ELLIPSE

OBJECTIVES

1. If $(-4,1)$ and $(6,1)$ are the vertices of an ellipse and one of its foci lies on the line $x-2 y=2$, then its eccentricity is
a) $2 / 7$
b) $3 / 7$
c) $4 / 7$
d) $3 / 5$
2. The foci of the ellipse $9 x^{2}+25 y^{2}-18 x-100 y-116=0$ is
a) $(5,-2),(-3,2)$
b) $(5,2)(-3,2)$
c) $(5,2),(3,2)$
d) $(-5,-2),(-3,2)$
3. The equations of the directrices of the ellipse $25 x^{2}+9 y^{2}-150 x-90 y+225=0$ are
a) $4 y+5=0,4 y-45=0$
b) $4 y+35=0,4 y-15=0$
c) $4 y+35=0,4 y-25=0$
d) $4 x-35=0,4 x+35=0$
4. In an ellipse, the distance between the foci is 8 and the distance between the directrices is 25 . Then the length of major axis is
a) $10 \sqrt{2}$
b) $20 \sqrt{2}$
c) $30 \sqrt{2}$
d) $40 \sqrt{2}$
5. The distance between the foci of $4 x^{2}+y^{2}-16 x-6 y-39=0$ is
a) $3 \sqrt{3}$
c) $8 \sqrt{3}$
c) 8
d) 16
6. The auxilary circle of the ellipse $9 x^{2}+25 y^{2}-18 x-100 y-116=0$
a) $(x+1)^{2}+(y+2)^{2}=9$
b) $(x+1)^{2}+(y+1)^{2}=25$
c) $(x-1)^{2}+(y-2)^{2}=9$
d) $(x-1)^{2}+(y-2)^{2}=25$
7. The equation of the locus of the point of intersection of the perpendicular tangents to the ellipse $9 x^{2}+16 y^{2}=144$ is
a) $x^{2}+y^{2}=5$
b) $x^{2}+y^{2}=7$
c) $x^{2}+y^{2}=25$
d) $x^{2}+y^{2}=2$
8. The radius of the director circle of the ellipse $9 x^{2}+25 y^{2}-18 x-100 y-116=0$ is
a) $\sqrt{34}$
b) $\sqrt{29}$
c) 5
d) 8
9. The focus and the centre of an ellipse are $(2,3),(3,4)$. Then the equation of the minor axis is
a) $x+y=5$
b) $x-y+1=0$
c) $x+y-7=0$
d) $x+y+7=0$
10. The equation $2 x^{2}+3 y^{2}=30$ represents
(a) A circle
(b) An ellipse
(c) A hyperbola
(d) A parabola
11. The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y=12$, is
(a) $95 x^{2}+144 y^{2}=4655$
(b) $144 x^{2}+95 y^{2}=4655$
(c) $95 x^{2}+144 y^{2}=13680$
(d) None of these
12. The lengths of major and minor axis of an ellipse are 10 and 8 respectively and its major axis along the y-axis. The equation of the ellipse referred to its centre as origin is
(a) $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
(b) $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$
(c) $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$
(d) $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$
13. Equation of the ellipse with eccentricity $\frac{1}{2}$ and foci at $(\pm 1,0)$ is
(a) $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
(c) $\frac{x^{2}}{3}+\frac{y^{2}}{4}=\frac{4}{3}$
(d) None of these
14. The equation of ellipse whose distance between the foci is equal to 8 and distance between the directrix is 18 , is
(a) $5 x^{2}-9 y^{2}=180$
(b) $9 x^{2}+5 y^{2}=180$
(c) $x^{2}+9 y^{2}=180$
(d) $5 x^{2}+9 y^{2}=180$
15. The equation of an ellipse whose focus $(\mathbf{- 1}, \mathbf{1})$, whose directrix is $x-y+3=0$ and whose eccentricity is $\frac{1}{2}$, is given by
(a) $7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$
(b) $7 x^{2}-2 x y+7 y^{2}-10 x+10 y+7=0$
(c) $7 x^{2}-2 x y+7 y^{2}-10 x-10 y-7=0$
(d) $7 x^{2}-2 x y+7 y^{2}+10 x+10 y-7=0$
16. The equation of an ellipse whose eccentricity is $1 / 2$ and the vertices are $(4,0)$ and $(10,0)$ is
(a) $3 x^{2}+4 y^{2}-42 x+120=0$
(b) $3 x^{2}+4 y^{2}+42 x+120=0$
(c) $3 x^{2}+4 y^{2}+42 x-120=0$
(d) $3 x^{2}+4 y^{2}-42 x-120=0$
17. The eccentricity of the ellipse $25 x^{2}+16 y^{2}=100$, is
(a) $\frac{5}{14}$
(b) $\frac{4}{5}$
(c) $\frac{3}{5}$
(d) $\frac{2}{5}$
18. The equation of the ellipse whose one focus is at $(4,0)$ and whose eccentricity is $4 / 5$, is
(a) $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{5^{2}}=1$
(b) $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$
(c) $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1$
(d) $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{5^{2}}=1$
19. The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is
(a) 8
(b) 64
(c) 16
(d) 32
20. If the distance between a focus and corresponding directrix of an ellipse be 8 and the eccentricity be $1 / 2$, then length of the minor axis is
(a) 3
(b) $4 \sqrt{2}$
(c) 6
(d) None of these
21. The length of the latus rectum of the ellipse $5 x^{2}+9 y^{2}=45$ is
(a) $\sqrt{5} / 4$
(b) $\sqrt{5} / 2$
(c) $5 / 3$
(d) $10 / 3$
22. Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points, is
(a) $\frac{\sqrt{5}+1}{2}$
(b) $\frac{\sqrt{5}-1}{2}$
(c) $\frac{\sqrt{5}}{2}$
(d) $\frac{\sqrt{3}}{2}$
23. If the eccentricity of an ellipse be $5 / 8$ and the distance between its foci be 10 , then its latus rectum is
(a) $39 / 4$
(b) 12
(c) 15
(d) $37 / 2$
24. The equation of the ellipse whose centre is at origin and which passes through the points $(-3,1)$ and $(2,-2)$ is
(a) $5 x^{2}+3 y^{2}=32$
(b) $3 x^{2}+5 y^{2}=32$
(c) $5 x^{2}-3 y^{2}=32$
(d) $3 x^{2}+5 y^{2}+32=0$
