AREAS
 OBJECTIVES

1. Area bounded by $y=x \sin x$ and x-axis between $x=0$ and $x=2 \pi$, is
(a) 0
(b) 2π sq. unit
(c) π sq. unit
(d) 4π sq. unit
2. Area bounded by the parabola $y=4 x^{2}, y$-axis and the lines $y=1, y=4$ is
(a) 3 sq. unit
(b) $\frac{7}{5}$ sq. unit
(c) $\frac{7}{3}$ sq. unit
(d) None of these
3.Area bounded by the curve $y=x e^{x^{2}}, x$-axis and the ordinates $x=0, x=a$
(a) $\frac{e^{a^{2}}+1}{2}$ sq. unit
(b) $\frac{e^{a^{2}}-1}{2}$ sq. unit
(c) $e^{a^{2}}+1$ sq. unit
(d) $e^{a^{2}}-1$ sq. unit
3. Area bounded by curve $y=x^{3}, x$-axis and ordinates $x=1$ and $x=4$, is
(a) 64 sq. unit
(b) 27 sq. unit
(c) $\frac{127}{4}$ sq. unit
(d) $\frac{255}{4}$ sq. unit
5.The area of smaller part between the circle $x^{2}+y^{2}=4$ and the line $x=1$ is
(a) $\frac{4 \pi}{3}-\sqrt{3}$
(b) $\frac{8 \pi}{3}-\sqrt{3}$
(c) $\frac{4 \pi}{3}+\sqrt{3}$
(d) $\frac{5 \pi}{3}+\sqrt{3}$
4. Area under the curve $y=x^{2}-4 x$ within the \mathbf{x}-axis and the line $x=2$, is
(a) $\frac{16}{3}$ sq.unit
(b) $-\frac{16}{3}$ sq.unit
(c) $\frac{4}{7}$ sq.unit
(d) Cannot be calculated
5. The ratio of the areas bounded by the curves $y=\cos x$ and $y=\cos 2 x$ between $x=0, x=\pi / 3$ and x-axis, is
(a) $\sqrt{2}: 1$
(b) $1: 1$
(c) $1: 2$
(d) None of these
6. The area bounded by the parabola $y^{2}=4 a x$, and two ordinates $x=4, x=9$ is
(a) $4 a^{2}$
(b) $4 a^{2} .4$
(c) $4 a^{2}(9-4)$
(d) $\frac{152 \sqrt{a}}{3}$
7. If the ordinate $x=a$ divides the area bounded by the curve $y=\left(1+\frac{8}{x^{2}}\right), x$-axis and the ordinates $x=2, x=4$ into two equal parts, then $a=$
(a) 8
(b) $2 \sqrt{2}$
(c) 2
(d) $\sqrt{2}$
8. Area bounded by the curve $y=\log x, x$-axis and the ordinates $x=1, x=2$ is
(a) $\log 4$ sq. unit
(b) $(\log 4+1)$ sq. unit
(c) $(\log 4-1)$ sq. unit
(d) None of these
9. Area bounded by the lines $y=x, x=-1, x=2$ and x-axis is
(a) $\frac{5}{2}$ sq. unit
(b) $\frac{3}{2}$ sq. unit
(c) $\frac{1}{2}$ sq. unit
(d) None of these.
10. If the area above the x-axis, bounded by the curves $y=2^{k x}$ and $x=0$ and $x=2$ is $\frac{3}{\ln 2}$, then the value of k is
(a) $\frac{1}{2}$
(b) 1
(c) -1
(d) 2
11. Area bounded by parabola $y^{2}=x$ and straight line $2 y=x$ is
(a) $\frac{4}{3}$
(b) 1
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$
12. The area of the region bounded by the x-axis and the curves defined by $y=\tan x,(-\pi / 3 \leq x \leq \pi / 3)$ is
(a) $\log \sqrt{2}$
(b) $-\log \sqrt{2}$
(c) $2 \log 2$
(d) 0
13. The area bounded by the circle $x^{2}+y^{2}=4$, line $x=\sqrt{3} y$ and x-axis lying in the first quadrant, is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) π
14. Area of the region bounded by the curve $y=\tan x$, tangent drawn to the curve at $x=\frac{\pi}{4}$ and the x -axis is
(a) $\frac{1}{4}$
(b) $\log \sqrt{2}+\frac{1}{4}$
(c) $\log \sqrt{2}-\frac{1}{4}$
(d) None of these
15. The area of figure bounded by $y=e^{x}, y=e^{-x}$ and the straight line $x=1$ is
(a) $e+\frac{1}{e}$
(b) $e-\frac{1}{e}$
(c) $e+\frac{1}{e}-2$
(d) $e+\frac{1}{e}+2$
18.The area of the region bounded by $y=|x-1|$ and $y=1$ is
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) None of these
19.The area enclosed by the parabolas $y=x^{2}-1$ and $y=1-x^{2}$ is
(a) $1 / 3$
(b) $2 / 3$
(c) $4 / 3$
(d) $8 / 3$
20.The part of straight line $y=x+1$ between $x=2$ and $x=3$ is revolved about \mathbf{x}-axis, then the curved surface of the solid thus generated is
(a) $37 \pi / 3$
(b) $7 \pi \sqrt{2}$
(c) 37π
(d) $7 \pi / \sqrt{2}$
21.The area bounded by $y=-x^{2}+2 x+3$ and $y=0$ is
(a) 32
(b) $\frac{32}{3}$
(c) $\frac{1}{32}$
(d) $\frac{1}{3}$
22.The area bounded by the curves $y^{2}=8 x$ and $y=x$ is
(a) $\frac{128}{3}$ sq. unit
(b) $\frac{32}{3}$ sq. unit
(c) $\frac{64}{3}$ sq. unit
(d) 32 sq. unit
16. The area bounded by curves $y=\cos x$ and $y=\sin x$ and ordinates $x=0$ and $x=\frac{\pi}{4}$ is
(a) $\sqrt{2}$
(b) $\sqrt{2}+1$
(c) $\sqrt{2}-1$
(d) $\sqrt{2}(\sqrt{2}-1)$
17. Area bounded by the parabola $y^{2}=4 a x$ and its latus rectum is
(a) $\frac{2}{3} a^{2}$ sq. unit
(b) $\frac{4}{3} a^{2}$ sq. unit
(c) $\frac{8}{3} a^{2}$ sq. unit
