{3}}$
(c) $\frac{3}{32}$
(d) $\frac{64}{3}$
16. The latus-rectum of the hyperbola $16 x^{2}-9 y^{2}=144$, is
(a) $\frac{16}{3}$
(b) $\frac{32}{3}$
(c) $\frac{8}{3}$
(d) $\frac{4}{3}$
17. The eccentricity of the hyperbola $4 x^{2}-9 y^{2}=16$, is
(a) $\frac{8}{3}$
(b) $\frac{5}{4}$
(c) $\frac{\sqrt{13}}{3}$
(d) $\frac{4}{3}$
18. If the length of the transverse and conjugate axes of a hyperbola be 8 and 6 respectively, then the difference focal distances of any point of the hyperbola will be
(a) 8
(b) 6
(c) 14
(d) 2
19. The equation of the hyperbola whose directrix is $2 x+y=1$, focus $(1,1)$ and eccentricity $=\sqrt{3}$, is
(a) $7 x^{2}+12 x y-2 y^{2}-2 x+4 y-7=0$
(b) $11 x^{2}+12 x y+2 y^{2}-10 x-4 y+1=0$
(c) $11 x^{2}+12 x y+2 y^{2}-14 x-14 y+1=0$
(d)None of these
20. The difference of the focal distance of any point on the hyperbola $9 x^{2}-16 y^{2}=144$, is
(a) 8
(b) 7
(c) 6
(d) 4
21. The locus of the point of intersection of the lines $\sqrt{3} x-y-4 \sqrt{3} k=0$ and $\sqrt{3} k x+k y-4 \sqrt{3}=0$ for different value of \boldsymbol{k} is
(a) Circle
(b) Parabola
(c)Hyperbola
(d) Ellipse
22. The equation of the tangent to the conic $x^{2}-y^{2}-8 x+2 y+11=0$ at $(\mathbf{2}, \mathbf{1})$ is
(a) $x+2=0$
(b) $2 x+1=0$
(c) $x-2=0$
(d) $x+y+1=0$
23. The equation of the normal at the point $(6,4)$ on the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{16}=3$, is
(a) $3 x+8 y=50$
(b) $3 x-8 y=50$
(c) $8 x+3 y=50$
(d) $8 x-3 y=50$
24. The condition that the straight line $l x+m y=n$ may be a normal to the hyperbola $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ is given by
(a) $\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$
(b) $\frac{l^{2}}{a^{2}}-\frac{m^{2}}{b^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$
(c) $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$
(d) $\frac{l^{2}}{a^{2}}+\frac{m^{2}}{b^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$
25. If the eccentricities of the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$ be \boldsymbol{e} and e_{1}, then $\frac{1}{e^{2}}+\frac{1}{e_{1}^{2}}=$
(a) 1
(b) 2
(c) 3
(d)None of these
26. If \boldsymbol{e} and \boldsymbol{e}^{\prime} are eccentricities of hyperbola and its conjugate respectively, then
(a) $\left(\frac{1}{e}\right)^{2}+\left(\frac{1}{e^{\prime}}\right)^{2}=1$
(b) $\frac{1}{e}+\frac{1}{e^{\prime}}=1$
(c) $\left(\frac{1}{e}\right)^{2}+\left(\frac{1}{e^{\prime}}\right)^{2}=0$
(d) $\frac{1}{e}+\frac{1}{e^{\prime}}=2$
27. The eccentricity of curve $x^{2}-y^{2}=1$ is
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) 2
(d) $\sqrt{2}$
28. The locus of the point of intersection of lines $(x+y) t=a$ and $x-y=a t$, where \boldsymbol{t} is the parameter, is
(a) A circle
(b) An ellipse
(c)A rectangular hyperbola
(d)None of these
29. The eccentricity of the conjugate hyperbola of the hyperbola $x^{2}-3 y^{2}=1$, is
(a) 2
(b) $\frac{2}{\sqrt{3}}$
(c) 4
(d) $\frac{4}{3}$
30. If transverse and conjugate axes of a hyperbola are equal, then its eccentricity is
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) $1 / \sqrt{2}$
(d) 2
31. The eccentricity of the hyperbola conjugate to $x^{2}-3 y^{2}=2 x+8$ is
(a) $\frac{2}{\sqrt{3}}$
(b) $\sqrt{3}$
(c) 2
(d)None of these
32. A tangent to a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ intercepts a length of unity from each of the coordinate axes, then the point (a, b) lies on the rectangular hyperbola
(a) $x^{2}-y^{2}=2$
(b) $x^{2}-y^{2}=1$
(c) $x^{2}-y^{2}=-1$
(d) None of these
33. The radius of the director circle of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, is
(a) $a-b$
(b) $\sqrt{a-b}$
(c) $\sqrt{a^{2}-b^{2}}$
(d) $\sqrt{a^{2}+b^{2}}$
34. The length of the chord of the parabola $y^{2}=4 a x$ which passes through the vertex and makes an angle θ with the axis of the parabola, is
(a) $4 a \cos \theta \operatorname{cosec}^{2} \theta$
(b) $4 a \cos ^{2} \theta \operatorname{cosec} \theta$
(c) $a \cos \theta \operatorname{cosec}^{2} \theta$
(d) $a \cos ^{2} \theta \operatorname{cosec} \theta$
35. If $(4,0)$ and $(-4,0)$ be the vertices and $(6,0)$ and $(-6,0)$ be the foci of a hyperbola, then its eccentricity is
(a) $5 / 2$
(b) 2
(c) $3 / 2$
(d) $\sqrt{2}$
36. If the centre, vertex and focus of a hyperbola be $(0,0),(4,0)$ and $(6,0)$ respectively, then the equation of the hyperbola is
(a) $4 x^{2}-5 y^{2}=8$
(b) $4 x^{2}-5 y^{2}=80$
(c) $5 x^{2}-4 y^{2}=80$
(d) $5 x^{2}-4 y^{2}=8$
37. The locus of a point which moves such that the difference of its distances from two fixed points is always a constant is
(a) A straight line
(b) A circle
(c)An ellipse
(d)A hyperbola
38. The point of contact of the tangent $y=x+2$ to the hyperbola $5 x^{2}-9 y^{2}=45$ is
(a) $(9 / 2,5 / 2)$
(b) $(5 / 2,9 / 2)$
(c) $(-9 / 2,-5 / 2)$
(d)none of these
39. None of these The locus of the point of intersection of any two perpendicular tangents to the hyperbola is a circle which is called the director circle of the hyperbola, then the $e q^{n}$ of this circle is
(a) $x^{2}+y^{2}=a^{2}+b^{2}$
(b) $x^{2}+y^{2}=a^{2}-b^{2}$
(c) $x^{2}+y^{2}=2 a b$
(d)None of these
40. The vertices of a hyperbola are at $(0,0)$ and $(10,0)$ and one of its foci is at $(18,0)$. The equation of the hyperbola is
(a) $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$