25. If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is
(a) $39 / 4$
(b) 12
(c) 15
(d) $e=\frac{2 \sqrt{2}}{3}$
26. The latus rectum of an ellipse is 10 and the minor axis is equal to the distance between the foci. The equation of the ellipse is
(a) $x^{2}+2 y^{2}=100$
(b) $x^{2}+\sqrt{2} y^{2}=10$
(c) $x^{2}-2 y^{2}=100$
(d) None of these
27. The locus of a variable point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=-\frac{9}{2}$, is
(a) Ellipse
(b) Parabola
(c) Hyperbola
(d) None of these
28. The length of the latus rectum of an ellipse is $\frac{1}{3}$ of the major axis. Its eccentricity is
(a) $\frac{2}{3}$
(b) $\sqrt{\frac{2}{3}}$
(c) $\frac{5 \times 4 \times 3}{7^{3}}$
(d) $\left(\frac{3}{4}\right)^{4}$
29. If the eccentricity of the two ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ and $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are equal, then the value of a / b is
(a) $5 / 13$
(b) $6 / 13$
(c) $13 / 5$
(d) $13 / 6$
30. \boldsymbol{P} is any point on the ellipse $9 x^{2}+36 y^{2}=324$, whose foci are \boldsymbol{S} and \boldsymbol{S}, Then $S P+S^{\prime} P$ equals
(a) 3
(b) 12
(c) 36
(d) 324
31. The equation of the ellipse whose foci are $(\pm 5,0)$ and one of its directrix is $5 x=36$, is
(a) $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$
(b) $\frac{x^{2}}{6}+\frac{y^{2}}{\sqrt{11}}=1$
(c) $\frac{x^{2}}{6}+\frac{y^{2}}{11}=1$
(d) None of these
32. The equation $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0$ represents an ellipse, if
(a) $r>2$
(b) $2<r<5$
(c) $r>5$
(d) None of these
33. If the distance between the foci of an ellipse be equal to its minor axis, then its eccentricity is
(a) $1 / 2$
(b) $1 / \sqrt{2}$
(c) $1 / 3$
(d) $1 / \sqrt{3}$
34. The equations of the directrices of the ellipse $16 x^{2}+25 y^{2}=400$ are
(a) $2 x= \pm 25$
(b) $5 x= \pm 9$
(c) $3 x= \pm 10$
(d) None of these
35. If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is
(a) $3 / 2$
(b) $\sqrt{3} / 2$
(c) $2 / 3$
(d) $\sqrt{2} / 3$
36. The distance between the foci of the ellipse $3 x^{2}+4 y^{2}=48$ is
(a) 2
(b) 4
(c) 6
(d) 8
37. The distance of the point θ ' on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from a focus is
(a) $a(e+\cos \theta)$
(b) $a(e-\cos \theta)$
(c) $a(1+e \cos \theta)$
(d) $a(1+2 e \cos \theta)$
38. If a bar of given length moves with its extremities on two fixed straight lines at right angles, then the locus of any point on bar marked on the bar describes a/an
(a) Circle
(b) Parabola
(c)Ellipse
(d)Hyperbola
39. The centre of the ellipse $\frac{(x+y-2)^{2}}{9}+\frac{(x-y)^{2}}{16}=1$ is
(a) $(0,0)$
(b) $(1,1)$
(c) $(1,0)$
(d) $(0,1)$
40. The equation of the ellipse whose centre is $(2,-3)$, one of the foci is $(3,-3)$ and the corresponding vertex is $(4,-3)$ is
(a) $\frac{(x-2)^{2}}{3}+\frac{(y+3)^{2}}{4}=1$
(b) $\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1$
(c) $\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$
(d) None of these
41. The length of the axes of the conic $9 x^{2}+4 y^{2}-6 x+4 y+1=0$, are
(a) $\frac{1}{2}, 9$
(b) $3, \frac{2}{5}$
(c) $1, \frac{2}{3}$
(d) 3,2
42. The eccentricity of the conic $4 x^{2}+16 y^{2}-24 x-3 y=1$ is
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $\frac{\sqrt{3}}{4}$
(d) $\sqrt{3}$
43. The equation of the tangent to the ellipse $x^{2}+16 y^{2}=16$ making an angle of 60° with \boldsymbol{x}-axis is
(a) $\sqrt{3} x-y+7=0$
(b) $\sqrt{3} x-y-7=0$
(c) $\sqrt{3} x-y \pm 7=0$
(d) None of these
44. If $y=m x+c$ is tangent on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, then the value of \boldsymbol{c} is
(a) 0
(b) $3 / \mathrm{m}$
(c) $\pm \sqrt{9 m^{2}+4}$
(d) $\pm 3 \sqrt{1+m^{2}}$
45. The equation of the tangents drawn at the ends of the major axis of the ellipse $9 x^{2}+5 y^{2}-30 y=0$, are
(a) $y= \pm 3$
(b) $x= \pm \sqrt{5}$
(c) $y=0, y=6$
(d) None of these
46. The locus of the point of intersection of mutually perpendicular tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, is
(a) A straight line
(b) A parabola
(c)A circle
(d) None of these
47. The equation of normal at the point $(\mathbf{0}, \mathbf{3})$ of the ellipse $9 x^{2}+5 y^{2}=45$ is
(a) $y-3=0$
(b) $y+3=0$
(c) x-axis
(d) y-axis
48. If the foci of an ellipse are $(\pm \sqrt{5}, 0)$ and its eccentricity is $\frac{\sqrt{5}}{3}$, then the equation of the ellipse is
(a) $9 x^{2}+4 y^{2}=36$
(b) $4 x^{2}+9 y^{2}=36$
(c) $36 x^{2}+9 y^{2}=4$
(d) $9 x^{2}+36 y^{2}=4$
49. An ellipse has $O B$ as semi minor axis, F and F^{\prime} its foci and the angle $F B F^{\prime}$ is a right angle. Then the eccentricity of the ellipse is
(a) $\frac{1}{4}$
(b) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{2}}$
(d) $\frac{1}{2}$
