AREAS

OBJECTIVES

1. Area bounded by $y = x \sin x$ and x - axis between x = 0 and $x = 2\pi$, is

(a) 0 (b) 2π sq. unit (c) π sq. unit (d) 4π sq. unit

- **2.** Area bounded by the parabola $y = 4x^2$, y axis and the lines y = 1, y = 4 is
 - (a) 3 sq. unit (b) $\frac{7}{5}$ sq. unit (c) $\frac{7}{3}$ sq. unit (d) None of these

3. Area bounded by the curve $y = xe^{x^2}$, x - axis and the ordinates x = 0, x = a

(a)
$$\frac{e^{a^2}+1}{2}$$
 sq. unit (b) $\frac{e^{a^2}-1}{2}$ sq. unit (c) $e^{a^2}+1$ sq. unit (d) $e^{a^2}-1$ sq. unit

- 4. Area bounded by curve $y = x^3$, x-axis and ordinates x = 1 and x = 4, is
 - (a) 64 sq. unit (b) 27 sq. unit (c) $\frac{127}{4}$ sq. unit (d) $\frac{255}{4}$ sq. unit
- 5. The area of smaller part between the circle $x^2 + y^2 = 4$ and the line x = 1 is
 - (a) $\frac{4\pi}{3} \sqrt{3}$ (b) $\frac{8\pi}{3} \sqrt{3}$ (c) $\frac{4\pi}{3} + \sqrt{3}$ (d) $\frac{5\pi}{3} + \sqrt{3}$
- 6. Area under the curve $y = x^2 4x$ within the x-axis and the line x = 2, is
 - (a) $\frac{16}{3}$ sq.unit (b) $-\frac{16}{3}$ sq.unit (c) $\frac{4}{7}$ sq.unit (d) Cannot be calculated
- 7. The ratio of the areas bounded by the curves $y = \cos x$ and $y = \cos 2x$ between x = 0, $x = \pi/3$ and x-axis, is
 - (a) $\sqrt{2}:1$ (b) 1:1 (c) 1:2 (d) None of these
- 8. The area bounded by the parabola $y^2 = 4ax$, and two ordinates x = 4, x = 9 is

(a)
$$4a^2$$
 (b) $4a^2.4$ (c) $4a^2(9-4)$ (d) $\frac{152\sqrt{a}}{3}$

- 9. If the ordinate x = a divides the area bounded by the curve $y = \left(1 + \frac{8}{x^2}\right)$, x-axis and the ordinates x = 2, x = 4 into two equal parts, then a =
 - (a) 8 (b) $2\sqrt{2}$ (c) 2 (d) $\sqrt{2}$

10. Area bounded by the curve $y = \log x$, x - axis and the ordinates x = 1, x = 2 is

- (a) $\log 4$ sq. unit (b) $(\log 4 + 1)$ sq. unit (c) $(\log 4 1)$ sq. unit (d) None of these
- **11.** Area bounded by the lines y = x, x = -1, x = 2 and x axis is
 - (a) $\frac{5}{2}$ sq. unit (b) $\frac{3}{2}$ sq. unit (c) $\frac{1}{2}$ sq. unit (d) None of these.
- 12. If the area above the x-axis, bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\ln 2}$, then

the value of k is

(a) $\frac{1}{2}$ (b) 1 (c) -1 (d) 2

13. Area bounded by parabola $y^2 = x$ and straight line 2y = x is

- (a) $\frac{4}{3}$ (b) 1 (c) $\frac{2}{3}$ (d) $\frac{1}{3}$
- 14. The area of the region bounded by the x-axis and the curves defined by
 - $y = \tan x, (-\pi/3 \le x \le \pi/3)$ **is**

(a)
$$\log \sqrt{2}$$
 (b) $-\log \sqrt{2}$ (c) $2\log 2$ (d) 0

- 15. The area bounded by the circle $x^2 + y^2 = 4$, line $x = \sqrt{3}y$ and x-axis lying in the first quadrant, is
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) π
- 16. Area of the region bounded by the curve $y = \tan x$, tangent drawn to the curve at $x = \frac{\pi}{4}$ and the provints

the x-axis is

(a) $\frac{1}{4}$

(b)
$$\log \sqrt{2} + \frac{1}{4}$$
 (c) $\log \sqrt{2} - \frac{1}{4}$ (d) None of these

17. The area of figure bounded by $y = e^x$, $y = e^{-x}$ and the straight line x = 1 is

(a) $e + \frac{1}{e}$ (b) $e - \frac{1}{e}$ (c) $e + \frac{1}{e} - 2$ (d) $e + \frac{1}{e} + 2$