(d) $\frac{3}{8} a^{2}$ sq. unit
18. The area bounded by the curve $y=4 x-x^{2}$ and the x-axis, is
(a) $\frac{30}{7}$ sq. unit
(b) $\frac{31}{7}$ sq. unit
(c) $\frac{32}{3}$ sq. unit
(d) $\frac{34}{3}$ sq. unit
19. The area of the region bounded by the curves $y=x^{2}$ and $y=|x|$ is
(a) $1 / 6$
(b) $1 / 3$
(c) $5 / 6$
(d) $5 / 3$
20. The area enclosed between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is
(a) $\frac{14}{3}$ sq. unit
(b) $\frac{3}{4}$ sq. unit
(c) $\frac{3}{16}$ sq. unit
(d) $\frac{16}{3}$ sq. unit
21. The area between the parabola $y=x^{2}$ and the line $y=x$ is
(a) $\frac{1}{6}$ sq. unit
(b) $\frac{1}{3}$ sq. unit
(c) $\frac{1}{2}$ sq. unit
(d) None of these
22. Area included between the two curves $y^{2}=4 a x$ and $x^{2}=4 a y$,
(a) $\frac{32}{3} a^{2}$ sq. unit
(b) $\frac{16}{3}$ sq. unit
(c) $\frac{32}{3}$ sq. unit
(d) $\frac{16}{3} a^{2}$ sq. unit
23. Area bounded by curves $y=x^{2}$ and $y=2-x^{2}$ is
(a) $8 / 3$
(b) $3 / 8$
(c) $3 / 2$
(d) None of these
24. The parabolas $y^{2}=4 x$ and $x^{2}=4 y$ divide the square region bounded by the lines $x=4$, $y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are respectively the areas of these parts numbered from top to bottom, then $S_{1}: S_{2}: S_{3}$ is
(a) $2: 1: 2$
(b) $1: 1: 1$
(c) $1: 2: 1$
(d) $1: 2: 3$
25. The part of circle $x^{2}+y^{2}=9$ in between $y=0$ and $y=2$ is revolved about y-axis. The volume of generating solid will be
(a) $\frac{46}{3} \pi$
(b) 12π
(c) 16π
(d) 28π
26. The area bounded by the curves $y=\sqrt{x}, 2 y+3=x$ and x-axis in the $1^{\text {st }}$ quadrant is
(a) 9
(b) $\frac{27}{4}$
(c) 36
(d) 18
27. The area of the smaller segment cut off from the circle $x^{2}+y^{2}=9$ by $x=1$ is
(a) $\frac{1}{2}\left(9 \sec ^{-1} 3-\sqrt{8}\right)$
(b) $9 \sec ^{-1}(3)-\sqrt{8}$
(c) $\sqrt{8}-9 \sec ^{-1}(3)$
(d) None of these
28. The area of region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$ is
(a) $\frac{\pi^{2}}{5}$
(b) $\frac{\pi^{2}}{2}$
(c) $\frac{\pi^{2}}{3}$
(d) $\frac{\pi}{4}-\frac{1}{2}$
29. Area enclosed by the parabola $a y=3\left(a^{2}-x^{2}\right)$ and x-axis is
(a) $4 a^{2}$ sq. unit
(b) $12 a^{2}$ sq. unit
(c) $4 a^{3}$ sq. unit
(d) None of these
30. Area inside the parabola $y^{2}=4 a x$, between the lines $x=a$ and $x=4 a$ is equal to
(a) $4 a^{2}$
(b) $8 a^{2}$
(c) $28 \frac{a^{2}}{3}$
(d) $35 \frac{a^{2}}{3}$
31. The area of the curve $x y^{2}=a^{2}(a-x)$ bounded by y-axis is
(a) πa^{2}
(b) $2 \pi a^{2}$
(c) $3 \pi a^{2}$
(d) $4 \pi a^{2}$
32. The area formed by triangular shaped region bounded by the curves $y=\sin x, y=\cos x$ and $x=0$ is
(a) $\sqrt{2}-1$
(b) 1
(c) $\sqrt{2}$
(d) $1+\sqrt{2}$
33. The area bounded by the \mathbf{x}-axis, the curve $y=f(x)$ and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $\mathbf{b}>\mathbf{1}$, then $f(x)$ is
(a) $\sqrt{x-1}$
(b) $\sqrt{x+1}$
(c) $\sqrt{x^{2}+1}$
(d) $\frac{x}{\sqrt{1+x^{2}}}$
34. Area under the curve $y=\sqrt{3 x+4}$ between $x=0$ and $x=4$, is
(a) $\frac{56}{9}$ sq. unit
(b) $\frac{64}{9}$ sq. unit
(c) 8 sq. unit
(d) None of these
43.The area bounded by curve $y^{2}=x$, line $y=4$ and y-axis is
(a) $\frac{16}{3}$
(b) $\frac{64}{3}$
(c) $7 \sqrt{2}$
(d) None of these
44.For $0 \leq x \leq \pi$, the area bounded by $y=x$ and $y=x+\sin x$, is
(a) 2
(b) 4
(c) 2π
(d) 4π
45.The area bounded by the straight lines $x=0, x=2$ and the curves $y=2^{x}, y=2 x-x^{2}$
(a) $\frac{4}{3}-\frac{1}{\log 2}$
(b) $\frac{3}{\log 2}+\frac{4}{3}$
(c) $\frac{4}{\log 2}-1$
(d) $\frac{3}{\log 2}-\frac{4}{3}$
46.The area between the curve $y=4+3 x-x^{2}$ and \mathbf{x}-axis is
(a) $125 / 6$
(b) $125 / 3$
(c) $125 / 2$
(d) None of these
47.The area between the curve $y=\sin ^{2} x, x-$ axis and the ordinates $x=0$ and $x=\frac{\pi}{2}$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{8}$
(d) π
35. Area bounded by the curve $x y-3 x-2 y-10=0, \mathbf{x}$-axis and the lines $x=3, x=4$ is
(a) $16 \log 2-13$
(b) $16 \log 2-3$
(c) $16 \log 2+3$
(d) None of these
49.The area of the triangle formed by the tangent to the hyperbola $x y=a^{2}$ and co-ordinate axes is
(a) a^{2}
(b) $2 a^{2}$
(c) $3 a^{2}$
(d) $4 a^{2}$