(b) $\frac{(x-5)^{2}}{25}-\frac{y^{2}}{144}=1$
(c) $\frac{x^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
(d) $\frac{(x-5)^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
41. Centre of hyperbola $9 x^{2}-16 y^{2}+18 x+32 y-151=0$ is
(a) $(1,-1)$
(b) $(-1,1)$
(c) $(-1,-1)$
(d) $(1,1)$
42. The equation of the tangent to the hyperbola $2 x^{2}-3 y^{2}=6$ which is parallel to the line $y=3 x+4$, is
(a) $y=3 x+5$
(b) $y=3 x-5$
(c) $y=3 x+5$ and $y=3 x-5$
(d)None of these
43. A hyperbola passes through the points $(3,2)$ and $(-17,12)$ and has its centre at origin and transverse axis is along x-axis. The length of its transverse axis is
(a) 2
(b) 4
(c) 6
(d)None of these
44. The distance between the foci of a hyperbola is double the distance between its vertices and the length of its conjugate axis is 6 . The equation of the hyperbola referred to its axes as axes of co-ordinates is
(a) $3 x^{2}-y^{2}=3$
(b) $x^{2}-3 y^{2}=3$
(c) $3 x^{2}-y^{2}=9$
(d) $x^{2}-3 y^{2}=9$
45. The equation of the tangents to the conic $3 x^{2}-y^{2}=3$ perpendicular to the line $x+3 y=2$ is
(a) $y=3 x \pm \sqrt{6}$
(b) $y=6 x \pm \sqrt{3}$
(c) $y=x \pm \sqrt{6}$
(d) $y=3 x \pm 6$
46. Curve $x y=c^{2}$ is said to be
(a) Parabola
(b) Rectangular hyperbola
(c)Hyperbola
(d)Ellipse
47. The distance between the directrices of a rectangular hyperbola is $\mathbf{1 0}$ units, then distance between its foci is
(a) $10 \sqrt{2}$
(b) 5
(c) $5 \sqrt{2}$
(d) 20
48. If m_{1} and m_{2} are the slopes of the tangents to the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ which pass through the point $(6,2)$, then
(a) $m_{1}+m_{2}=\frac{24}{11}$
(b) $m_{1} m_{2}=\frac{20}{11}$
(c) $m_{1}+m_{2}=\frac{48}{11}$
(d) $m_{1} m_{2}=\frac{11}{20}$
49. If the straight line $x \cos \alpha+y \sin \alpha=p$ be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then
(a) $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$
(b) $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$
(c) $a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha=p^{2}$
(d) $a^{2} \sin ^{2} \alpha-b^{2} \cos ^{2} \alpha=p^{2}$
50. Let \boldsymbol{E} be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and \boldsymbol{C} be the circle $x^{2}+y^{2}=9$. Let \boldsymbol{P} and \boldsymbol{Q} be the points (1,
2) and $(2,1)$ respectively. Then
(a) Q lies inside C but outside E
(b) Q lies outside both C and E
(c) P lies inside both C and E
(d) P lies inside C but outside E
51. The equation of the normal at the point $(a \sec \theta, b \tan \theta)$ of the curve $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ is
(a) $\frac{a x}{\cos \theta}+\frac{b y}{\sin \theta}=a^{2}+b^{2}$
(b) $\frac{a x}{\tan \theta}+\frac{b y}{\sec \theta}=a^{2}+b^{2}$
(c) $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2}$
(d) $\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}-b^{2}$
52. The value of \boldsymbol{m} for which $y=m x+6$ is a tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$, is
(a) $\sqrt{\frac{17}{20}}$
(b) $\sqrt{\frac{20}{17}}$
(c) $\sqrt{\frac{3}{20}}$
(d) $\sqrt{\frac{20}{3}}$
53. The equation of the normal to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ at the point $(8,3 \sqrt{3})$ is
(a) $\sqrt{3} x+2 y=25$
(b) $x+y=25$
(c) $y+2 x=25$
(d) $2 x+\sqrt{3} y=25$
54. The equation of the tangent to the conic $x^{2}-y^{2}-8 x+2 y+11=0$ at $(\mathbf{2}, \mathbf{1})$ is
(a) $x+2=0$
(b) $2 x+1=0$
(c) $x-2=0$
(d) $x+y+1=0$
55. If \boldsymbol{e} and e^{\prime} are eccentricities of hyperbola and its conjugate respectively, then
(a) $\left(\frac{1}{e}\right)^{2}+\left(\frac{1}{e^{\prime}}\right)^{2}=1$
(b) $\frac{1}{e}+\frac{1}{e^{\prime}}=1$
(c) $\left(\frac{1}{e}\right)^{2}+\left(\frac{1}{e^{\prime}}\right)^{2}=0$
(d) $\frac{1}{e}+\frac{1}{e^{\prime}}=2$
56. The coordinates of the foci of the rectangular hyperbola $x y=c^{2}$ are
(a) $(\pm c, \pm c)$
(b) $(\pm c \sqrt{2}, \pm c \sqrt{2})$
(c) $\left(\pm \frac{c}{\sqrt{2}}, \pm \frac{c}{\sqrt{2}}\right)$
(d)None of these
57. If the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide, then the value of b^{2} is
(a) 1
(b) 5
(c) 7
(d) 9
58. The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^{2}-2 y^{2}-2=0$ to its asymptotes is
(a) $1 / 2$
(b) $2 / 3$
(c) $3 / 2$
(d) 2
59. The equation of the normal to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ at $(-4,0)$ is
(a) $y=0$
(b) $y=x$
(c) $x=0$
(d) $x=-y$
60. The equation to the hyperbola having its eccentricity 2 and the distance between its foci is 8
(a) $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
(b) $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
(c) $\frac{x^{2}}{8}-\frac{y^{2}}{2}=1$
(d) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
61. The equation of the hyperbola in the standard form (with transverse axis along the \boldsymbol{x} axis) having the length of the latus rectum $=9$ units and eccentricity $=5 / 4$ is
(a) $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$
(b) $\frac{x^{2}}{36}-\frac{y^{2}}{27}=1$
(c) $\frac{x^{2}}{64}-\frac{y^{2}}{36}=1$
(d) $\frac{x^{2}}{36}-\frac{y^{2}}{64}=1$
(e) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
62. The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
(a) A parabola
(b) A hyperbola
(c) An ellipse
(d) A circle