18.The area of the region bounded by y = |x-1| and y = 1 is

(a) 2 (b) 1 (c) $\frac{1}{2}$ (d) None of these

19.The area enclosed by the parabolas $y = x^2 - 1$ and $y = 1 - x^2$ is

(a) 1/3 (b) 2/3 (c) 4/3 (d) 8/3

20.The part of straight line y = x + 1 between x = 2 and x = 3 is revolved about x-axis, then the curved surface of the solid thus generated is

(a) $37\pi/3$ (b) $7\pi\sqrt{2}$ (c) 37π (d) $7\pi/\sqrt{2}$

21.The area bounded by $y = -x^2 + 2x + 3$ and y = 0 is

(a) 32 (b) $\frac{32}{3}$ (c) $\frac{1}{32}$ (d) $\frac{1}{3}$

22.The area bounded by the curves $y^2 = 8x$ and y = x is

(a) $\frac{128}{3}$ sq. unit (b) $\frac{32}{3}$ sq. unit (c) $\frac{64}{3}$ sq. unit (d) 32 sq. unit

23. The area bounded by curves $y = \cos x$ and $y = \sin x$ and ordinates x = 0 and $x = \frac{\pi}{4}$ is

(a)
$$\sqrt{2}$$
 (b) $\sqrt{2} + 1$ (c) $\sqrt{2} - 1$ (d) $\sqrt{2}(\sqrt{2} - 1)$

24. Area bounded by the parabola $y^2 = 4ax$ and its latus rectum is

(a) $\frac{2}{3}a^2$ sq. unit (b) $\frac{4}{3}a^2$ sq. unit (c) $\frac{8}{3}a^2$ sq. unit (d) $\frac{3}{8}a^2$ sq. unit

25. The area bounded by the curve $y = 4x - x^2$ and the *x*-axis, is

(a) $\frac{30}{7}$ sq. unit (b) $\frac{31}{7}$ sq. unit (c) $\frac{32}{3}$ sq. unit (d) $\frac{34}{3}$ sq. unit

- 26. The area of the region bounded by the curves $y = x^2$ and y = |x| is
 - (a) 1/6 (b) 1/3 (c) 5/6 (d) 5/3

27. The area enclosed between the parabolas $y^2 = 4x$ and $x^2 = 4y$ is

- (a) $\frac{14}{3}$ sq. unit (b) $\frac{3}{4}$ sq. unit (c) $\frac{3}{16}$ sq. unit (d) $\frac{16}{3}$ sq. unit
- 28. The area between the parabola $y = x^2$ and the line y = x is

(a) $\frac{1}{6}$ sq. unit (b) $\frac{1}{3}$ sq. unit (c) $\frac{1}{2}$ sq. unit (d) None of these

29. Area included between the two curves $y^2 = 4ax$ and $x^2 = 4ay$,

(a) $\frac{32}{3}a^2$ sq. unit (b) $\frac{16}{3}$ sq. unit (c) $\frac{32}{3}$ sq. unit (d) $\frac{16}{3}a^2$ sq. unit

30. Area bounded by curves $y = x^2$ and $y = 2 - x^2$ is

(a)
$$8/3$$
 (b) $3/8$ (c) $3/2$ (d) None of these

- 31. The parabolas $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If s_1, s_2, s_3 are respectively the areas of these parts numbered from top to bottom, then $s_1 : s_2 : s_3$ is
 - (a) 2:1:2 (b) 1:1:1 (c) 1:2:1 (d) 1:2:3
- 32. The part of circle $x^2 + y^2 = 9$ in between y = 0 and y = 2 is revolved about y-axis. The volume of generating solid will be
 - (a) $\frac{46}{3}\pi$ (b) 12π (c) 16π (d) 28π
- 33. The area bounded by the curves $y = \sqrt{x}$, 2y + 3 = x and x-axis in the 1st quadrant is
 - (a) 9 (b) $\frac{27}{4}$ (c) 36 (d) 18
- 34. The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is
 - (a) $\frac{1}{2}(9 \sec^{-1} 3 \sqrt{8})$ (b) $9 \sec^{-1}(3) \sqrt{8}$ (c) $\sqrt{8} 9 \sec^{-1}(3)$ (d) None of these
- **35.** The area of region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ is
 - (a) $\frac{\pi^2}{5}$ (b) $\frac{\pi^2}{2}$ (c) $\frac{\pi^2}{3}$ (d) $\frac{\pi}{4} \frac{1}{2}$
- 36. Area enclosed by the parabola $ay = 3(a^2 x^2)$ and x-axis is
 - (a) $4a^2$ sq. unit (b) $12a^2$ sq. unit (c) $4a^3$ sq. unit (d) None of these
- 37. Area inside the parabola $y^2 = 4ax$, between the lines x = a and x = 4a is equal to
 - (a) $4a^2$ (b) $8a^2$ (c) $28\frac{a^2}{3}$ (d) $35\frac{a^2}{3}$
- **38.** The area of the curve $xy^2 = a^2(a-x)$ bounded by y-axis is

