CONTINUITY

OBJECTIVES

1. If $f(x)=\left\{\begin{array}{r}(1+2 x)^{1 / x}, \text { for } x \neq 0 \\ e^{2}, \text { for } x=0\end{array}\right.$, then
(a) $\lim _{x \rightarrow 0+} f(x)=e$
(b) $\lim _{x \rightarrow 0-} f(x)=e^{2}$
(c) $f(x)$ is discontinuous at $x=0$
(d) None of these
2. Let $f(x)=\left\{\begin{array}{ll}x^{2}+k, & \text { when } x \geq 0 \\ -x^{2}-k, & \text { when } x<0\end{array}\right.$. If the function $f(x)$ be continuous at $x=0$, then $k=$
(a) 0
(b) 1
(c) 2
(d) -2
3. Which of the following statements is true for graph $f(x)=\log x$
(a) Graph shows that function is continuous
(b) Graph shows that function is discontinuous
(c) Graph finds for negative and positive values of x
(d) Graph is symmetric along x-axis
4. If the function $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x} & \text {, when } x \neq \frac{\pi}{2} \\ 3, & \text { when } x=\frac{\pi}{2}\end{array}\right.$ be continuous at $x=\frac{\pi}{2}$, then $\boldsymbol{k}=$
(a) 3
(b) 6
(c) 12
(d) None of these
5. If $f(x)=\left\{\begin{array}{r}x^{2} \sin \frac{1}{x}, \\ 0, \text { when } x \neq 0 \\ 0,\end{array}\right.$, then
(a) $f(0+0)=1$
(b) $f(0-0)=1$
(c) f is continuous at $x=0$
(d) None of these
6. If $f(x)=\left\{\begin{array}{r}\frac{|x-a|}{x-a} \text {, when } x \neq a \\ 1 \text {, when } x=a\end{array}\right.$, then
(a) $f(x)$ is continuous at $x=a$
(b) $f(x)$ is discontinuous at $x=a$
(c) $\lim _{x \rightarrow a} f(x)=1$
(d) None of these
7. The points at which the function $f(x)=\frac{x+1}{x^{2}+x-12}$ is discontinuous, are
(a) $-3,4$
(b) 3, -4
(c) $-1,-3,4$
(d) $-1,3,4$
8. The function $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is not defined at $x=0$. The value which should be assigned to \boldsymbol{f} at $\boldsymbol{x}=\mathbf{0}$ so that it is continuous at $x=0$, is
(a) $a-b$
(b) $a+b$
(c) $\log a+\log b$
(d) $\log a-\log b$
9. At which points the function $f(x)=\frac{x}{[x]}$, where ${ }_{[\cdot]}$ is greatest integer function, is discontinuous
(a) Only positive integers
(b) All positive and negative integers and $(0,1)$
(c) All rational numbers
(d) None of these
10. Let $f(x)=\left\{\begin{aligned} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & \text { if } x \neq 2 \\ k, & \text { if } x=2\end{aligned}\right.$. If $f(x)$ be continuous for all \boldsymbol{x}, then $\boldsymbol{k}=$
(a) 7
(b) -7
(c) ± 7
(d) None of these
11.If $f(x)=\left\{\begin{array}{c}-x^{2} \text {, when } x \leq 0 \\ 5 x-4, \text { when } 0<x \leq 1 \\ 4 x^{2}-3 x, \text { when } 1<x<2 \\ 3 x+4, \text { when } x \geq 2\end{array}\right.$, then
(a) $f(x)$ is continuous at $x=0$
(b) $f(x)$ is continuous $x=2$
(c) $f(x)$ is discontinuous at $x=1$
(d) None of these
11. If $f(x)=\left\{\begin{array}{c}\frac{5}{2}-x, \text { when } x<2 \\ 1 \quad \text {, when } x=2, \text { then } \\ x-\frac{3}{2}, \text { when } x>2\end{array}\right.$
(a) $f(x)$ is continuous at $x=2$
(b) $f(x)$ is discontinuous at $x=2$
(c) $\lim _{x \rightarrow 2} f(x)=1$
(d) None of these
12. For the function $f(x)=\left\{\begin{array}{r}\frac{\sin ^{2} a x}{x^{2}}, \text { when } x \neq 0 \\ 1, \text { when } x=0\end{array}\right.$ which one is a true statement
(a) $f(x)$ is continuous at $x=0$
(b) $f(x)$ is discontinuous at $x=0$, when $a \neq \pm 1$
(c) $f(x)$ is continuous at $x=a$
(d) None of these
13. If $f(x)=\left\{\begin{array}{r}\frac{\sin x}{x}+\cos x \text {, when } x \neq 0 \\ 2, \text { when } x=0\end{array}\right.$ then
(a) $\lim _{x \rightarrow 0+} f(x) \neq 2$
(b) $\lim _{x \rightarrow 0-} f(x)=0$
(c) $f(x)$ is continuous at $x=0$
(d) None of these
14. If function $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \text { is rational } \\ 1-x, & \text { if } x \text { is irrational }\end{array}\right.$, then $f(x)$ is continuous at number of points
(a) ∞
(b) 1
(c) 0
(d) None of these
15. Let $f(x)=\left\{\begin{array}{r}\frac{x^{4}-5 x^{2}+4}{|(x-1)(x-2)|}, x \neq 1,2 \\ 6, x=1 \\ 12, x=2\end{array}\right.$