HYPERBOLA

HINTS AND SOLUTIONS

1. (a) $\frac{2 b^{2}}{a}=8$ and $\frac{3}{\sqrt{5}}=\sqrt{1+\frac{b^{2}}{a^{2}}}$ or $\frac{4}{5}=\frac{b^{2}}{a^{2}}$ $\Rightarrow a=5, b=2 \sqrt{5}$.

Hence the required equation of hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1 \Rightarrow 4 x^{2}-5 y^{2}=100$.
2. (c) $2 a=7$ or $a=\frac{7}{2}$

Also $(5,-2)$ satisfies it, so $\frac{4}{49}(25)-\frac{51}{196}(4)=1$
and $a^{2}=\frac{49}{4} \Rightarrow a=\frac{7}{2}$.
3. (c) Foci $(0, \pm 4) \equiv(0, \pm b e) \Rightarrow b e=4$

Vertices $(0, \pm 2) \equiv(0, \pm b) \Rightarrow b=2 \Rightarrow a=2 \sqrt{3}$
Hence equation is $\frac{-x^{2}}{(2 \sqrt{3})^{2}}+\frac{y^{2}}{(2)^{2}}=1$ or $\frac{y^{2}}{4}-\frac{x^{2}}{12}=1$.
4. (a) $(x-2)^{2}+(y-1)^{2}=4\left[\frac{(x+2 y-1)^{2}}{5}\right]$

$$
\begin{aligned}
& \Rightarrow 5\left[x^{2}+y^{2}-4 x-2 y+5\right] \\
& \Rightarrow x^{2}-11 y^{2}-16 x y-12 x+6 y+21=0 .
\end{aligned}
$$

5. (b) $b=4 \Rightarrow 2 a e=10 \Rightarrow 16=25-a^{2} \Rightarrow a=3$

Hence the hyperbola is $16 x^{2}-9 y^{2}=144$.
6. (b) $2 a e=16, e=\sqrt{2} \Rightarrow a=4 \sqrt{2}$ and $b=4 \sqrt{2}$
\therefore Equation is $\frac{x^{2}}{(4 \sqrt{2})^{2}}-\frac{y^{2}}{(4 \sqrt{2})^{2}}=1 \quad \Rightarrow x^{2}-y^{2}=32$.
7. (b)According to question, Transverse axis $=$ Conjugate axis

Given that, $e=\sqrt{2}, 2 a e=16 ; \therefore a=4 \sqrt{2}$
Therefore, equation of hyperbola is $x^{2}-y^{2}=32$.
8. (b)According to question, $S \equiv 25 x^{2}-16 y^{2}-400=0$

Equation of required chord is $S_{1}=T$
Here, $S_{1}=25(5)^{2}-16(3)^{2}-400$

$$
=625-144-400=81
$$

and $T \equiv 25 x x_{1}-16 y y_{1}-400$, where $x_{1}=5, y_{1}=3$
$=25(x)(5)-16(y)(3)-400=125 x-48 y-400$
So from (i), required chord is

$$
125 x-48 y-400=81 \text { or } 125 x-48 y=481
$$

9. (d) The condition for the line $y=m x+c$ will touch the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $c^{2}=a^{2} m^{2}-b^{2}$

Here $m=-1, c=\sqrt{2} p, \quad a^{2}=9, b^{2}=4$
\therefore We get $2 p^{2}=5$.
10. (d) Equation of 'director-circle' of hyperbola is $x^{2}+y^{2}=a^{2}-b^{2}$. Here $a^{2}=16, b^{2}=4$
$\therefore x^{2}+y^{2}=12$ is the required 'director circle'.
11. (c) $(4 x+8)^{2}-(y-2)^{2}=-44+64-4$

$$
\Rightarrow \frac{16(x+2)^{2}}{16}-\frac{(y-2)^{2}}{16}=1
$$

Transverse and conjugate axes are $y=2, x=-2$.
12. (a) Conjugate axis is 5 and distance between foci $=13 \Rightarrow 2 b=5$ and $2 a e=13$.