(a) πa^2

(b)
$$2\pi a^2$$
 (c) $3\pi a^2$ (d) $4\pi a^2$

- 39. The area formed by triangular shaped region bounded by the curves $y = \sin x, y = \cos x$ and x = 0 is
 - (a) $\sqrt{2} 1$ (b) 1 (c) $\sqrt{2}$ (d) $1 + \sqrt{2}$
- 40. The area bounded by the x-axis, the curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} \sqrt{2}$ for all b > 1, then f(x) is

(a)
$$\sqrt{x-1}$$
 (b) $\sqrt{x+1}$ (c) $\sqrt{x^2+1}$ (d) $\frac{x}{\sqrt{1+x^2}}$

42.Area under the curve $y = \sqrt{3x+4}$ between x = 0 and x = 4, is

(a)
$$\frac{56}{9}$$
 sq. unit (b) $\frac{64}{9}$ sq. unit (c) 8 sq. unit (d) None of these

43.The area bounded by curve $y^2 = x$, line y = 4 and y-axis is

(a)
$$\frac{16}{3}$$
 (b) $\frac{64}{3}$ (c) $7\sqrt{2}$ (d) None of these

44.For $0 \le x \le \pi$, the area bounded by y = x and $y = x + \sin x$, is

(a) 2 (b) 4 (c) 2π (d) 4π

45.The area bounded by the straight lines x = 0, x = 2 and the curves $y = 2^x, y = 2x - x^2$

(a)
$$\frac{4}{3} - \frac{1}{\log 2}$$
 (b) $\frac{3}{\log 2} + \frac{4}{3}$ (c) $\frac{4}{\log 2} - 1$ (d) $\frac{3}{\log 2} - \frac{4}{3}$

46.The area between the curve $y = 4 + 3x - x^2$ and x-axis is

(a) 125/6 (b) 125/3 (c) 125/2 (d) None of these

47.The area between the curve $y = \sin^2 x$, x - axis and the ordinates x = 0 and $x = \frac{\pi}{2}$ is

(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{8}$ (d) π

48.Area bounded by the curve xy - 3x - 2y - 10 = 0, **x-axis and the lines** x = 3, x = 4 is

(a) $16 \log 2 - 13$ (b) $16 \log 2 - 3$ (c) $16 \log 2 + 3$ (d) None of these

49.The area of the triangle formed by the tangent to the hyperbola $xy = a^2$ and co-ordinate axes is

(a) a^2 (b) $2a^2$ (c) $3a^2$ (d) $4a^2$

AREAS

HINTS AND SOLUTIONS

1. (d) Required area is $A_1 + A_2 = \int_0^{\pi} y \, dx + \left| \int_{\pi}^{2\pi} y \, dx \right| = 4\pi \, sq. unit$

- 2. (c) Required area = $\int_{1}^{4} x \, dy = \int_{1}^{4} \frac{\sqrt{y}}{2} \, dy$ = $\frac{1}{2} \cdot \frac{2}{3} |y^{3/2}|_{1}^{4} = \frac{7}{3} \, sq.$ unit.
- 3. (b) Required area is $\int_0^a y \, dx = \int_0^a x e^{x^2} dx$

We put $x^2 = t \Rightarrow dx = \frac{dt}{2x}$ as $x = 0 \Rightarrow t = 0$ and $x = a \Rightarrow t = a^2$, then it reduces to

$$\frac{1}{2}\int_0^{a^2} e^t dt = \frac{1}{2} [e^t]_0^{a^2} = \frac{e^{a^2} - 1}{2} \quad sq. \ unit.$$

- 4. (d) Required area $= \int_{1}^{4} x^{3} dx = \left[\frac{x^{4}}{4}\right]_{1}^{4} = \frac{255}{4}$ sq. unit.
- 5. (b) Area of smaller part $= 2 \int_{1}^{2} \sqrt{4 x^{2}} dx$

(0,0)

6. (a)
$$\int_0^2 (x^2 - 4x) dx = \left[\frac{x^3}{3} - \frac{4x^2}{2}\right]_0^2 = \frac{16}{3} sq.$$
 unit.