Then $f(x)$ is continuous on the set
(a) R
(b) $R-\{1\}$
(c) $R-\{2\}$
(d) $R-\{1,2\}$
17. If $f(x)=\left\{\begin{array}{r}x \sin x \text {, when } 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2} \sin (\pi+x) \text {, when } \frac{\pi}{2}<x<\pi\end{array}\right.$, then
(a) $f(x)$ is discontinuous at $x=\pi / 2$
(b) $f(x)$ is continuous at $x=\pi / 2$
(c) $f(x)$ is continuous at $x=0$
(d) None of these
18. If $f(x)=\left\{\begin{array}{c}\sin x, x \neq n \pi, n \in Z \\ 2, \text { otherwise }\end{array}\right.$ and $g(x)=\left\{\begin{array}{r}x^{2}+1, x \neq 0,2 \\ 4, x=0 \\ 5, x=2\end{array}\right.$, then $\lim _{x \rightarrow 0} g\{f(x)\}$ is
(a) 5
(b) 6
(c) 7
(d) 1
19. If $f(x)=\left\{\begin{array}{r}\frac{x^{4}-16}{x-2}, \text { when } x \neq 2 \\ 16, \text { when } x=2\end{array}\right.$, then
(a) $f(x)$ is continuous at $x=2$
(b) $f(x)$ is discontinuous at $x=2$
(c) $\lim _{x \rightarrow 2} f(x)=16$
(d) None of these
20. If $f(x)=\frac{x^{2}-10 x+25}{x^{2}-7 x+10}$ for $x \neq 5$ and \boldsymbol{f} is continuous at $x=5$, then $f(5)=$
(a) 0
(b) 5
(c) 10
(d) 25
21. If $f(x) \neq|x|$, then $f(x)$ is
(a) Continuous for all x
(b) Differentiable at $x=0$
(c) Neither continuous nor differentiable at $x=0$
(d) None of these
22. If $f(x)=\left\{\begin{array}{r}\frac{x-|x|}{x}, \text { when } x \neq 0 \\ 2, \text { when } x=0\end{array}\right.$, then
(a) $f(x)$ is continuous at $x=0$
(b) $f(x)$ is discontinuous at $x=0$
(c) $\lim _{x \rightarrow 0} f(x)=2$
(d) None of these
$\int \frac{\sin [x]}{[x]+1}$, for $x>0$
23. If $f(x)=\left\{\begin{array}{r}\frac{\cos \frac{\pi}{2}[x]}{[x]}, \text { for } x<0 \text {; where }[\boldsymbol{x}] \text { denotes the greatest integer less than or equal to } \boldsymbol{x} \text {, then } \text {, at } x=0\end{array}\right.$,
in order that \boldsymbol{f} be continuous at $x=0$, the value of \boldsymbol{k} is
(a) Equal to 0
(b) Equal to 1
(c) Equal to - 1
(d) Indeterminate
24. If the function $f(x)=\left\{\begin{array}{c}(\cos x)^{1 / x}, x \neq 0 \\ k, x=0\end{array}\right.$ is continuous at $x=0$, then the value of \boldsymbol{k} is
(a) 1
(b) -1
(c) 0
(d) e
25. If the function $f(x)=\left\{\begin{array}{c}1+\sin \frac{\pi x}{2}, \text { for }-\infty<x \leq 1 \\ a x+b, \text { for } 1<x<3 \\ 6 \tan \frac{x \pi}{12}, \text { for } 3 \leq x<6\end{array}\right.$ is continuous in the interval $(-\infty, 6)$, then the values of \boldsymbol{a} and \boldsymbol{b} are respectively