Now, also we know for hyperbola

$$
\begin{aligned}
& b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow \frac{25}{4}=\frac{(13)^{2}}{4 e^{2}}\left(e^{2}-1\right) \\
& \Rightarrow \frac{25}{4}=\frac{169}{4}-\frac{169}{4 e^{2}} \text { or } e^{2}=\frac{169}{144} \Rightarrow e=\frac{13}{12}
\end{aligned}
$$

Or $a=6, b=\frac{5}{2}$ or hyperbola is $\frac{x^{2}}{36}-\frac{y^{2}}{25 / 4}=1$

$$
\Rightarrow 25 x^{2}-144 y^{2}=900
$$

13. (a) The equation is $(x-0)^{2}+(y-0)^{2}=a^{2}$.
14. (a) Foci are $(6,4)$ and $(-4,4), e=2$ and centre is $\left(\frac{6-4}{2}, 4\right)=(1,4)$
$\Rightarrow 6=1+a e \Rightarrow a e=5 \Rightarrow a=\frac{5}{2}$ and $b=\frac{5}{2}(\sqrt{3})$
Hence the required equation is $\frac{(x-1)^{2}}{(25 / 4)}-\frac{(y-4)^{2}}{(75 / 4)}=1$ or $12 x^{2}-4 y^{2}-24 x+32 y-127=0$
15. (a) The given equation may be written as $\frac{x^{2}}{32 / 2}-\frac{y^{2}}{8}=1$ or $\frac{x^{2}}{(4 \sqrt{2} / \sqrt{3})^{2}}-\frac{y^{2}}{(2 \sqrt{2})^{2}}=1$.

Comparing the given equation with $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, we get $a^{2}=\left(\frac{4 \sqrt{2}}{\sqrt{3}}\right)^{2}$ or $a=\frac{4 \sqrt{2}}{\sqrt{3}}$. Therefore length of transverse axis of a hyperbola $=2 a=2 \times \frac{4 \sqrt{2}}{\sqrt{3}}=\frac{8 \sqrt{2}}{\sqrt{3}}$.
16. (b) The given equation of hyperbola is
$16 x^{2}-9 y^{2}=144 \Rightarrow \frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
\therefore L.R. $=\frac{2 b^{2}}{a}=\frac{2.16}{3}=\frac{32}{3}$.
17. (c) Given equation of hyperbola, $\frac{x^{2}}{4}-\frac{y^{2}}{(16 / 9)}=1$,
$\therefore a=2, b=\frac{4}{3}$. As we know, $b^{2}=a^{2}\left(e^{2}-1\right)$
$\Rightarrow \frac{16}{9}=4\left(e^{2}-1\right) \Rightarrow e^{2}=\frac{13}{9}, \therefore e=\frac{\sqrt{13}}{3}$.
18. (a) $2 a=8,2 b=6$

Difference of focal distances of any point of the hyperbola $=2 a=8$.
19. (a) $S(1,1)$, directrix is $2 x+y=1$ and $e=\sqrt{3}$. Now let the various point be (h, k), then accordingly $\frac{\sqrt{(h-1)^{2}+(k-1)^{2}}}{\frac{2 h+k-1}{\sqrt{5}}}=\sqrt{3}$

Squaring both the sides, we get
$5\left[(h-1)^{2}+(k-1)^{2}\right]=3(2 h+k-1)^{2}$
On simplification, the required locus is $7 x^{2}+12 x y-2 y^{2}-2 x+4 y-7=0$
20. (c) Here coefficient of x^{2} is $+v e$ and that of y^{2} is $-v e$ i.e., a hyperbola.
21. (c) Multiplying both, we get $3 x^{2}-y^{2}=48$

Or $\frac{x^{2}}{(48 / 3)}-\frac{y^{2}}{48}=1$, which is a hyperbola.
22. (c) Equation of the tangent to $x^{2}-y^{2}-8 x+2 y+11=0$ at $(2,1)$ is $2 x-y-4(x+2)+(y+1)+11=0$ or $x=2$.
23. (a)Equation of normal at any point $\left(x_{1}, y_{1}\right)$ on hyperbola is,
$\frac{a^{2}\left(x-x_{1}\right)}{x_{1}}=\frac{b^{2}\left(y-y_{1}\right)}{-y_{1}}$
Here, $a^{2}=267, b^{2}=48$ and $\left(x_{1}, y_{1}\right)=(6,4)$

$$
\begin{aligned}
& \therefore \frac{27(x-6)}{6}=-\frac{48(y-4)}{4} \Rightarrow 3(x-6)=-8(y-4) \\
& \Rightarrow 3 x+8 y=50 .
\end{aligned}
$$

24. (a) Any normal to the hyperbola is

$$
\begin{equation*}
\frac{a x}{\sec \theta}+\frac{b y}{\tan \theta}=a^{2}+b^{2} \tag{i}
\end{equation*}
$$

But it is given by $l x+m y-n=0$
Comparing (i) and (ii), we get

$$
\sec \theta=\frac{a}{l}\left(\frac{-n}{a^{2}+b^{2}}\right) \text { and } \tan \theta=\frac{b}{m}\left(\frac{-n}{a^{2}+b^{2}}\right)
$$

Hence eliminating θ, we get $\frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{n^{2}}$.
25.
(a) $e=\sqrt{1+\frac{b^{2}}{a^{2}}} \Rightarrow e^{2}=\frac{a^{2}+b^{2}}{a^{2}}$
$e_{1}=\sqrt{1+\frac{a^{2}}{b^{2}}} \Rightarrow e_{1}^{2}=\frac{b^{2}+a^{2}}{b^{2}} \Rightarrow \frac{1}{e_{1}^{2}}+\frac{1}{e^{2}}=1$.
26. (a)Let hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Then its conjugate will be, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$
If e is eccentricity of hyperbola (i), then $b^{2}=a^{2}\left(e^{2}-1\right)$
or $\frac{1}{e^{2}}=\frac{a^{2}}{\left(a^{2}+b^{2}\right)}$
Similarly if e^{\prime} is eccentricity of conjugate (ii), then $a^{2}=b^{2}\left(e^{\prime 2}-1\right)$ or $\frac{1}{e^{\prime 2}}=\frac{b^{2}}{\left(a^{2}+b^{2}\right)} \ldots$. (iv)
Adding (iii) and (iv), $\frac{1}{\left(e^{\prime}\right)^{2}}+\frac{1}{e^{2}}=\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}=1$.
27. (d) Since it is a rectangular hyperbola, therefore eccentricity $e=\sqrt{2}$.
28. (c)Multiplying both, we get $x^{2}-y^{2}=a^{2}$. This is equation of rectangular hyperbola as $a=b$.
29. (a) Eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$