7. (d)
$$A_1 = \int_0^{\pi/3} \cos x \, dx$$
, $A_2 = \int_0^{\pi/4} \cos 2x \, dx - \int_{\pi/4}^{\pi/3} \cos 2x \, dx$.

(2, 0)

8. (d) Shaded area
$$A = 2\int_{4}^{9} \sqrt{4ax} dx$$

 $\sqrt{3}$

$$A = 4\sqrt{a} \times \frac{2}{3} [x^{3/2}]_4^9 = \frac{152\sqrt{a}}{3}.$$

9. (b) Let the ordinate at x = a divide the area into two equal parts

Area of AMNB =
$$\int_{2}^{4} \left(1 + \frac{8}{x^{2}}\right) dx = \left[x - \frac{8}{x}\right]_{2}^{4} = 4$$

Area of ACDM = $\int_{2}^{a} \left(1 + \frac{8}{x^2}\right) dx = 2$

On solving, we get $a = \pm 2\sqrt{2}$; Since $a > 0 \implies a = 2\sqrt{2}$.

10. (c) Given curve $y = \log x$ and x = 1, x = 2.

Hence required area = $\int_{1}^{2} \log x \, dx = (x \log x - x)_{1}^{2}$

$$= 2 \log 2 - 1 = (\log 4 - 1) Sq.$$
 unit

11. (a) Required area
$$\int_{-1}^{2} y \, dx = \int_{-1}^{0} y \, dx + \int_{0}^{2} y \, dx = \frac{5}{2} \, sq.$$
 unit

12. (b) $\int_0^2 2^{kx} dx = \frac{3}{\log 2} \Rightarrow 2^{2k} - 1 = 3k$. Now check from options, only (b) satisfies the above condition.

13. (a) $y^2 = x$ and $2y = x \Rightarrow y^2 = 2y \Rightarrow y = 0, 2$

: Required area =
$$\int_0^2 (y^2 - 2y) dy$$
 sq. unit.

14. (c) Required area =
$$2\int_{0}^{\pi/3} \tan x \, dx = 2[\log \sec x]_{0}^{\pi/3} = 2\log(2)$$
.

15. (c) Required area =
$$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx$$

(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)
(2,0)

Shaded area = $\int_0^{\pi/2} \tan x \, dx = [\log \sec x]_0^{\pi/4}$

$$= \log \sec (\pi / 4) - \log \sec 0 = \log \sqrt{2} - \log 1 = \log \sqrt{2}$$
.

17. (c) Given equations of curves $y = e^x$; $y = e^{-x}$ and straight line x = 1 We know that area of the figure bounded by the curves and straight line

$$= \int_0^1 (e^x - e^{-x}) dx = [e^x + e^{-x}]_0^1 = e + \frac{1}{e} - 2.$$

18. (b) y = x - 1, if x > 1 and y = -(x - 1), if x < 1

Area =
$$\int_0^1 (1-x)dx + \int_1^2 (x-1)dx = \left[x - \frac{x^2}{2}\right]_0^1 + \left[\frac{x^2}{2} - x\right]_1^2$$

= $\left[1 - \frac{1}{2}\right] + \left[-\left(\frac{1}{2} - 1\right)\right] = \frac{1}{2} + \frac{1}{2} = 1$.

19. (d) Given parabolas are $x^2 = 1 + y$, $x^2 = 1 - y$

Required area =
$$4\int_0^1 (1-x^2) dx = 4\left[x - \frac{x^3}{3}\right]_0^1 = \frac{8}{3}$$

20. (b) Curved surface $= \int_{a}^{b} 2\pi y \sqrt{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]} dx$

Given that a = 2, b = 3 and y = x + 1.

On differentiating with respect to x,

$$\frac{dy}{dx} = 1 + 0 \text{ or } \frac{dy}{dx} = 1$$

Therefore, curved surface

$$= \int_{2}^{3} 2\pi (x+1)\sqrt{[1+(1)^{2}]} dx = \int_{2}^{3} 2\pi (x+1)\sqrt{2} dx$$
$$= 2\sqrt{2}\pi \int_{2}^{3} (x+1) dx = 2\sqrt{2}\pi \left[\frac{(x+1)^{2}}{2}\right]_{2}^{3}$$

$$=\frac{2\sqrt{2}}{2}\pi[(3+1)^2-(2+1)^2]=\sqrt{2}\pi(16-9)=7\sqrt{2}\pi=7\pi\sqrt{2}.$$