AREAS

HINTS AND SOLUTIONS

1. (d) Required area is $A_{1}+A_{2}=\int_{0}^{\pi} y d x+\left|\int_{\pi}^{2 y} y d x\right|=4 \pi s q$.unit

2. (c) Required area $=\int_{1}^{4} x d y=\int_{1}^{4} \frac{\sqrt{y}}{2} d y$

$$
=\frac{1}{2} \cdot \frac{2}{3}\left|y^{3 / 2}\right|_{1}^{4}=\frac{7}{3} \text { sq. unit. }
$$

3. (b) Required area is $\int_{0}^{a} y d x=\int_{0}^{a} x e^{x^{2}} d x$

We put $x^{2}=t \Rightarrow d x=\frac{d t}{2 x}$ as $x=0 \Rightarrow t=0$ and $x=a \Rightarrow t=a^{2}$, then it reduces to $\frac{1}{2} \int_{0}^{a^{2}} e^{t} d t=\frac{1}{2}\left[e^{t}\right]_{0}^{a^{2}}=\frac{e^{a^{2}}-1}{2}$ sq. unit.
4. (d) Required area $=\int_{1}^{4} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{1}^{4}=\frac{255}{4}$ sq. unit.
5. (b) Area of smaller part $=2 \int_{1}^{2} \sqrt{4-x^{2}} d x$

$$
=\frac{8 \pi}{3}-\sqrt{3}
$$

6. (a) $\int_{0}^{2}\left(x^{2}-4 x\right) d x=\left[\frac{x^{3}}{3}-\frac{4 x^{2}}{2}\right]_{0}^{2}=\frac{16}{3}$ sq. unit.
7. (d) $A_{1}=\int_{0}^{\pi / 3} \cos x d x, A_{2}=\int_{0}^{\pi / 4} \cos 2 x d x-\int_{\pi / 4}^{\pi / 3} \cos 2 x d x$.
8. (d) Shaded area $A=2 \int_{4}^{9} \sqrt{4 a x} d x$

$$
A=4 \sqrt{a} \times \frac{2}{3}\left[x^{3 / 2}\right]_{4}^{9}=\frac{152 \sqrt{a}}{3} .
$$