Eccentricity of conjugate hyperbola, $e^{\prime}=\sqrt{\frac{a^{2}+b^{2}}{b^{2}}}$
Write the given equation in standard form,
$\frac{x^{2}}{1}-\frac{y^{2}}{1 / 3}=1 \Rightarrow a^{2}=1, b^{2}=\frac{1}{3}$
$\therefore e^{\prime}=\sqrt{\frac{1+1 / 3}{1 / 3}}=\sqrt{4}=2$.
30. (b) Hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Here, transverse and conjugate axis of a hyperbola is equal.
i.e., $a=b \therefore x^{2}-y^{2}=a^{2}$; which is a rectangular hyperbola. Hence, eccentricity $e=\sqrt{1+\frac{b^{2}}{a^{2}}}=\sqrt{2}$.
31. (c) Given, equation of hyperbola is $x^{2}-3 y^{2}=2 x+8$
$\Rightarrow x^{2}-2 x-3 y^{2}=8$
$\Rightarrow(x-1)^{2}-3 y^{2}=9 \Rightarrow \frac{(x-1)^{2}}{9}-\frac{y^{2}}{3}=1$
Conjugate of this hyperbola is $-\frac{(x-1)^{2}}{9}+\frac{y^{2}}{3}=1$
and its eccentricity $(e)=\sqrt{\left(\frac{a^{2}+b^{2}}{b^{2}}\right)}$
Here, $a^{2}=9, b^{2}=3 ; \therefore \quad e=\sqrt{\frac{9+3}{3}}=2$.
32. (b) Tangent at $(a \sec \theta, b \tan \theta)$ is,
$\frac{x}{(a / \sec \theta)}-\frac{y}{(b / \tan \theta)}=1$ or $\frac{a}{\sec \theta}=1, \frac{b}{\tan \theta}=1$
$\Rightarrow a=\sec \theta, b=\tan \theta$ or (a, b) lies on $x^{2}-y^{2}=1$.
33. (c) Equation of director-circle of the hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $x^{2}+y^{2}=a^{2}-b^{2}$
So, radius $=\sqrt{a^{2}-b^{2}}$.
34. (a) $y=x \tan \theta$ will be equation of chord. The points of intersection of chord and parabola are
$(0,0),\left(\frac{4 a}{\tan ^{2} \theta}, \frac{4 a}{\tan \theta}\right)$
Hence length of chord $=4 a \sqrt{\left(\frac{1}{\tan ^{2} \theta}\right)^{2}+\frac{1}{\tan ^{2} \theta}}$

$$
=\frac{4 a}{\tan \theta} \sqrt{\frac{1+\tan ^{2} \theta}{\tan ^{2} \theta}}=4 a \operatorname{cosec}^{2} \theta \cos \theta .
$$

35. (c) Vertices $(\pm 4,0) \equiv(\pm a, 0) \Rightarrow a=4$

Foci $(\pm 6,0) \equiv(\pm a e, 0) \Rightarrow e=\frac{6}{4}=\frac{3}{2}$.
36. (c) Centre $(0,0)$, vertex $(4,0) \Rightarrow a=4$ and focus $(6,0)$
$\Rightarrow a e=4 \Rightarrow e=\frac{3}{2}$. Therefore $b=2 \sqrt{5}$
Hence required equation is $\frac{x^{2}}{16}-\frac{y^{2}}{20}=1$
i.e., $5 x^{2}-4 y^{2}=80$.
37. (d) It is obvious.
38. (c) Hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{5}=1$.

Hence point of contact is $\left[\frac{-9(1)}{\sqrt{9-5}}, \frac{-5}{\sqrt{9-5}}\right] \equiv\left[\frac{-9}{2}, \frac{-5}{2}\right]$.
39. (b) Equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Any tangent to hyperbola are $y=m x \pm \sqrt{a^{2} m^{2}-b^{2}}$
Also tangent perpendicular to this is $y=\frac{-1}{m} x \pm \sqrt{\frac{a^{2}}{m^{2}}-b^{2}}$
Eliminating m, we get $x^{2}+y^{2}=a^{2}-b^{2}$.
40. (b) $2 a=10, \therefore a=5$
$a e-a=8$ or $e=1+\frac{8}{5}=\frac{13}{5}$
$\therefore b=5 \sqrt{\frac{13^{2}}{5^{2}}-1}=5 \times \frac{12}{5}=12$
and centre of hyperbola $\equiv(5,0) \quad \therefore \frac{(x-5)^{2}}{5^{2}}-\frac{(y-0)^{2}}{12^{2}}=1$.
41. (b) Centre is given by

$$
\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right)=\left(\frac{+16.9}{-9.16}, \frac{-9(16)}{-9(16)}\right)=(-1,1) .
$$

42. (c) Let tangent be $y=3 x+c$
$c= \pm \sqrt{a^{2} m^{2}-b^{2}}= \pm \sqrt{3.9-2}= \pm 5 \Rightarrow y=3 x \pm 5$.
43. (a) Let the equation of hyperbola is $\frac{x^{2}}{a^{2}} \frac{y^{2}}{b^{2}}=1$

But it passes through $(3,2) \Rightarrow \frac{9}{a^{2}}-\frac{4}{b^{2}}=1 \ldots .$. (i)
Also its passes through $(-17,12)$
$\Rightarrow \frac{(-17)^{2}}{a^{2}}-\frac{(12)^{2}}{b^{2}}=1$
Solving these, we get $a=1$ and $b=\sqrt{2}$