(a) 0,2
(b) 1,1
(c) 2,0
(d) 2,1
26. The values of A and B such that the function $f(x)=\left\{\begin{array}{cc}-2 \sin x, & x \leq-\frac{\pi}{2} \\ A \sin x+B, & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x, & x \geq \frac{\pi}{2}\end{array}\right.$, is continuous everywhere are
(a) $A=0, B=1$
(b) $A=1, B=1$
(c) $A=-1, B=1$
(d) $A=-1, B=0$
27. The function $f(x)=\sin |x|$ is
(a) Continuous for all x
(b) Continuous only at certain points
(c) Differentiable at all points
(d) None of these
28. If $f(x)=\left\{\begin{array}{c}e^{x} ; \quad x \leq 0 \\ |1-x| ; x>0\end{array}\right.$, then
(a) $f(x)$ is not differentiable at $x=0$
(b) $f(x)$ is continuous at $x=0$
(c) $f(x)$ is differentiable at $x=1$
(d) $f(x)$ is continuous at $x=1$
29. For the function $f(x)=\left\{\begin{array}{ll}\frac{e^{1 / x}-1}{e^{1 / x}+1}, & x \neq 0 \\ 0 & , x=0\end{array}\right.$, which of the following is correct
(a) $\lim _{x \rightarrow 0} f(x)$ does not exist
(b) $f(x)$ is continuous at $x=0$
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $\lim _{x \rightarrow 0} f(x)$ exists but $f(x)$ is not continuous at $x=0$
30. The function $f(x) \neq x \left\lvert\,+\frac{|x|}{x}\right.$ is
(a) Continuous at the origin
(b) Discontinuous at the origin because $|x|$ is discontinuous there
(c) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
(d) Discontinuous at the origin because both $|x|$ and $\frac{|x|}{x}$ are discontinuous there
31. If $f(x)=\left\{\begin{array}{cc}\frac{\sqrt{1+k x}-\sqrt{1-k x}}{x} & \text {,for }-1 \leq x<0 \\ 2 x^{2}+3 x-2 & \text {,for } 0 \leq x \leq 1\end{array}\right.$, is continuous at $x=0$, then $k=$
(a) -4
(b) -3
(c) -2
(d) -1
32. If $f(x)=\left\{\begin{array}{ll}\frac{1-(x)}{1+x}, & x \neq-1 \\ 1, & x=-1\end{array}\right.$, then the value of $f(|2 k|)$ will be (where [] shows the greatest integer function)
(a) Continuous at $x=-1$
(b) Continuous at $x=0$
(c) Discontinuous at $x=\frac{1}{2}$
(d) All of these
33. For the function $f(x)=\frac{\log _{e}(1+x)-\log _{e}(1-x)}{x}$ to be continuous at $x=0$, the value of $f(0)$, should be
(a) -1
(b) 0
(c) -2
(d) 2
34. In the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x},(x \neq 0)$ is continuous at each point of its domain, then the value of $f(0)$ is
(a) 2
(b) $1 / 3$
(c) $2 / 3$
(d) $-1 / 3$