9. (b) Let the ordinate at $x=a$ divide the area into two equal parts

Area of $A M N B=\int_{2}^{4}\left(1+\frac{8}{x^{2}}\right) d x=\left[x-\frac{8}{x}\right]_{2}^{4}=4$
Area of $A C D M=\int_{2}^{a}\left(1+\frac{8}{x^{2}}\right) d x=2$
On solving, we get $a= \pm 2 \sqrt{2}$; Since $a>0 \Rightarrow a=2 \sqrt{2}$.
10. (c) Given curve $y=\log x$ and $x=1, x=2$.

Hence required area $=\int_{1}^{2} \log x d x=(x \log x-x)_{1}^{2}$

$$
=2 \log 2-1=(\log 4-1) \text { sq. unit. }
$$

11. (a) Required area $\int_{-1}^{2} y d x=\int_{-1}^{0} y \cdot d x+\int_{0}^{2} y \cdot d x=\frac{5}{2}$ sq. unit.

12. (b) $\int_{0}^{2} 2^{k x} d x=\frac{3}{\log 2} \Rightarrow 2^{2 k}-1=3 k$. Now check from options, only (b) satisfies the above condition.
13. (a) $y^{2}=x$ and $2 y=x \Rightarrow y^{2}=2 y \Rightarrow y=0,2$
\therefore Required area $=\int_{0}^{2}\left(y^{2}-2 y\right) d y$ sq. unit.
14. (c) Required area $=2 \int_{0}^{\pi / 3} \tan x d x=2[\log \sec x]_{0}^{\pi / 3}=2 \log (2)$.
15. (c) Required area $=\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$

16. (d)

Shaded area $=\int_{0}^{\pi / 2} \tan x d x=[\log \sec x]_{0}^{\pi / 4}$
$=\log \sec (\pi / 4)-\log \sec 0=\log \sqrt{2}-\log 1=\log \sqrt{2}$.
17. (c) Given equations of curves $y=e^{x} ; y=e^{-x}$ and straight line $x=1$ We know that area of the figure bounded by the curves and straight line

$$
=\int_{0}^{1}\left(e^{x}-e^{-x}\right) d x=\left[e^{x}+e^{-x}\right]_{0}^{1}=e+\frac{1}{e}-2
$$

18. (b) $y=x-1$, if $x>1$ and $y=-(x-1)$, if $x<1$

$$
\begin{aligned}
& \text { Area }=\int_{0}^{1}(1-x) d x+\int_{1}^{2}(x-1) d x=\left[x-\frac{x^{2}}{2}\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{2} \\
& =\left[1-\frac{1}{2}\right]+\left[-\left(\frac{1}{2}-1\right)\right]=\frac{1}{2}+\frac{1}{2}=1 .
\end{aligned}
$$

19. (d) Given parabolas are $x^{2}=1+y, x^{2}=1-y$

Required area $=4 \int_{0}^{1}\left(1-x^{2}\right) d x=4\left[x-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{8}{3}$.
20. (b) Curved surface $=\int_{a}^{b} 2 \pi y \sqrt{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]} d x$

Given that $a=2, b=3$ and $y=x+1$.

On differentiating with respect to x,

$$
\frac{d y}{d x}=1+0 \text { or } \frac{d y}{d x}=1
$$

Therefore, curved surface
$=\int_{2}^{3} 2 \pi(x+1) \sqrt{\left[1+(1)^{2}\right]} d x=\int_{2}^{3} 2 \pi(x+1) \sqrt{2} d x$
$=2 \sqrt{2} \pi \int_{2}^{3}(x+1) d x=2 \sqrt{2} \pi\left[\frac{(x+1)^{2}}{2}\right]_{2}^{3}$
$=\frac{2 \sqrt{2}}{2} \pi\left[(3+1)^{2}-(2+1)^{2}\right]=\sqrt{2} \pi(16-9)=7 \sqrt{2} \pi=7 \pi \sqrt{2}$.
21. (b) Given, $y=-x^{2}+2 x+3$ and $y=0$