Hence length of transverse axis $=2 a=2$.
44. (c) According to given conditions, $2 a e=2.2 a$ or $e=2$ and $2 b=6 \Rightarrow b=3$. Hence, $a=\frac{3}{\sqrt{3}}=\sqrt{3}$

Therefore, equation is $\frac{x^{2}}{3}-\frac{y^{2}}{9}=1$ i.e., $3 x^{2}-y^{2}=9$.
45. (a) Tangent to $\frac{x^{2}}{1}-\frac{y^{2}}{3}=1$ and perpendicular to $x+3 y-2=0$ is given by $y=3 x \pm \sqrt{9-3}=3 x \pm \sqrt{6}$.
46. (b) $x y=c^{2}$. Rectangular hyperbola $a^{2}=b^{2}$.
47. (d) \because Distance between directrices $=\frac{2 a}{e}$.
\because Eccentricity of rectangular hyperbola $=\sqrt{2}$.
\therefore Distance between directrics $=\frac{2 a}{\sqrt{2}}$.
Given that, $\frac{2 a}{\sqrt{2}}=10 \Rightarrow 2 a=10 \sqrt{2}$
Now, distance between foci $=2 a e=(10 \sqrt{2})(\sqrt{2})=20$.
48. (a, b) The line through $(6,2)$ is
$y-2=m(x-6) \Rightarrow y=m x+2-6 m$
Now from condition of tangency, $(2-6 m)^{2}=25 m^{2}-16$
$\Rightarrow 36 m^{2}+4-24 m-25 m^{2}+16=0$
$\Rightarrow 11 m^{2}-24 m+20=0$
Obviously its roots are m_{1} and m_{2}, therefore $m_{1}+m_{2}=\frac{24}{11}$ and $m_{1} m_{2}=\frac{20}{11}$.
49. (b) $x \cos \alpha+y \sin \alpha=p \Rightarrow y=-\cot \alpha . x+p \operatorname{cosec} \alpha$

It is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Therefore, $p^{2} \operatorname{cosec}^{2} \alpha=a^{2} \cot ^{2} \alpha-b^{2} \Rightarrow a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$.
50. (d) The given ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. The value of the expression $\frac{x^{2}}{9}+\frac{y^{2}}{4}-1$ is positive for $x=1, y=2$ and negative for $x=2, y=1$. Therefore P lies outside E and Q lies inside E. The value of the expression $x^{2}+y^{2}-9$ is negative for both the points P and Q. Therefore P and Q both lie inside C. Hence P lies inside C but outside E.
51. (c)Equation of normal to hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at $(a \sec \theta, b \tan \theta)$ is $\frac{a^{2} x}{a \sec \theta}+\frac{b^{2} y}{b \tan \theta}=a^{2}+b^{2}$.
52. (a) If $y=m x+c$ touches $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$,
then $c^{2}=a^{2} m^{2}-b^{2}$. Here $c=6, a^{2}=100, b^{2}=49$
$\therefore 36=100 \mathrm{~m}^{2}-49 \Rightarrow 100 \mathrm{~m}^{2}=85 \Rightarrow m=\sqrt{\frac{17}{20}}$.
53. (d) Applying the formula, the required normal is

$$
\frac{16 x}{8}+\frac{9 y}{3 \sqrt{3}}=16+9 \text { i.e., } 2 x+\sqrt{3} y=25
$$

54. (c) Equation of the tangent to $x^{2}-y^{2}-8 x+2 y+11=0$ at $(2,1)$ is $2 x-y-4(x+2)+(y+1)+11=0$ or $x=2$.
55. (a) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{1}{e^{2}}=\frac{a^{2}}{\left(a^{2}+b^{2}\right)}$

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1 \Rightarrow \frac{1}{e^{12}}=\frac{b^{2}}{\left(a^{2}+b^{2}\right)} . \tag{i}
\end{equation*}
$$

$\frac{1}{\left(e^{\prime}\right)^{2}}+\frac{1}{e^{2}}=\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}=1 . x y=c^{2}$ as $c^{2}=\frac{a^{2}}{2}$.
56. (b) focus $=\left(a e \cos 45^{\circ}, a e \sin 45^{\circ}\right) \equiv(c \sqrt{2}, c \sqrt{2}),\{\because e=\sqrt{2}, a=c \sqrt{2}\}$

Similarly other focus is $(-c \sqrt{2},-c \sqrt{2})$
57. (c)Hyperbola is $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$

$$
a=\sqrt{\frac{144}{25}}, b=\sqrt{\frac{81}{25}}, e_{1}=\sqrt{1+\frac{81}{144}}=\sqrt{\frac{225}{144}}=\frac{15}{12}=\frac{5}{4}
$$

Therefore, foci $=\left(a e_{1}, 0\right)=\left(\frac{12}{5}, \frac{5}{4}, 0\right)=(3,0)$
Therefore, focus of ellipse $=(4 e, 0)$ i.e. $(3,0)$

$$
\begin{equation*}
\Rightarrow e=\frac{3}{4} . \text { Hence } b^{2}=16\left(1-\frac{9}{16}\right)=7 \text {. } \tag{i}
\end{equation*}
$$

58. (b) Given equation is $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$

Product of length of perpendiculars drawn from any point on the hyperbola (i) to the asymptotes is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}=\frac{2 \times 1}{2+1}=\frac{2}{3}$.
59. (a) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1 \Rightarrow \frac{2 x}{16}-\frac{2 y}{9} \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}=\frac{2 x \times 9}{16 \times 2 y}=\frac{9}{16} \frac{x}{y} \Rightarrow\left(\frac{-d x}{d y}\right)_{(-4,0)}=\frac{-16}{9} \frac{y}{x}=0$
Hence, equation of normal

$$
\Rightarrow(y-0)=0(x+4) \Rightarrow y=0 .
$$

60. (b) Distance between foci $=8$
$\therefore 2 a e=8$ also $e=2 ; \therefore 2 a=4$
$\Rightarrow a=2 \Rightarrow a^{2}=4 ; \therefore b^{2}=4(4-1)=12$
\therefore Equation of hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$.
61. (c) $\because \frac{2 b^{2}}{a^{2}}=9 \Rightarrow 2 b^{2}=9 a$