50. The value of λ, for which the line $2 x-\frac{8}{3} \lambda y=-3$ is a normal to the conic $x^{2}+\frac{y^{2}}{4}=1$ is
(a) $\frac{\sqrt{3}}{2}$
(b) $\frac{1}{2}$
(c) $-\frac{\sqrt{3}}{2}$
(d) $\frac{3}{8}$
51. The point $(4,-3)$ with respect to the ellipse $4 x^{2}+5 y^{2}=1$
(a) Lies on the curve
(
(b) Is inside the curve (c)Is outside the curve
(d)Is focus of the curve
52. The sum of the focal distances of any point on the conic $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is
(a) 10
(b) 9
(c) 41
(d) 18
53. If the line $x \cos \alpha+y \sin \alpha=p$ be normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then
(a) $p^{2}\left(a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha\right)=a^{2}-b^{2}$
(b) $p^{2}\left(a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha\right)=\left(a^{2}-b^{2}\right)^{2}$
(c) $p^{2}\left(a^{2} \sec ^{2} \alpha+b^{2} \operatorname{cosec}^{2} \alpha\right)=a^{2}-b^{2}$
(d) $p^{2}\left(a^{2} \sec ^{2} \alpha+b^{2} \operatorname{cosec}^{2} \alpha\right)=\left(a^{2}-b^{2}\right)^{2}$
54. Eccentric angle of a point on the ellipse $x^{2}+3 y^{2}=6$ at a distance 2 units from the centre of the ellipse is
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{2 \pi}{3}$
55. The equations of the tangents of the ellipse $9 x^{2}+16 y^{2}=144$ which passes through the point $(2,3)$ is
(a) $y=3, x+y=5$
(b) $y=-3, x-y=5$
(c) $y=-4, x+y=3$
(d) $y=-4, x-y=3$
56. The eccentric angles of the extremities of latus recta of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are given by
(a) $\tan ^{-1}\left(\pm \frac{a e}{b}\right)$
(b) $\tan ^{-1}\left(\pm \frac{b e}{a}\right)$
(c) $\tan ^{-1}\left(\pm \frac{b}{a e}\right)$
(d) $\tan ^{-1}\left(\pm \frac{a}{b e}\right)$
57. In the ellipse, minor axis is 8 and eccentricity is $\frac{\sqrt{5}}{3}$. Then major axis is
(a) 6
(b) 12
(c) 10
(d) 16
58.Latus rectum of ellipse $4 x^{2}+9 y^{2}-8 x-36 y+4=0$ is
(a) $8 / 3$
(b) $4 / 3$
(c) $\frac{\sqrt{5}}{3}$
(d) $16 / 3$
58. The sum of focal distances of any point on the ellipse with major and minor axes as $\mathbf{2 a}$ and $2 b$ respectively, is equal to
(a) $2 a$
(b) $\frac{2 a}{b}$
(c) $\frac{2 b}{a}$
(d) $\frac{b^{2}}{a}$
59. The centre of the ellipse $4 x^{2}+9 y^{2}-16 x-54 y+61=0$ is
(a) $(1,3)$
(b) $(2,3)$
(c) $(3,2)$
(d) $(3,1)$
60. The eccentricity of the ellipse $9 x^{2}+5 y^{2}-18 x-2 y-16=0$ is
(a) $1 / 2$
(b) $2 / 3$
(c) $1 / 3$
(d) $3 / 4$
61. An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm , the necessary length of the string and the distance between the pins respectively in cm , are
(a) $6,2 \sqrt{5}$
(b) $6, \sqrt{5}$
(c) $4,2 \sqrt{5}$
(d) None of these
62. The line $y=m x+c$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1$, if $c=$
(a) $-\left(2 a m+b m^{2}\right)$
(b) $\frac{\left(a^{2}+b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$
(c) $-\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$
(d) $\frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2}}}$
63. The equation of the normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $(a \cos \theta, b \sin \theta)$ is
(a) $\frac{a x}{\sin \theta}-\frac{b y}{\cos \theta}=a^{2}-b^{2}$
(b) $\frac{a x}{\sin \theta}-\frac{b y}{\cos \theta}=a^{2}+b^{2}$
(c) $\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}-b^{2}$
(d) $\frac{a x}{\cos \theta}-\frac{b y}{\sin \theta}=a^{2}+b^{2}$.
64. If the normal at the point $P(\theta)$ to the ellipse $\frac{x^{2}}{14}+\frac{y^{2}}{5}=1$ intersects it again at the point $Q(2 \theta)$, then $\cos \theta$ is equal to
(a) $\frac{2}{3}$
(b) $-\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $-\frac{3}{2}$
65. The foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$ are at
(a) $(-1,2)$ and $(-1,-6)$
(b) $(-1,2)$ and $(6,1)$
(c) $(1,-2)$ and $(1,-6)$
(d) $(-1,-2)$ and $(1,6)$
66. If $P \equiv(x, y), F_{1} \equiv(3,0), F_{2} \equiv(-3,0)$ and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equals
(a) 8
(b) 6
(c) 10
(d) 12
67. The angle between the pair of tangents drawn to the ellipse $3 x^{2}+2 y^{2}=5$ from the point $(1,2)$, is
(a) $\tan ^{-1}\left(\frac{12}{5}\right)$
(b) $\tan ^{-1}(6 \sqrt{5})$
(c) $\tan ^{-1}\left(\frac{12}{\sqrt{5}}\right)$
(d) $\tan ^{-1}(12 \sqrt{5})$
68. If the line $y=m x+c$ touches the ellipse $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$, then $c=$
(a) $\pm \sqrt{b^{2} m^{2}+a^{2}}$
(b) $\pm \sqrt{a^{2} m^{2}+b^{2}}$
(c) $\pm \sqrt{b^{2} m^{2}-a^{2}}$
(d) $\pm \sqrt{a^{2} m^{2}-b^{2}}$
69. The locus of the point of intersection of the perpendicular tangents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is
(a) $x^{2}+y^{2}=9$
(b) $x^{2}+y^{2}=4$
(c) $x^{2}+y^{2}=13$
(d) $x^{2}+y^{2}=5$