Therefore, $x=-1$ and $x=3$
\therefore Required area $=\int_{-1}^{3}\left(-x^{2}+2 x+3\right) d x$

$$
=\left[-\frac{x^{3}}{3}+x^{2}+3 x\right]_{-1}^{3}=\frac{32}{3} .
$$

22. (b) $y^{2}=8 x$ and $y=x \Rightarrow x^{2}=8 x \Rightarrow x=0,8$
\therefore Required area $=\int_{0}^{8}(2 \sqrt{2} \sqrt{x}-x) d x$
$=\left[\frac{4 \sqrt{2}}{3} x^{3 / 2}-\frac{x^{2}}{2}\right]_{0}^{8}=\frac{128}{3}-\frac{64}{2}=\frac{32}{3}$ sq. unit.
23. (c) Given equations of curves $y=\cos x$ and $y=\sin x$ and ordinates $x=0$ to $x=\frac{\pi}{4}$. We know that area bounded by the curves $=\int_{x_{1}}^{x_{2}} y d x=\int_{0}^{\pi / 4} \cos x d x-\int_{0}^{\pi / 4} \sin x d x$
24. (c) Area $=2 \int_{0}^{a} y d x=2 \int_{0}^{a} \sqrt{4 a x} d x$

$2 \times 2 \sqrt{a} \times \frac{2}{3}\left|x^{3 / 2}\right|_{0}^{a}=\frac{8}{3} a^{2}$ sq. unit.
25. (c) We have $y=4 x-x^{2}$ and $y=0 ; \therefore x=0,4$

Required area $=\int_{0}^{4}\left(4 x-x^{2}\right) d x=\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{4}$
26. (b)

Required area $=2($ shaded area in first quadrant $)$

$$
=2 \int_{0}^{1}\left(x-x^{2}\right) d x=2 \times \frac{1}{6}=\frac{1}{3} .
$$

27. (d) Equations of curves $y^{2}=4 x$ and $x^{2}=4 y$. The given equations may be written as $y=2 \sqrt{x}$ and $y=\frac{x^{2}}{4}$.

We know that area enclosed by the parabolas $=\int_{0}^{4} 2 \sqrt{x} d x-\int_{0}^{4} \frac{x^{2}}{4} d x=\frac{32}{3}-\frac{16}{3}=\frac{16}{3}$ sq. unit.
28. (a) Given curves are $y=x^{2}$ and $y=x$

On solving, we get $x=0, x=1$

Therefore, required area $A=\int_{0}^{1}\left(x^{2}-x\right) d x$
$=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{2}=\frac{1}{6}$ sq. unit.
29. (d) Solving the two equations, we have $x^{4}=64 a^{3} x$

$$
\Rightarrow x=0,4 a
$$

Required area $=\int_{0}^{4 a} 2 a^{1 / 2} x^{1 / 2} d x-\int_{0}^{4 a} \frac{x^{2}}{4 a} d x$
30. (a) $y=x^{2}$
$y=2-x^{2}$
\therefore By equation (i) and (ii), we get, $\quad x= \pm 1$
$\therefore y= \pm 1$

\therefore Required area $=2\left[\int_{0}^{1}\left(2-x^{2}\right) d x-\int_{0}^{1} x^{2} d x\right]$
$=2\left[2 x-\frac{2 x^{3}}{3}\right]_{0}^{1}=4\left[x-\frac{x^{3}}{3}\right]_{0}^{1}=4\left(\frac{2}{3}\right)=\frac{8}{3}$.
31. (b) $y^{2}=4 x$ and $x^{2}=4 y$ are symmetric about line $y=x$
\Rightarrow Area bounded between $y^{2}=4 x$ and $y=x$ is $\int_{0}^{4}(2 \sqrt{x}-x) d x=\frac{8}{3}$

$$
\begin{aligned}
& \Rightarrow A_{s_{2}}=\frac{16}{3} \text { and } A_{s_{1}}=A_{S_{3}}=\frac{16}{3} \\
& \Rightarrow A_{S_{1}}: A_{S_{2}}: A_{S_{2}}:: 1: 1: 1
\end{aligned}
$$

32. (a) The part of circle $x^{2}+y^{2}=9$ in between $y=0$ and $y=2$ is revolved about y-axis. Then a frustum of sphere will be formed.

The volume of this frustum

$$
\begin{aligned}
& =\pi \int_{0}^{2} x^{2} d y=\pi \int_{0}^{2}\left(9-y^{2}\right) d y \\
& =\pi\left[9 y-\frac{1}{3} y^{3}\right]_{0}^{2}=\pi\left[9 \times 2-\frac{1}{3}(2)^{3}-\left(9.0-\frac{1}{3} .0\right)\right] \\
& =\pi\left[18-\frac{8}{3}\right]=\frac{46}{3} \pi \text { cubic unit. }
\end{aligned}
$$

33. (a) Solving $y^{2}=x$ and $x=2 y+3$

$$
\begin{aligned}
& 4 y^{2}=(x-3)^{2}, 4 x=x^{2}-6 x+9 \\
& \Rightarrow x^{2}-10 x+9=0 \Rightarrow(x-1)(x-9)=0 \Rightarrow x=1,9
\end{aligned}
$$