Now $b^{2}=a^{2}\left(e^{2}-1\right)=\frac{9}{16} a^{2} \Rightarrow a=\frac{4}{3} b \ldots .$. (ii), $\left(\because e=\frac{5}{4}\right)$
From (i) and (ii), $b=6, a=8$
Hence, equation of hyperbola $\frac{x^{2}}{64}-\frac{y^{2}}{36}=1$.
62. (b) If $y=m x+c$ is tangent to the hyperbola then $c^{2}=a^{2} m^{2}-b^{2}$. Here $\beta^{2}=a^{2} \alpha^{2}-b^{2}$. Hence locus of $P(\alpha, \beta)$ is $a^{2} x^{2}-y^{2}=b^{2}$, which is a hyperbola.

HYPERBOLA

PRACTICE EXERCISE

1. The foci of hyperbola $9 x^{2}-16 y^{2}+72 x-32 y-16=0$ are
1) $(1,1),(9,1)$
2) $(1,-1),(9,-1)$
3) $(1,-1),(-9,-1)$
4) $(-1,1)(-9,1)$
2. The eccentricity of the conic represented by $x=a(t+1 / t) ; \mathbf{y}=\mathbf{a}(t-1 / t)$ is
1) $\sqrt{2}$
2) $\sqrt{3}$
3) 2
4) 3
3. The length of the latusrectum of the hyperbola $4 x^{2}-9 y^{2}-8 x-32=0$ is
1) $2 / 3$
2) $4 / 3$
3) $8 / 3$
4) $10 / 3$
4. The centre of the hyperbola $\frac{(3 x-4 y-12)^{2}}{225}-\frac{(4 x+3 y+12)^{2}}{100}=\mathbf{1}$ is
1) $(1,1)$
2) $(2,2)$
3) $(1,2)$
4) $\left(-\frac{12}{25},-\frac{84}{25}\right)$
5. The eccentricity of a hyperbola is $4 / 3$. Then the eccentricity of its conjugate hyperbola is
1) $1 / \sqrt{7}$
2) $2 / \sqrt{7}$
3) $3 / \sqrt{7}$
4) $4 / \sqrt{7}$
6. If e_{1} and e_{2} are eccentricities of two hyperbolas $x^{2}-y^{2}=a^{2}, x y=c^{2}$, then $e_{1}{ }^{2}+e_{2}{ }^{2}=$
1) 1
2) 2
3) 3
4) 4
7. The equation of the normal at $\theta=\pi / 3$ to the hyperbola $3 x^{2}-4 y^{2}=12$ is
1) $x+y=1$
2) $x+y=3$
3) $x+y=5$
4) $x+y=7$
8. The line $x+2 y+3=0$ meets the hyperbola $x^{2}-y^{2}=4$ in A and B. The mid point of the chord $A B$ is
1) $(1,-2)$
2) $(-1,2)$
3) $(-3,0)$
4) $(1,2)$
9. One asymptote of the hyperbola $2 x^{2}+3 x y-2 y^{2}-7 x+y+6=0$ is $x+2 y-3=0$. Then the other asymptote is
1) $2 x-y+4=0$
2) $2 x-y+3=0$
3) $2 x-y+1=0$
4) $2 x-y-1=0$
10. The line $x+y+1=0$ is an asymptote of $x^{2}-y^{2}+x-y-2=0$. The other asymptote is
1) $x+y=0$
2) $x-y=0$
3) $x-y=1$
4) $x-y+1=0$
11. If $(5,12)$ and $(24,7)$ are the foci of the hyperbola passing through the origin, then the eccentricity is
1) $\frac{\sqrt{368}}{38}$
2) $\frac{\sqrt{386}}{13}$
3) $\frac{\sqrt{386}}{25}$
4) $\frac{\sqrt{386}}{12}$
12. The locus of the point of intersection of the lines $x \sqrt{3}-y-4 \sqrt{3} k=0$ and $k \mathbf{x} \sqrt{3}+k y=4 \sqrt{3}$ is a hyperbola of eccentricity
1) 1
2) 2
3) 3
4) 4
13. If a circle cuts the rectangular hyperbola $x y=1$ at the points $\left(x_{r}, y_{r}\right) ; r=1,2,3,4$, then $\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}+\mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \mathrm{y}_{4}=$
1) zero
2) 1
3) 2
4) -1
14. If the latusrectum through one focus subtends a right angle at the farther vertex of the hyperbola, then the eccentricity is
1) 4
2) $\sqrt{3}$
3) 2
4) $\sqrt{2}$
15. If the latusrectum through one focus of a hyperbola subtends an angle $\frac{\pi}{3}$ at the other focus. then $\mathrm{e}=$
1) $\frac{1+2 \sqrt{3}}{\sqrt{3}}$
2) $\frac{2 \sqrt{3}-1}{\sqrt{3}}$
3) $\sqrt{3}$
4) $\frac{3 \sqrt{3}}{2}$
16. If the latusrectum through one focus of a hyperbola subtends an angle $\frac{\pi}{2}$ at the centre, then $\mathrm{e}=$
1) $\frac{2+\sqrt{5}}{2}$
2) $\frac{1+\sqrt{5}}{2}$
3) $\frac{\sqrt{5}-1}{2}$
4) $\frac{\sqrt{5}}{2}$
17. I : The product of the perpendiculars from any point on the hyperbola to its asymptotes is a constant.

II: Equation to the tangent at $\theta=\pi / 3$ are the hyperbola $3 x^{2}-4 y^{2}=12$ is $x-y=12$.
Which of the statements is correct?