ELLIPSE

HINTS AND SOLUTIONS

1. d. $2 \mathrm{a}=10$ and $(\mathrm{h}+\mathrm{ae}, 1)$ is a point on the line.
2. b
3. a
4. $\mathrm{a} \quad 2 \mathrm{a}=8$ and $2 \mathrm{a} / \mathrm{e}=25$.
5. b 2ae
6. d $(x+h)^{2}+(y+k)^{2}=a^{2}$
7. c director circle.
8. a
9. c minor axis is the line perpendicular to $\overline{c s}$ passes through c.
10. (b) $\frac{x^{2}}{(30 / 2)}+\frac{y^{2}}{(30 / 3)}=1 \Rightarrow \frac{x^{2}}{15}+\frac{y^{2}}{10}=1$.
11. (b) Vertex $(0,7)$, directrix $y=12, \therefore b=7$

Also $\frac{b}{e}=12 \Rightarrow e=\frac{7}{12}, a=7 \sqrt{\frac{95}{144}}$

Hence equation of ellipse is $144 x^{2}+95 y^{2}=4655$.
12. (b) Here given that $2 b=10,2 a=8 \Rightarrow b=5, a=4$

Hence the required equation is $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$.
13. (b) Given that, $e=\frac{1}{2}$ and $(\pm a e, 0)=(\pm 1,0)$

$$
\begin{aligned}
& \Rightarrow a e=1 \Rightarrow a=2 . \text { Now } b^{2}=a^{2}\left(1-e^{2}\right) \\
& \Rightarrow b^{2}=4\left(1-\frac{1}{4}\right) \Rightarrow b^{2}=3
\end{aligned}
$$

Hence, equation of ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$.
14. (d) $2 a e=8, \frac{2 a}{e}=18 \Rightarrow a=\sqrt{4 \times 9}=6$

$$
e=\frac{2}{3}, b=6 \sqrt{1-\frac{4}{9}}=\frac{6}{3} \sqrt{5}=2 \sqrt{5}
$$

Hence the required equation is $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
i.e., $5 x^{2}+9 y^{2}=180$.
15. (a) Let any point on it be (x, y), then $\frac{\sqrt{(x+1)^{2}}+\sqrt{(y-1)^{2}}}{\left|\frac{x-y+3}{\sqrt{2}}\right|}=\frac{1}{2}$