$=-4[x \log x-x]_{0}^{1}=-4(-1)=4$ sq. unit,

$$
\left(\because \lim _{x \rightarrow 0} x \log x=0\right) .
$$

Required area $=A+B=\int_{0}^{3} \sqrt{x} d x+\int_{3}^{9}\left[\sqrt{x}-\left(\frac{x-3}{2}\right)\right] d x$
34. (d) Required area $=2\left|\int_{1 / 4}^{1}(\sqrt{y}-1) d y\right|,($ From the symmetry $)$

www.sakshieducation.com

On solving, we get required area $=\frac{1}{3}$ sq. unit .
35. (b) Area of smaller part $I=2 \int_{1}^{3} \sqrt{9-x^{2}} d x$
36. (d) $x^{2}+y^{2}=1, x+y=1$ meet when

$$
x^{2}+(1-x)^{2}=1 \Rightarrow x^{2}+1+x^{2}-2 x=1
$$

$$
\Rightarrow 2 x^{2}-2 x=0 \Rightarrow 2 x(x-1)=0
$$

$$
\Rightarrow x=0, x=1 \Rightarrow y=1, y=0, \text { i.e., } A(1,0) ; B(0,1)
$$

Required area $=\int_{0}^{1}\left[\sqrt{1-x^{2}}-(1-x)\right] d x$
37. (a) The parabola meets x-axis at the points, where $\frac{3}{a}\left(a^{2}-x^{2}\right)=0 \Rightarrow x= \pm a$. So the required area $=\int_{-a}^{a} \frac{3}{a}\left(a^{2}-x^{2}\right) d x=\frac{6}{a} \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=4 a^{2}$ sq. unit.
38. (c) We have $y^{2}=4 a x \Rightarrow y=2 \sqrt{a x}$

We know the equations of lines $x=a$ and $x=4 a$
\therefore The area inside the parabola between the lines

$$
A=\int_{a}^{4 a} y d x=\int_{a}^{4 a} 2 \sqrt{a x} d x=2 \sqrt{a} \int_{a}^{4 a} x^{\frac{1}{2}} d x=2 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{a}^{4 a}
$$

39. (a) Since the curve is symmetrical about x-axis, therefore Required area $A=2 \int_{0}^{a} a \sqrt{\frac{a-x}{x}} d x$

$$
\begin{aligned}
& \text { Put } x=a \sin ^{2} \theta \\
& \Rightarrow d x=2 a \sin \theta \cdot \cos \theta d \theta \\
& \begin{array}{l}
A=2 \int_{0}^{\pi / 2} a \sqrt{\frac{a \cos ^{2} \theta}{a \sin ^{2} \theta}} a \sin 2 \theta d \theta \\
=2 a^{2} \int_{0}^{\pi / 2} \frac{\cos \theta}{\sin \theta} 2 \sin \theta \cos \theta d \theta \\
\\
A=4 a^{2} \int_{0}^{\pi / 2} \cos 2 \\
\end{array}
\end{aligned}
$$

40. (a) Given required area has been shown in the figure.
$x=\frac{\pi}{4}$ is the point of intersection of both curve

\therefore Required area $=\int_{0}^{\pi / 4}(\cos x-\sin x) d x$

$$
=[\sin x+\cos x]_{0}^{\pi / 4}=\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1\right]
$$

$$
=\frac{2}{\sqrt{2}}-1=\sqrt{2}-1 .
$$

41. (d) $\int_{1}^{b} f(x) d x=\sqrt{b^{2}+1}-\sqrt{2}=\sqrt{b^{2}+1}-\sqrt{1+1}=\left[\sqrt{x^{2}+1}\right]_{1}^{b}$

$$
\therefore f(x)=\frac{d}{d x} \sqrt{x^{2}+1}=\frac{2 x}{2 \sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}
$$

42. (d) Area $=\int_{0}^{4} \sqrt{3 x+4} d x=\left|\frac{(3 x+4)^{3 / 2}}{3 \cdot(3 / 2)}\right|_{0}^{4}$

$$
=\frac{2}{9} \times 56=\frac{112}{9} \text { sq. unit. }
$$

43. (b) Required area $=$ area of $O A B C$ - area of $O B C$

$$
=16 \times 4-\int_{0}^{16} \sqrt{x} d x=64-\left[\frac{x^{3 / 2}}{3 / 2}\right]_{0}^{16}=\frac{64}{3} .
$$

44. (a) The curves $y=x$ and $y=x+\sin x$ intersect at $(0,0)$ and (π, π). Hence area bounded by the two curves

$$
\begin{aligned}
=\int_{0}^{\pi}(x+ & \sin x) d x-\int_{0}^{\pi} x d x=\int_{0}^{\pi} \sin x d x \\
& =[-\cos x]_{0}^{\pi}=-\cos \pi+\cos 0=-(-1)+(1)=2
\end{aligned}
$$