1) Only I is true
2) Only II is true
3) Both I and II are true
4) Neither I nor II true
18. Observe the following lists:

List - I

List - II

A) The locus of the point $\left(\frac{e^{t}+e^{-t}}{2}, \frac{e^{t}-e^{-t}}{2}\right)$ is

1) $x^{2}+y^{2}=36$
B) Equation to the auxiliary circle of $\frac{x^{2}}{36}-\frac{y^{2}}{76}=1$ is
2) hyperbola
C) The locus of the points $(a \cosh \theta, b \sinh \theta)$ is
3) Rectangular hyperbola
D) Equation to the director circle of $\frac{x^{2}}{36}+\frac{y^{2}}{14}=1$
4) $x^{2}+y^{2}=76$

$$
\text { 5) } x^{2}+y^{2}=50
$$

Correct match for List- 1 from List-II is

	A	B	C	D
1)	2	3	4	1
2)	3	5	1	2
$3)$	1	2	5	3
4)	3	1	2	5

19. Assertion (A): PSP' is a focal chord of $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$. If $\mathrm{SP}=8$ then $\mathrm{S}^{1} \mathrm{P}=2$

Reason (R): The semi latus-rectum of an ellipse is the harmonic mean between the segments of a focal chord.

1) Both A and R are true and R is correct explanation of A
2) Both A and R are true but R is not the correct explanation of A
3) A is true but R is false
4) A is false but R is true.
20. I : If $P\left(x_{1}, y_{1}\right)$ is a point on $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, then area $\Delta S P S=a e \sqrt{a^{2}-x_{1}^{2}}$.

II : A tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the axes in P and Q. Then
$\frac{\mathrm{a}^{2}}{\mathrm{CP}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{CQ}^{2}}=1$, where C is the centre of the conic.

1) Only I is true
2) Only II is true
3) Both I and II are true
4) Neither I nor II true
21.The normal at any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ cuts the axes in Q and R. The equation to the locus of the mid point of $Q R$ is
5) $a^{2} x^{2}-b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$
6) $a^{2} x^{2}-b^{2} y^{2}=4\left(a^{2}+b^{2}\right)^{2}$
7) $4 a^{2} x^{2}-4 b^{2} y^{2}=\left(a^{2}+b^{2}\right)^{2}$
8) $\left(\frac{1}{a^{2}+b^{2}}\right)^{2}\left(\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}\left(\frac{a^{6}}{x^{2}}-\frac{b^{6}}{y^{2}}\right)=1$
22. The locus of the middle points of all chords of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ which are parallel to the line $y=m_{1} x$ is the straight line $y=m_{2} x$ such that
1) $m_{1}-m_{2}=\frac{2 a^{2}}{b}$
2) $\frac{m_{1}}{m_{2}}=\frac{2 b^{2}}{a}$
3) $m_{1}+m_{2}=\frac{2 b^{2}}{a}$
4) $m_{1} m_{2}=\frac{b^{2}}{a^{2}}$
23. The asymptotes of a hyperbola are parallel to $x+y+3=0,2 x-3 y+6=0$, its centre is $\mathbf{(1 , 2)}$. Then the equation of a hyperbola passing through origin is
1) $2 x^{2}-x y-3 y^{2}-2 x-5 y=0$
2) $2 x^{2}+x y+3 y^{2}-2 x-5 y=0$
3) $2 x^{2}+x y+3 y^{2}+2 x+5 y=0$
4) $2 x^{2}-x y-3 y^{2}-2 x+13 y=0$
24. The product of the perpendiculars from any point on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is
1) $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
2) $\frac{2 a^{2} b^{2}}{a^{2}+b^{2}}$
3) $\frac{a b}{a^{2}+b^{2}}$
4) $\frac{2 a b}{a^{2}+b^{2}}$
25. The product of the distances from any point on the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=\mathbf{1}$ to its two asymptotes is
1) $144 / 25$
2) $25 / 144$
3) $140 / 25$
4) None
26. The points of intersection of the asymptotes of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ with its directricies lie on
1) $x^{2}+y^{2}=5$
2) $x^{2}+y^{2}=9$
3) $3 x-4=0$
4) $x-3=0$
27. If the latusrectum subtends a right angle at the centre of the hyperbola, then its eccentricity
1) $e=\frac{(\sqrt{13})}{2}$
2) $e=\frac{(\sqrt{5}-1)}{2}$
3) $e=\frac{(\sqrt{5}+1)}{2}$
4) $e=\frac{(\sqrt{3}+1)}{2}$
28. If the latusrectum of a hyperbola forms an equilateral triangle with the vertex at the centre of the hyperbola, then its eccentricity $e=$
1) $\frac{\sqrt{5}+1}{2}$
2) $\frac{\sqrt{11}+1}{2}$
3) $\frac{\sqrt{13}+1}{2 \sqrt{3}}$
4) $\frac{\sqrt{13}-1}{2 \sqrt{3}}$
29. If the latusrectum of a hyperbola through one focus subtends 60° at the other focus, then its eccentricity $\mathbf{e}=$
1) $\sqrt{2}$
2) $\sqrt{3}$
3) $\sqrt{5}$
4) $\sqrt{6}$
30. If $P Q$ is a double ordinate of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that $O P Q$ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
1) $1<\mathrm{e}<\frac{2}{\sqrt{3}}$
2) $e=\frac{2}{\sqrt{3}}$
3) $e=\frac{\sqrt{3}}{2}$
4) $\mathrm{e}>\frac{2}{\sqrt{3}}$
31. The tangent at any point P on $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the lines $b x-a y=0$ and $b x+a y=0$ in the points \mathbf{Q} and R. Then CQ. $C R=$
1) $a^{2} b^{2}$
2) $a^{2}-b^{2}$
3) $a^{2}+b^{2}$
4) None of these
32. The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and that of the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide. Then the value of b^{2} is
1) 1
2) 5
3) 7
4) 9

PRACTICE EXERCISE KEY

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{2}$
11	12	13	14	15	16	17	18	19	20
4	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{2}$
21	22	23	24	25	26	27	28	29	30
$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$
31	32	\mathbf{x}							