Squaring and simplifying, we get
$7 x^{2}+2 x y+7 y^{2}+10 x-10 y+7=0$.
16. (a) Major axis $=6=2 a \Rightarrow a=3$
$e=\frac{1}{2} \Rightarrow b=3 \sqrt{1-\frac{1}{4}}=\frac{3 \sqrt{3}}{2}$. Also centre is $(7,0)$
Equation is $\frac{(x-7)^{2}}{9}+\frac{y^{2}}{(27 / 4)}=1$
$\Rightarrow 3 x^{2}+4 y^{2}-42 x+120=0$.
17. (c) $\frac{x^{2}}{4}+\frac{y^{2}}{(25 / 4)}=1$. Here, $a=2, b=5 / 2$
$\therefore b>a$, therefore $a^{2}=b^{2}\left(1-e^{2}\right)$
$\Rightarrow 4=\frac{25}{4}\left(1-e^{2}\right) \Rightarrow \frac{16}{25}=1-e^{2} \Rightarrow e^{2}=1-\frac{16}{25}=\frac{9}{25}$,
$\therefore e=\frac{3}{5}$.
18. (b) Here $a e=4$ and $e=\frac{4}{5} \Rightarrow a=5$

Now $b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow b^{2}=25\left(1-\frac{16}{25}\right)=9$
Hence equation of the ellipse is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
19. (d) Given, distance between the foci $=2 a e=16$ and eccentricity of ellipse (e) $=1 / 2$. We know that length of the major axis of the ellipse $=2 a=\frac{2 a e}{e}=\frac{16}{1 / 2}=32$.
20. (d) $\frac{a}{e}-a e=8$. Also $e=\frac{1}{2} \Rightarrow a=\frac{8 e}{\left(1-e^{2}\right)}=\frac{8.4}{2(3)}=\frac{16}{3}$
$\therefore b=\frac{16}{3} \sqrt{\left(1-\frac{1}{4}\right)}=\frac{16}{3} \frac{\sqrt{3}}{2}=\frac{8 \sqrt{3}}{3}$

Hence the length of minor axis is $\frac{16 \sqrt{3}}{3}$.
21. (d) Here the ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$.

Latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \cdot 5}{3}=\frac{10}{3}$.
22. (b) $\frac{2 b^{2}}{a}=2 a e \Rightarrow b^{2}=a^{2} e$ or $e=\frac{b^{2}}{a^{2}}$

Also $e=\sqrt{1-\frac{b^{2}}{a^{2}}}$ or $e^{2}=1-e$ or $e^{2}+e-1=0$
Therefore $e=\frac{-1 \pm \sqrt{5}}{2}$. As $e<1, \therefore e=\frac{\sqrt{5}-1}{2}$.
23. (a) $a=\frac{10}{\frac{2.5}{8}}=8, b=8 \sqrt{1-\frac{25}{64}}=8 \frac{\sqrt{39}}{8}$

Latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 39}{8}=\frac{39}{4}$.
24. (b) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Since it passes through $(-3,1)$ and $(2,-2)$, so $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$ and $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{4} \Rightarrow a^{2}=\frac{32}{3}$, $b^{2}=\frac{32}{5}$

Hence required equation of ellipse is $3 x^{2}+5 y^{2}=32$.
25. (d) Major axis $=3$ (Minor axis)

$$
\Rightarrow 2 a=3(2 b) \Rightarrow a^{2}=9 b^{2}=9 a^{2}\left(1-e^{2}\right) \Rightarrow e=\frac{2 \sqrt{2}}{3} .
$$

26. (a) Given $\frac{2 b^{2}}{a}=10$ and $2 b=2 a e$

$$
\begin{aligned}
& \text { Also } b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow e^{2}=\left(1-e^{2}\right) \Rightarrow e=\frac{1}{\sqrt{2}} \\
& \Rightarrow b=\frac{a}{\sqrt{2}} \text { or } b=5 \sqrt{2}, a=10
\end{aligned}
$$

Hence equation of ellipse is $\frac{x^{2}}{(10)^{2}}+\frac{y^{2}}{(5 \sqrt{2})^{2}}=1$
27. (a) Let point $P\left(x_{1}, y_{1}\right)$

So, $\sqrt{\left(x_{1}+2\right)^{2}+y_{1}^{2}}=\frac{2}{3}\left(x_{1}+\frac{9}{2}\right)$
$\Rightarrow\left(x_{1}+2\right)^{2}+y_{1}^{2}=\frac{4}{9}\left(x_{1}+\frac{9}{2}\right)^{2}$
$\Rightarrow 9\left[x_{1}^{2}+y_{1}^{2}+4 x_{1}+4\right]=4\left(x_{1}^{2}+\frac{81}{4}+9 x_{1}\right)$
$\Rightarrow 5 x_{1}^{2}+9 y_{1}^{2}=45 \Rightarrow \frac{x_{1}^{2}}{9}+\frac{y_{1}^{2}}{5}=1$,
Locus of $\left(x_{1}, y_{1}\right)$ is $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$, which is equation of an ellipse.
28. (b) Latus rectum $=1 / 3$ (Major axis)
$\Rightarrow \frac{2 b^{2}}{a}=\frac{2 a}{3} \Rightarrow a^{2}=3 b^{2}=3 a^{2}\left(1-e^{2}\right) \Rightarrow e=\sqrt{\frac{2}{3}}$.
29. (c) In the first case, eccentricity $e=\sqrt{1-(25 / 169)}$