CONTINUITY

HINTS AND SOLUTIONS

1. (b) $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0}\left[(1+2 x)^{1 / 2 x}\right]^{2}=e^{2}$.
2. (a) $\lim _{x \rightarrow 0+} f(x)=k, \lim _{x \rightarrow 0^{-}} f(x)=-k$ and $f(0)=k$

$$
f(0)=0=k
$$

3. (a) concept
4. (b) $f(\pi / 2)=3$. Since $f(x)$ is continuous at $x=\pi / 2$

$$
\Rightarrow \lim _{x \rightarrow \pi / 2}\left(\frac{k \cos x}{\pi-2 x}\right)=f\left(\frac{\pi}{2}\right) \Rightarrow \frac{k}{2}=3 \Rightarrow k=6
$$

5. (c) $\lim _{x \rightarrow 0^{+}} f(x)=x^{2} \sin \frac{1}{x}$, but $-1 \leq \sin \frac{1}{x} \leq 1$ and $x \rightarrow 0$

Therefore, $\lim _{x \rightarrow 0^{+}} f(x)=0=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$
Hence $f(x)$ is continuous at $x=0$.
6. (b) $\lim _{x \rightarrow a-} f(x)=-1, \lim _{x \rightarrow a+} f(x)=1, f(a)=1$.
7. (b) $f(x)=\frac{x+1}{(x-3)(x+4)}$. Hence the points are $3,-4$.
8. (b) Since limit of a function is $a+b$ as $x \rightarrow 0$, therefore to be continuous at a function, its value must be

$$
a+b \text { at } x=0 \quad \Rightarrow f(0)=a+b \text {. }
$$

9. (b) Standard problem
10. (a) For continuous $\lim _{x \rightarrow 2} f(x)=f(2)=k$

$$
\Rightarrow k=\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}
$$

11. (b) Standard problem
12. (b) $\lim _{x \rightarrow 2-} f(x)=\frac{1}{2}$ and $\lim _{x \rightarrow 2+} f(x)=\frac{1}{2}$ and $f(2)=1$.
13. (b) $\lim _{x \rightarrow 0} f(x)=\frac{\sin ^{2} a x}{(a x)^{2}} a^{2}=a^{2}$ and $f(0)=1$.

Hence $f(x)$ is discontinuous at $x=0$, when $a \neq 0$.
14. (c) $f(0+)=f(0-)=2$ and $f(0)=2$

Hence $f(x)$ is continuous at $x=0$.
15. (c) At no point, function is continuous.
16. (d) Check continuity at $x=1,2$.
17. (a) $\lim _{x \rightarrow \infty} \frac{4 x}{\left(\sqrt{x^{2}+8 x+3}+\sqrt{x^{2}+4 x+3}\right.}$ and $f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$.
18. (d) As we are given $f(x)=\sin x$, if $x \neq n \pi$
i.e., $x \neq 0, \pi, 2 \pi, \ldots=2$ otherwise

$$
\therefore \lim _{x \rightarrow 0^{+}} g\{f(x)\}=\lim _{x \rightarrow 0^{+}} g\{\sin x\}=\lim _{x \rightarrow 0^{+}}\left(\sin ^{2} x+1\right)=1
$$