45. (d) Required area $=\int_{0}^{2}\left[2^{x}-\left(2 x-x^{2}\right)\right] d x$

$$
=\left[\frac{2^{x}}{\log 2}-x^{2}+\frac{x^{3}}{3}\right]_{0}^{2}
$$

46. (a) Solving $y=0$ and $y=4+3 x-x^{2}$, we get $x=-1,4$. Curve does not intersect x-axis between $x=-1$ and $x=4$.
\therefore Area $=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x=\frac{125}{6}$.
47. (b) Required area $A=\int_{0}^{\pi / 2} \sin ^{2} x \cdot d x=\int_{0}^{\pi / 2}\left(\frac{1-\cos 2 x}{2}\right) d x a$
48. (c) Given curve is $y(x-2)=3 x+10 \Rightarrow y=\frac{3 x+10}{x-2}$

Required area is $\int_{3}^{4} y d x=\int_{3}^{4} \frac{3 x+10}{x-2} d x$
$=[3 x+16 \log (x-2)]_{3}^{4}=3+16 \log 2$ sq. unit.
49. (b) Given $x y=a^{2}$ or $y=\frac{a^{2}}{x}$

There are two points on the curve $(a, a),(-a,-a)$

The equation of the line at (a, a) is,
$y-a=\left(\frac{d y}{d x}\right)_{(a, a)}(x-a)=\left(\frac{-a^{2}}{x^{2}}\right)_{(a, a)}(x-a)$
$y-a=-(x-a)$ therefore, equation of the tangent at (a, a) is $x+y=2 a$. The interception of line $x+y=2 a$ with x-axis is $2 a$ and with y-axis is $2 a$.
\therefore Required area $=\frac{1}{2} \times 2 a \times 2 a=2 a^{2}$.