In the second case, $e^{\prime}=\sqrt{1-\left(b^{2} / a^{2}\right)}$

According to the given condition,
$\sqrt{1-b^{2} / a^{2}}=\sqrt{1-(25 / 169)}$
$\Rightarrow b / a=5 / 13, \quad(\because a>0, b>0)$
$\Rightarrow a / b=13 / 5$.
30. (b) $S P+S^{\prime} P=2 a=2.6=12$.
31. (a) Foci $(\pm 5,0) \equiv(\pm a e, 0)$. Directrix $\left(x=\frac{36}{5}\right) \equiv x=\frac{a}{e}$

So, $\frac{a}{e}=\frac{36}{5}, a e=5 \Rightarrow a=6$ and $e=\frac{5}{6}$

Therefore, $b=6 \sqrt{1-\frac{25}{36}}=6 \frac{\sqrt{11}}{6}=\sqrt{11}$

Hence equation is $\frac{x^{2}}{36}+\frac{y^{2}}{11}=1$.
32. (b) $\frac{x^{2}}{2-r}+\frac{y^{2}}{r-5}+1=0 \Rightarrow \frac{x^{2}}{r-2}+\frac{y^{2}}{5-r}=1$

Hence $r>2$ and $r<5 \Rightarrow 2<r<5$.
33. (b) Foci are $(\pm a e, 0)$. Therefore according to the condition, $2 a e=2 b$ or $a e=b$

Also, $b^{2}=a^{2}\left(1-e^{2}\right) \Rightarrow e^{2}=\left(1-e^{2}\right) \Rightarrow e=\frac{1}{\sqrt{2}}$.
34. (d) $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow e=\sqrt{1-\frac{16}{25}}=\frac{3}{5}$

Therefore, directrices are $x \pm \frac{5}{3 / 5}=0$ or $3 x \pm 25=0$.
35. (b) $\frac{2 b^{2}}{a}=b \Rightarrow \frac{b}{a}=\frac{1}{2} \Rightarrow \frac{b^{2}}{a^{2}}=\frac{1}{4}$

Hence $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{\sqrt{3}}{2}$.
36. (b) $\frac{x^{2}}{(48 / 3)}+\frac{y^{2}}{(48 / 4)}=1$

$$
a^{2}=16, b^{2}=12 \Rightarrow e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{1}{2}
$$

Distance is $2 a e=2 \cdot 4 \cdot \frac{1}{2}=4$.
37. (c) Focal distance of any point $P(x, y)$ on the ellipse is equal to $S P=a+e x$. Here $x=a \cos \theta$

Here $S P=a+a e \cos \theta=a(1+e \cos \theta)$.
38. (c) It is obvious.
39. (b) The centre of the given ellipse is the point of intersection of the lines $x+y-2=0$ and $x-y=0$ i.e., $(1,1)$.
40. (b) Foci $=(3,-3) \Rightarrow a e=3-2=1$

Vertex $=(4,-3) \Rightarrow a=4-2=2 \Rightarrow e=\frac{1}{2}$
$\Rightarrow b=a \sqrt{\left(1-\frac{1}{4}\right)}=\frac{2}{2} \sqrt{3}=\sqrt{3}$
Therefore, equation of ellipse with centre $(2,-3)$ is

$$
\frac{(x-2)^{2}}{4}+\frac{(y+3)^{2}}{3}=1 .
$$

41. (c) Given that, the equation of conic

$$
9 x^{2}+4 y^{2}-6 x+4 y+1=0
$$

$\Rightarrow(3 x-1)^{2}+(2 y+1)^{2}=1 \Rightarrow \frac{\left(x-\frac{1}{3}\right)^{2}}{\frac{1}{9}}+\frac{(y+1)^{2}}{\frac{1}{2}}=1$.
Here $a=\frac{1}{3}, b=\frac{1}{2} ; \therefore 2 a=\frac{2}{3}, 2 b=1$.
Length of axes are $\left(1, \frac{2}{3}\right)$.
42. (a) Given equation of conic is $4 x^{2}+16 y^{2}-24 x-3 y=1$
$\Rightarrow(2 x-6)^{2}+(4 y-4)^{2}=53$
$\Rightarrow 4(x-3)^{2}+16(y-1)^{2}=53$
$\Rightarrow \frac{(x-3)^{2}}{53 / 4}+\frac{(y-1)^{2}}{53 / 16}=1$
$\therefore e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{53 / 16}{53 / 4}}=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$.
43. (c) $m=\tan 60^{\circ}=\sqrt{3}$. Tangent is $y=\sqrt{3} x \pm \sqrt{1+3 \cdot 16} \Rightarrow y=\sqrt{3} x \pm 7$.
44. (c) Here, $a=3, b=2 . \therefore$ By formula, $c^{2}=b^{2}+a^{2} m^{2}$
$\therefore c^{2}=4+9 m^{2} ; \quad \therefore c= \pm \sqrt{9 m^{2}+4}$.
45. (C) $9 x^{2}+5\left(y^{2}-6 y\right)=0$
$\Rightarrow 9 x^{2}+5\left(y^{2}-6 y+9\right)=45 \Rightarrow \frac{x^{2}}{5}+\frac{(y-3)^{2}}{9}=1$
$\because a^{2}<b^{2}$, so axis of ellipse on y-axis.
At y axis, put $x=0$, so we can obtained vertex.
Then $0+5 y^{2}-30 y=0 \Rightarrow y=0, y=6$
Therefore, tangents of vertex $y=0, y=6$.
46. (c) It is a fundamental concept.
47. (d) For $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, equation of normal at point $\left(x_{1}, y_{1}\right)$,