Similarly, $\lim _{x \rightarrow 0^{-}} g\{f(x)\}=1$.
19. (b) $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(x+2)\left(x^{2}+4\right)=32, f(2)=16$.
20. (a) $f(5)=\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5} \frac{x^{2}-10 x+25}{x^{2}-7 x+10}$

$$
=\lim _{x \rightarrow 5} \frac{(x-5)^{2}}{(x-2)(x-5)}=\frac{5-5}{5-2}=0 .
$$

21. (a) $|x|$ is continuous for all x.
22. (b) $\lim _{x \rightarrow 0-} f(x)=1+1=2, \lim _{x \rightarrow 0+} f(x)=0, f(0)=2$.
23. (a) $k=\lim _{h \rightarrow 0} f(0-h)=\lim _{h \rightarrow 0} \frac{\cos \frac{\pi}{2}[0-h]}{[0-h]}$

$$
k=\lim _{h \rightarrow 0} \frac{\cos \frac{\pi}{2}[-h]}{[-h]}=\lim _{h \rightarrow 0} \frac{\cos \frac{\pi}{2}[-h-1]}{[-h-1]}
$$

$$
k=\lim _{h \rightarrow 0} \frac{\cos \left(-\frac{\pi}{2}\right)}{-1} ; k=0
$$

24. (a) $\lim _{x \rightarrow 0}(\cos x)^{1 / x}=k \Rightarrow \lim _{x \rightarrow 0} \frac{1}{x} \log (\cos x)=\log k$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{1}{x} \lim _{x \rightarrow 0} \log \cos x=\log k \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{1}{x} \times 0=\log _{e} k \Rightarrow k=1
\end{aligned}
$$

25. (c) check continuity at $x=1, x=3$
26. (c) For continuity at all $x \in R$, we must have $f\left(-\frac{\pi}{2}\right)=\lim _{x \rightarrow(-\pi / 2)^{-}}(-2 \sin x)=\lim _{x \rightarrow(-\pi / 2)^{+}}(A \sin x+B)$
$\Rightarrow 2=-A+B$
and $f\left(\frac{\pi}{2}\right)=\lim _{x \rightarrow(\pi / 2)^{-}}(A \sin x+B)=\lim _{x \rightarrow(\pi / 2)^{+}}(\cos x)$
$\Rightarrow 0=A+B$
From (i) and (ii), $A=-1$ and $B=1$.
27. (a) It is obvious.
28. (d) $f(x)=\left\{\begin{array}{l}e^{x} ; x \leq 0 \\ 1-x ; 0<x \leq 1 \\ x-1 ; x>1\end{array}\right.$

Continuous at $x=0,1$.
29. (d) $f(x)= \begin{cases}\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, & x \neq 0 \\ 0 & , x=0\end{cases}$
30. (c) $|x|$ is continuous at $x=0$ and $\frac{|x|}{x}$ is also discontinuous at $x=0$
$\therefore f(x)=|x|+\frac{|x|}{x}$ is discontinuous at $x=0$.
31. (c) L.H.L. $=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+k x}-\sqrt{1-k x}}{x}=k$
R.H.L. $=\lim _{x \rightarrow 0^{+}}\left(2 x^{2}+3 x-2\right)=-2 \Rightarrow k=-2$.
32. (d) $f(x)=\left\{\begin{array}{ll}\frac{1-|x|}{1+x} & , x \neq-1 \\ 1 & , x=-1\end{array}\right.$ and $f(x)= \begin{cases}1 & , x<0 \\ \frac{1-x}{1+x} & , x \geq 0\end{cases}$
$f(2 x)=\left\{\begin{array}{ll}1 & , x<0 \\ \frac{1-[2 x]}{1+[2 x]}, & , x>0\end{array} \Rightarrow f(2 x)= \begin{cases}1 & , x<0 \\ 1 & , 0 \leq x<\frac{1}{2} \\ 0 & , \frac{1}{2} \leq x \leq 1 \\ -\frac{1}{3} & , 1 \leq x<\frac{3}{2}\end{cases}\right.$
33. (d)
34. (b) $f(0)=\lim _{x \rightarrow 0} \frac{2-\frac{\sin ^{-1} x}{x}}{2+\frac{\tan ^{-1} x}{x}}=\frac{2-1}{2+1}=\frac{1}{3}$.