21. (b) Given,
$$y = -x^2 + 2x + 3$$
 and $y = 0$

Therefore, x = -1 and x = 3

: Required area = $\int_{-1}^{3} (-x^2 + 2x + 3) dx$

$$= \left[-\frac{x^3}{3} + x^2 + 3x \right]_{-1}^3 = \frac{32}{3}$$

22. (b) $y^2 = 8x$ and $y = x \Rightarrow x^2 = 8x \Rightarrow x = 0, 8$

: Required area =
$$\int_0^8 (2\sqrt{2}\sqrt{x} - x) dx$$

$$= \left[\frac{4\sqrt{2}}{3}x^{3/2} - \frac{x^2}{2}\right]_0^8 = \frac{128}{3} - \frac{64}{2} = \frac{32}{3}$$
 sq. unit.

23. (c) Given equations of curves $y = \cos x$ and $y = \sin x$ and ordinates x = 0 to $x = \frac{\pi}{4}$. We know that area bounded by the curves $= \int_{x_1}^{x_2} y dx = \int_0^{\pi/4} \cos x dx - \int_0^{\pi/4} \sin x dx$

24. (c) Area =
$$2\int_0^a y \, dx = 2\int_0^a \sqrt{4ax} \, dx$$

$$2 \times 2\sqrt{a} \times \frac{2}{3} |x^{3/2}|_0^a = \frac{8}{3} a^2$$
 sq. unit.

25. (c) We have $y = 4x - x^2$ and y = 0; $\therefore x = 0, 4$

Required area =
$$\int_0^4 (4x - x^2) dx = \left[\frac{4x^2}{2} - \frac{x^3}{3}\right]_0^4$$

26. (b)

Required area = 2 (shaded area in first quadrant)

$$= 2 \int_0^1 (x - x^2) dx = 2 \times \frac{1}{6} = \frac{1}{3}.$$

27. (d) Equations of curves $y^2 = 4x$ and $x^2 = 4y$. The given equations may be written as $y = 2\sqrt{x}$ and $y = \frac{x^2}{4}$.

We know that area enclosed by the parabolas $=\int_0^4 2\sqrt{x} dx - \int_0^4 \frac{x^2}{4} dx = \frac{32}{3} - \frac{16}{3} = \frac{16}{3} sq.$ unit.

28. (a) Given curves are $y = x^2$ and y = x

On solving, we get x = 0, x = 1

Therefore, required area $A = \int_0^1 (x^2 - x) dx$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2}\right]_0^1 = \frac{1}{3} - \frac{1}{2} = \frac{1}{6} \quad sq. \ unit.$$

29. (d) Solving the two equations, we have $x^4 = 64a^3x$

30.

31. (b) $y^2 = 4x$ and $x^2 = 4y$ are symmetric about line y = x

 $\Rightarrow \text{Area bounded between } y^2 = 4x \text{ and } y = x \text{ is } \int_0^4 (2\sqrt{x} - x)dx = \frac{8}{3}$

$$\Rightarrow A_{s_2} = \frac{16}{3} \text{ and } A_{s_1} = A_{s_3} = \frac{16}{3}$$
$$\Rightarrow A_{s_1} : A_{s_2} : A_{s_3} :: 1 : 1 : 1 : 1.$$

32. (a) The part of circle $x^2 + y^2 = 9$ in between y = 0 and y = 2 is revolved about y-axis. Then a frustum of sphere will be formed.

The volume of this frustum

$$= \pi \int_{0}^{2} x^{2} dy = \pi \int_{0}^{2} (9 - y^{2}) dy$$
$$= \pi \left[9y - \frac{1}{3}y^{3} \right]_{0}^{2} = \pi \left[9 \times 2 - \frac{1}{3}(2)^{3} - (9.0 - \frac{1}{3}.0) \right]$$
$$= \pi \left[18 - \frac{8}{3} \right] = \frac{46}{3} \pi \text{ cubic unit.}$$

33. (a) Solving $y^2 = x$ and x = 2y + 3

$$4y^2 = (x-3)^2$$
, $4x = x^2 - 6x + 9$

 $\implies x^2 - 10x + 9 = 0 \implies (x - 1)(x - 9) = 0 \implies x = 1, 9$

 $= -4 \left[x \log x - x \right]_0^1 = -4(-1) = 4 \, Sq. \, unit,$

 $(:: \lim_{x \to 0} x \log x = 0).$

Required area =
$$A + B = \int_0^3 \sqrt{x} dx + \int_3^9 \left[\sqrt{x} - \left(\frac{x-3}{2}\right) \right] dx$$

34. (d) Required area = $2\left|\int_{1/4}^{1} (\sqrt{y} - 1) dy\right|$, (From the symmetry)

On solving, we get required area $=\frac{1}{3}$ sq. unit.