$$
\begin{aligned}
& \Rightarrow \frac{\left(x-x_{1}\right) a^{2}}{x_{1}}=\frac{\left(y-y_{1}\right) b^{2}}{y_{1}} ; \quad \therefore\left(x_{1}, y_{1}\right) \equiv(0,3), a^{2}=5, b^{2}=9 \\
& \Rightarrow \frac{(x-0)}{0} 5=\frac{(y-3) \cdot 9}{3} \text { or } x=0
\end{aligned}
$$

48. (b) $\because a e= \pm \sqrt{5} \Rightarrow a= \pm \sqrt{5}\left(\frac{3}{\sqrt{5}}\right)= \pm 3 \Rightarrow a^{2}=9$
$\therefore b^{2}=a^{2}\left(1-e^{2}\right)=9\left(1-\frac{5}{9}\right)=4$
Hence, equation of ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
49. (c) $\angle F^{\prime} B F=90^{\circ}, F^{\prime} B \perp F B$
i.e., slope of $\left(F^{\prime} B\right) \times$ Slope of $\left(F^{\prime} B\right)=-1$
$\Rightarrow \frac{b}{a e} \times \frac{b}{-a e}=-1, b^{2}=a^{2} e^{2}$

We know that $e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{a^{2} e^{2}}{a^{2}}}=\sqrt{1-e^{2}}$
$e^{2}=1-e^{2}, 2 e^{2}=1, e^{2}=\frac{1}{2}, e=\frac{1}{\sqrt{2}}$.
50. (d) We know that the equation of the normal at point $(a \cos \theta, b \sin \theta)$ on the curve $x^{2}+\frac{y^{2}}{4}=1$ is given by

$$
\begin{equation*}
a x \sin \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2} \tag{i}
\end{equation*}
$$

Comparing equation (i) with $2 x-\frac{8}{3} \lambda y=-3$. We get,
$a \sin \theta=2, b \operatorname{cosec} \theta=\frac{8}{3} \lambda$ or $a b=\frac{16}{3} \lambda$
$\because a=1, b=2 ; \therefore 2=\frac{16}{3} \lambda$ or $\lambda=3 / 8$
51. (c) Given ellipse is $\frac{x^{2}}{1 / 4}+\frac{y^{2}}{1 / 5}=1$
$\therefore \frac{16}{1 / 4}+\frac{9}{1 / 5}-1=64+45-1>0$
Point $(4,-3)$ lies outside the ellipse.
52. (a) For any point P on the ellipse have focus S and $S^{\prime} S P+S^{\prime} P=2 a$
\therefore For $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
Sum of focal distances $=2 \times 5=10$.
53. (d) The equation of any normal is $a x \sec \phi-b y \operatorname{cosec} \phi=a^{2}-b^{2}$

Given line $x \cos \alpha+y \sin \alpha=p$ comparing and eliminating ϕ
$\Rightarrow p^{2}\left(b^{2} \operatorname{cosec}^{2} \alpha+a^{2} \sec ^{2} \alpha\right)=\left(a^{2}-b^{2}\right)^{2}$.
54. (a) Let the eccentric angle of the point be θ, then its co-ordinates are $(\sqrt{6} \cos \theta, \sqrt{2} \sin \theta)$.

Hence $6 \cos ^{2} \theta+2 \sin ^{2} \theta=4$ or $\cos ^{2} \theta=\frac{1}{2}$
Hence, $\cos \theta= \pm \frac{1}{\sqrt{2}}, \therefore \theta=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$.
55. (a) The tangent will be $y-3=m(x-2) \Rightarrow y-m x=3-2 m$.

But it is tangent to the given ellipse, therefore $m=0,-1$. Hence tangents are $y=3$ and $x+y=5$.
56. (c) Coordinates of any point on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose eccentric angle is θ are $(a \cos \theta, b \sin \theta)$.