AREAS
 PRACTICE EXERCISE

1. The area bounded by $y=5 x-x^{2}-4$ and the x-axis
1) $\frac{9}{4}$ sq.units
2) $\frac{9}{8}$ sq.units
3) $\frac{3}{2}$ sq.units
4) $\frac{9}{2}$ sq.units
2. The area bounded by the curve $y=(x-1)^{2}-25$ and the x-axis is
1) $\frac{200}{3}$ sq.units
2) $\frac{300}{4}$ sq.units
3) $\frac{400}{3}$ sq.units
4) $\frac{500}{3}$ sq.units
3. The area bounded by $x^{2}=4 y, x=4 y-2$
1) $9 / 8$ sq.units
2) $9 / 4$ sq.units
3) $9 / 16$ sq.units
4) $3 / 2$ sq.units
4. The area bounded by $y^{2}=4 x$ and the line $y=2 x-4$
1) 18 sq.units
2) $9 / 2$ sq.units
3) 9 sq.units
4) $3 / 2$ sq.units
5. The area between the curves $y=8-x^{2}$ and $y=x^{2}$ in sq.units is
1) $32 / 3$
2) $64 / 3$
3) $16 / 3$
4) $8 / 3$
6. The area enclosed within the curve $|x|+|y|=1$ is
1) 4 sq.units
2) 1 sq.unit
3) 2 sq.unit
4) 8 sq.unit
7. Area of the region bounded by $y=1-|x|$ and the x-axis
1) $1 / 2$
2) 1
3) $1 / 4$
4) 2
8. Area of the region bounded by $y=[x]$, the x-axis and the coordinates $x=1$, $x=2$ is
1) 2
2) 1
3) $1 / 2$
4) $1 / 3$
9. The area bounded by $y=x^{3}-6 x^{2}+8 x$ and the x - axis
1) 8 sq.units
2) 4 sq.units
3) 16 sq.units
4) 4 sq.units
10. The whole area bounded by $x^{\frac{2}{3}}+y^{\frac{2}{3}}=4$ in sq. units
1) 24π
2) 48π
3) 12π
4) 36π
11. The area of the region bounded by the curve $y=\sin x$ and the x-axis between $-\pi$ and π is
1) 8 sq.units
2) 4 sq.units
3) 2 sq.units
4) 1 sq.unit www.sakshieducation.com
12. The area bounded by one of the ac of $y=\operatorname{cosax}$ and the x-axis is
1) $\frac{1}{|a|}$
2) $\frac{1}{a}$
3) $\frac{2}{a}$
4) $\frac{2}{|a|}$
13. The area between the curves $y^{2}=x / 2$ and $3 y^{2}=x+1$ in sq.units is
1) $4 / 3$
2) $2 / 3$
3) $8 / 3$
4) $16 / 3$
14. The area between the curves $y=\frac{x^{2}}{4}$ and $y=3-\frac{x^{2}}{2}$ in sq.units is
1) 8
2) $16 / 3$
3) $8 / 3$
4) 12
15. The area of the region between the x-axis and the curve $f(x)=\frac{1}{4} x^{2}+\frac{1}{4} x-\frac{1}{2}$ in $[0,2]$ is
1) $\frac{3}{4}$ sq.units
2) $\frac{3}{2}$ sq.units
3) $\frac{3}{8}$ sq.units
4) $\frac{3}{5}$ sq.units
16. The area bounded by the x - axis, part of the curve $y=1+8 / x^{2}$ and the ordinates at $x=2$ and $x=4$ is divided by the ordinate $x=a$ into two equal parts. Then $a=$
1) $2 \sqrt{2}$
2) 2
3) 4
4) $\sqrt{3}$
17. The area bounded by the curve $a y^{2}=x^{3}$, the x-axis and the ordinate $x=a$
1) $\frac{8 a^{2}}{3}$ sq.units
2) $\frac{2 a^{2}}{5}$ sq.units
3) $\frac{4 a^{2}}{5}$ sq.units
4) $\frac{3 a^{2}}{5}$ sq.units
18. The whole area bounded by $a^{2} y^{2}=a^{2} x^{2}-x^{4}$ is
1) $\frac{2}{3} a^{2}$ sq.units
2) $\frac{8}{3} a^{2}$ sq.units
3) $\frac{4}{3} a^{2}$ sq.units
4) $\frac{5 a^{2}}{3}$ sq.units
19. The area bounded by $a^{2} y^{2}=x^{3}(2 a-x)$
1) πa^{2} sq.units
2) $\frac{\pi a^{2}}{2}$ sq.units
3) $2 \pi a^{2}$ sq.units
4) $\frac{\pi a^{2}}{4}$ sq.units
20. The area bounded by the line $y=x$ curve and $y=x^{3}$ is
1) 1 sq. units
2) $1 / 2$ sq. units
3) $1 / 3$ sq. units
4) $1 / 4$ sq. units
21. Area bounded by $y=(x-1)(x-2)(x-3)$ between $x=0, x=3$ in sq. units is
1) $\frac{9}{4}$
2) $\frac{11}{4}$
3) $\frac{7}{4}$
4) $\frac{3}{4}$
22. Area of the region bounded by $y=e^{x}$ and $y=e^{-x}$ and the line $x=1$ in sq. units is
1) $e+\frac{1}{e}$
2) e $-\frac{1}{e}$
3) $e+\frac{1}{e}+2$
4) $e+\frac{1}{e}-2$
23. The area bounded by $y=x^{2}, y=[x+1], x \leq 1$, and the y-axis in sq. units is
1) $1 / 3$
2) $2 / 3$
3) 1
4) $7 / 3$
24. The area bounded by the curve $x y=4$ and x-axis the ordinates $x=2, x=4$ in sq. units is
1) $4 \log 2$
2) $2 \log 2$
3) $8 \log 2$
4) $\log 2$
25. The area of the curve $x=a \cos ^{3} t, y=b \sin ^{3} t$ in sq. units is
1) $\frac{3 \pi}{4} \mathrm{ab}$
2) $\frac{3 \pi}{8} a b$
3) $\frac{\pi}{4} \mathrm{ab}$
4) $\frac{\pi}{8} a b$
26. The area bounded by one arc of $y=\sin 2 x$ and x-axis in sq. units is
1) 1
2) 2
3) 3
4) 4
27. The area bounded by the curve $y=\sin x-\cos x . X$-axis and $x=0, x=\pi / 2$ in sq. units is
1) $\sqrt{3}-1$
2) $2(\sqrt{3}-1)$
3) $2(\sqrt{2}-1)$
4) $2(\sqrt{2}+1)$
28. Area of the region bounded by $y=\tan x$, and tangent at $x=\frac{\pi}{4}$ and the x-axis in sq. units
1) $\log \sqrt{2}-\frac{1}{4}$
2) $\log \sqrt{2}+\frac{\pi^{2}}{16}$
3) $\log \sqrt{2}-\frac{\pi}{4}$
4) $\log \sqrt{2}$
29. The area bounded by $y=\cos x, y=x+1$ and $y=0$ in the second quadrant in sq. units is
1) $1 / 2$
2) $3 / 2$
3) $1 / 4$
4) $5 / 4$
30. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ in sq. units is
1) $\frac{1}{2} a b$
2) $\frac{\pi a b}{2}$
3) $\frac{a b}{4}$
4) $\frac{\pi a b}{4}-\frac{a b}{2}$
31. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ in sq. units is
1) $\sqrt{3}$
2) $\frac{1}{\sqrt{3}}$
3) $2 \sqrt{3}$
4) $2 / \sqrt{3}$
32. The area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x-axis is
1) 1 sq. units
2) 4 sq. units
3) 3 sq. units
4) 2 sq. units

AREAS

Key for Practice Exercise

1	2	3	4	5	6	7	8	9	10
4	4	1	3	2	3	2	2	2	1
11	12	13	14	15	16	17	18	19	20
1	2	1	1	1	1	3	3	1	2
21	22	23	24	25	26	27	28	29	30
4	4	2	1	2	1	1	1	1	4
31	32								
3	1								