35. (b) Area of smaller part $I = 2 \int_{1}^{3} \sqrt{9 - x^2} dx$

36. (d) $x^2 + y^2 = 1, x + y = 1$ meet when

$$x^{2} + (1-x)^{2} = 1 \implies x^{2} + 1 + x^{2} - 2x = 1$$

 $\Rightarrow 2x^2 - 2x = 0 \Rightarrow 2x(x - 1) = 0$

 $\Rightarrow x = 0, x = 1 \implies y = 1, y = 0 , i.e., A(1,0); B(0,1)$

Required area = $\int_{0}^{1} [\sqrt{1-x^{2}} - (1-x)] dx$

37. (a) The parabola meets x-axis at the points, where $\frac{3}{a}(a^2 - x^2) = 0 \Rightarrow x = \pm a$. So the required area = $\int_{-a}^{a} \frac{3}{a}(a^2 - x^2)dx = \frac{6}{a}\int_{0}^{a}(a^2 - x^2)dx = 4a^2$ sq. unit.

38. (c) We have $y^2 = 4ax \implies y = 2\sqrt{ax}$

We know the equations of lines x = a and x = 4a

: The area inside the parabola between the lines

$$A = \int_{a}^{4a} y \, dx = \int_{a}^{4a} 2\sqrt{ax} \, dx = 2\sqrt{a} \int_{a}^{4a} x^{\frac{1}{2}} dx = 2\sqrt{a} \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{a}^{4a}$$

39. (a) Since the curve is symmetrical about *x*-axis, therefore Required area $A = 2 \int_0^a a \sqrt{\frac{a-x}{x}} dx$

40. (a) Given required area has been shown in the figure.

$$x = \frac{\pi}{4}$$
 is the point of intersection of both curve
 $y = \cos x$
 $y = \sin x$
 $x = \pi/4$

:. Required area =
$$\int_{0}^{\pi/4} (\cos x - \sin x) dx$$

$$= [\sin x + \cos x]_0^{\pi/4} = \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1\right]$$

$$=\frac{2}{\sqrt{2}}-1=\sqrt{2}-1$$

41. (d)
$$\int_{1}^{b} f(x) dx = \sqrt{b^{2} + 1} - \sqrt{2} = \sqrt{b^{2} + 1} - \sqrt{1 + 1} = [\sqrt{x^{2} + 1}]_{1}^{b}$$

 $\therefore \quad f(x) = \frac{d}{\sqrt{x^{2} + 1}} = \frac{2x}{\sqrt{x^{2} + 1}} = \frac{x}{\sqrt{x^{2} + 1}}$

$$\therefore f(x) = \frac{1}{dx}\sqrt{x^2 + 1} = \frac{1}{2\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

42. (d) Area =
$$\int_0^4 \sqrt{3x+4} dx = \left| \frac{(3x+4)^{3/2}}{3(3/2)} \right|_0^4$$

$$=\frac{2}{9}\times 56=\frac{112}{9}$$
 sq. unit.

43. (b) Required area = area of OABC – area of OBC

$$= 16 \times 4 - \int_0^{16} \sqrt{x} \, dx = 64 - \left[\frac{x^{3/2}}{3/2}\right]_0^{16} = \frac{64}{3}.$$

44. (a) The curves y = x and $y = x + \sin x$ intersect at (0, 0) and (π, π) . Hence area bounded by the two curves

$$= \int_{0}^{0} (x + \sin x) dx - \int_{0}^{0} x \, dx = \int_{0}^{0} \sin x \, dx$$

$$= [-\cos x]_0^{\pi} = -\cos \pi + \cos 0 = -(-1) + (1) = 2.$$

45. (d) Required area = $\int_0^2 [2^x - (2x - x^2)] dx$

$$= \left[\frac{2^{x}}{\log 2} - x^{2} + \frac{x^{3}}{3}\right]_{0}^{2}$$

46. (a) Solving y = 0 and $y = 4 + 3x - x^2$, we get x = -1, 4. Curve does not intersect x-axis between x = -1 and x = 4.

: Area =
$$\int_{-1}^{4} (4 + 3x - x^2) dx = \frac{125}{6}$$
.