The coordinates of the end points of latus recta are $\left(a e, \pm \frac{b^{2}}{a}\right) . \therefore a \cos \theta=a e$ and $b \sin \theta= \pm \frac{b^{2}}{a}$
$\Rightarrow \tan \theta= \pm \frac{b}{a e} \Rightarrow \theta=\tan ^{-1}\left(\pm \frac{b}{a e}\right)$.
57. (b) Given, minor axis of ellipse $(2 b)=8$ or $b=4$ and eccentricity $(e)=\sqrt{5} / 3$. We know that in an ellipse, $e^{2}=1-\frac{b^{2}}{a^{2}}$ or $\frac{5}{9}=1-\frac{16}{a^{2}}$ or $\frac{16}{a^{2}}=1-\frac{5}{9}$ or $a^{2}=\frac{16 \times 9}{4}=36$ or $a=6$. We also know that major axis of the ellipse $=2 a=2 \times 6=12$.
58. (a) The ellipse is $4(x-1)^{2}+9(y-2)^{2}=36$

Therefore, latus rectum $=\frac{2 b^{2}}{a}=\frac{2.4}{3}=\frac{8}{3}$.
59. (a) Sum of focal distances of a point in an ellipse is always equal to length of major axis of that ellipse. It is a property of ellipse.
60. (b) $4(x-2)^{2}+9(y-3)^{2}=36$

Hence the centre is $(2,3)$.
61. (b) Given equation can be written as

$$
\frac{(x-1)^{2}}{5}+\frac{(y-2)^{2}}{9}=1 ; \quad e=\sqrt{\frac{b^{2}-a^{2}}{b^{2}}}=\sqrt{\frac{9-5}{9}}=\frac{2}{3} .
$$

62. (d) Given $2 a=6,2 b=4$ i.e., $a=3, b=2$

$$
e^{2}=1-\frac{b^{2}}{a^{2}}=\frac{5}{9} \Rightarrow e=\frac{\sqrt{5}}{3}
$$

Distance between the pins $=2 a e=2 \sqrt{5} \mathrm{~cm}$
Length of string $=2 a+2 a e=6+2 \sqrt{5} \mathrm{~cm}$.
63. (c) As we know that the line $l x+m y+n=0$ is normal to $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $\frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left(a^{2}-b^{2}\right)^{2}}{n^{2}}$. But in this condition, we have to replace l by m, m by -1 and n by c, then the required condition is $c= \pm \frac{\left(a^{2}-b^{2}\right) m}{\sqrt{a^{2}+b^{2} m^{2}}}$.
64. (c) $a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$.
65. (b) The normal at $P(a \cos \theta, b \sin \theta)$ is $a x \sec \theta-b y \operatorname{cosec} \theta=a^{2}-b^{2}$, where $a^{2}=14, b^{2}=5$

It meets the curve again at $Q(2 \theta)$ i.e., $(a \cos 2 \theta, b \sin 2 \theta)$.

$$
\therefore \frac{a}{\cos \theta} a \cos 2 \theta-\frac{b}{\sin \theta}(b \sin 2 \theta)=a^{2}-b^{2}
$$

$\Rightarrow \frac{14}{\cos \theta} \cos 2 \theta-\frac{5}{\sin \theta}(\sin 2 \theta)=14-5$
$\Rightarrow 18 \cos ^{2} \theta-9 \cos \theta-14=0$
$\Rightarrow(6 \cos \theta-7)(3 \cos \theta+2)=0 \Rightarrow \cos \theta=-\frac{2}{3}$.
66. (a) $\frac{(x+1)^{2}}{\frac{225}{25}}+\frac{(y+2)^{2}}{\frac{225}{9}}=1$
$a=\sqrt{\frac{225}{25}}=\frac{15}{5}, b=\sqrt{\frac{225}{9}}=\frac{15}{3} \Rightarrow e=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
Focus $=\left(-1,-2 \pm \frac{15}{3} \cdot \frac{4}{5}\right)=(-1,-2 \pm 4)=(-1,2) ;(-1,-6)$.
67. (c) Equation of the curve is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{4^{2}}=1$
$\Rightarrow-5 \leq x \leq 5,-4 \leq y \leq 4$
$P F_{1}+P F_{2}=\sqrt{\left[(x-3)^{2}+y^{2}\right]}+\sqrt{\left[(x+3)^{2}+y^{2}\right]}$
$=\sqrt{(x-3)^{2}+\frac{400-16 x^{2}}{25}}+\sqrt{(x+3)^{2}+\frac{400-16 x^{2}}{25}}$
$=\frac{1}{5}\left\{\sqrt{\left(9 x^{2}+625-150 x\right)}+\sqrt{\left(9 x^{2}+625+150 x\right)}\right\}$
$=\frac{1}{5}\left\{\sqrt{(3 x-25)^{2}}+\sqrt{(3 x+25)^{2}}\right\}=\frac{1}{5}\{25-3 x+3 x+25\}$
$=10$
68. (c) $S S_{1}=T^{2}$
$\tan \theta=2 \frac{\sqrt{h^{2}-a b}}{a+b}, a=9, b=-4$ and $h=-12$.
69. (a) Since, here a and b are interchanged.
70. (c) The locus of point of intersection of two perpendicular tangents drawn on the ellipse is $x^{2}+y^{2}=a^{2}+b^{2}$, which is called 'director- circle'.

Given ellipse is $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1, \therefore$ Locus is $x^{2}+y^{2}=13$.