- 47. (b) Required area $A = \int_0^{\pi/2} \sin^2 x \, dx = \int_0^{\pi/2} \left(\frac{1 \cos 2x}{2}\right) dxa$
- 48. (c) Given curve is $y(x-2) = 3x + 10 \Rightarrow y = \frac{3x+10}{x-2}$

Required area is $\int_{3}^{4} y \, dx = \int_{3}^{4} \frac{3x+10}{x-2} \, dx$

 $= [3x + 16 \log(x - 2)]_3^4 = 3 + 16 \log 2 \quad Sq. \ unit.$

49. (b) Given $xy = a^2$ or $y = \frac{a^2}{x}$ (i)

There are two points on the curve (a, a), (-a, -a)

The equation of the line at (a,a) is,

$$y - a = \left(\frac{dy}{dx}\right)_{(a,a)} (x - a) = \left(\frac{-a^2}{x^2}\right)_{(a,a)} (x - a)$$

y-a = -(x-a) therefore, equation of the tangent at (a,a) is x + y = 2a. The interception of line x + y = 2a with *x*-axis is 2a and with *y*-axis is 2a.

$$\therefore \text{ Required area} = \frac{1}{2} \times 2a \times 2a = 2a^2$$

AREAS

PRACTICE EXERCISE

1.	The area bounded by $y = 5x - x^2 - 4$ and the x -axis											
	1) $\frac{9}{4}$ sq.units	2) $\frac{9}{8}$ sq.units	3) $\frac{3}{2}$ sq.units	4) $\frac{9}{2}$ sq.units								
2.	The area bounded by the curve $y = (x - 1)^2 - 25$ and the x-axis is											
	1) $\frac{200}{3}$ sq.units	2) $\frac{300}{4}$ sq.units	3) $\frac{400}{3}$ sq.units	4) $\frac{500}{3}$ sq.units								
3.	The area bounded by $x^2 = 4y$, $x = 4y - 2$											
	1) 9/8 sq.units	2) 9/4 sq.units	3) 9/16 sq.units	4) 3/2 sq.units								
4.	The area bounded by $y^2 = 4x$ and the line $y = 2x-4$											
	1) 18 sq.units	2) 9/2 sq.units	3) 9 sq.units	4) 3/2 sq.units								
5.	The area between the curves $y = 8 - x^2$ and $y = x^2$ in sq.units is											
	1) 32/3	2) 64/3	3) 16/3	4) 8/3								
6.	The area enclosed within the curve $ \mathbf{x} + \mathbf{y} = 1$ is											
	1) 4 sq.units	2) 1 sq.unit	3) 2 sq.unit	4) 8 sq.unit								
7.	Area of the region bounded by $y = 1 - x $ and the x-axis											
	1) 1/2	2) 1	3) 1/4	4) 2								
8.	Area of the region bounded by y = [x], the x-axis and the coordinates x = 1,											
	x = 2 is											
	1) 2	2) 1	3) 1/2	4) 1/3								
9.	The area bounded by	$\mathbf{y} = \mathbf{x}^3 - 6\mathbf{x}^2 + 8\mathbf{x} \mathbf{a}$	nd the x - axis									
	1) 8 sq.units	2) 4 sq.units	3) 16 sq.units	4) 4 sq.units								
10.	0. The whole area bounded by $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4$ in sq. units											
	1) 24π	2) 48π	3) 12π	4) 36π								
11.	The area of the region bounded by the curve y=sinx and the x-axis between $-\pi$ and											
	is											
	1) 8 sq.units	2) 4 sq.units	3) 2 sq.units	4) 1 sq.unit								

- 12. The area bounded by one of the ac of $y = \cos x$ and the x-axis is
 - 1) $\frac{1}{|a|}$ 2) $\frac{1}{a}$ 3) $\frac{2}{a}$ 4) $\frac{2}{|a|}$
- **13.** The area between the curves $y^2 = x/2$ and $3y^2 = x + 1$ in sq.units is 1) 4/3 2) 2/3 3) 8/3 4) 16/3

1) 4/3 2) 2/3 3) 8/3 4) 16/3 14. The area between the curves $y = \frac{x^2}{4}$ and $y = 3 - \frac{x^2}{2}$ in sq.units is

- - 1) 82) 16/33) 8/34) 12

15. The area of the region between the x-axis and the curve $f(x) = \frac{1}{4}x^2 + \frac{1}{4}x - \frac{1}{2}$ in [0, 2] is

1) $\frac{3}{4}$ sq.units 2) $\frac{3}{2}$ sq.units 3) $\frac{3}{8}$ sq.units 4) $\frac{3}{5}$ sq.units

16. The area bounded by the x - axis, part of the curve $y = 1 + 8/x^2$ and the ordinates at x=2 and x=4 is divided by the ordinate x = a into two equal parts. Then a =

- 1) $2\sqrt{2}$ 2) 2 3) 4 4) $\sqrt{3}$
- 17. The area bounded by the curve $ay^2 = x^3$, the x-axis and the ordinate x = a
 - 1) $\frac{8a^2}{3}$ sq.units 2) $\frac{2a^2}{5}$ sq.units 3) $\frac{4a^2}{5}$ sq.units 4) $\frac{3a^2}{5}$ sq.units
- 18. The whole area bounded by $a^2y^2 = a^2x^2 x^4$ is
 - 1) $\frac{2}{3}a^2$ sq.units 2) $\frac{8}{3}a^2$ sq.units 3) $\frac{4}{3}a^2$ sq.units 4) $\frac{5a^2}{3}$ sq.units
- **19.** The area bounded by $a^2y^2 = x^3(2a-x)$
 - 1) πa^2 sq.units 2) $\frac{\pi a^2}{2}$ sq.units 3) $2\pi a^2$ sq.units 4) $\frac{\pi a^2}{4}$ sq.units
- 20. The area bounded by the line y = x curve and $y = x^3$ is
 - 1) 1 sq. units 2) ¹/₂ sq. units 3) 1/3 sq. units 4) ¹/₄ sq. units
- 21. Area bounded by y = (x 1)(x 2)(x 3) between x = 0, x = 3 in sq. units is
- 1) $\frac{9}{4}$ 2) $\frac{11}{4}$ 3) $\frac{7}{4}$ 4) $\frac{3}{4}$

22. Area of the region bounded by $y = e^x$ and $y = e^{-x}$ and the line x = 1 in sq. units is

1) $e + \frac{1}{e}$ 2) $e - \frac{1}{e}$ 3) $e + \frac{1}{e} + 2$ 4) $e + \frac{1}{e} - 2$

23. The area bounded by $y = x^2$, y = [x + 1], $x \le 1$, and the y-axis in sq. units is

- 24. The area bounded by the curve xy=4 and x-axis the ordinates x=2, x=4 in sq. units is
 - 1) 4 log 2
 2) 2 log 2
 3) 8 log 2
 4) log 2

25. The area of the curve $x = a\cos^3 t$, $y = b\sin^3 t$ in sq. units is

1) $\frac{3\pi}{4}ab$ 2) $\frac{3\pi}{8}ab$ 3) $\frac{\pi}{4}ab$ 4) $\frac{\pi}{8}ab$

26. The area bounded by one arc of y = sin2x and x-axis in sq. units is

27. The area bounded by the curve y = sinx-cosx. X-axis and x = 0, $x = \pi/2$ in sq.units is

- 1) $\sqrt{3} 1$ 2) $2(\sqrt{3} 1)$ 3) $2(\sqrt{2} 1)$ 4) $2(\sqrt{2} + 1)$
- 28. Area of the region bounded by y = tanx, and tangent at x = $\frac{\pi}{4}$ and the x-axis in sq. units
 - 1) $\log \sqrt{2} \frac{1}{4}$ 2) $\log \sqrt{2} + \frac{\pi^2}{16}$ 3) $\log \sqrt{2} \frac{\pi}{4}$ 4) $\log \sqrt{2}$
- 29. The area bounded by y = cosx, y = x +1 and y = 0 in the second quadrant in sq. units is
 1) 1/2
 2) 3/2
 3) 1/4
 4) 5/4

30. The area between $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$ in sq. units is

- 1) $\frac{1}{2}ab$ 2) $\frac{\pi ab}{2}$ 3) $\frac{ab}{4}$ 4) $\frac{\pi ab}{4} \frac{ab}{2}$
- 31. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ in sq. units is

1)
$$\sqrt{3}$$
 2) $\frac{1}{\sqrt{3}}$ 3) $2\sqrt{3}$ 4) $2/\sqrt{3}$

32. The area of the region bounded by the curves y = |x-2|, x = 1, x = 3 and the x-axis is

 1) 1 sq. units
 2) 4 sq. units
 3) 3 sq. units
 4) 2 sq. units

AREAS

Key for Practice Exercise

1	2	3	4	5	6	7	8	9	10	
4	4	1	3	2	3	2	2	2	1	
11	12	13	14	15	16	17	18	19	20	
1	2	1	1	1	1	3	3	1	2	
21	22	23	24	25	26	27	28	29	30	
4	4	2	1	2	1	1	1	1	4	
31	32									-

3

1