Digital Electronics

Multiple Choice Questions

Answers option is in **Bold** letters

Chapter 1 : Number Systems & Codes

	1.	What is the binary equivalent of the decimal number 368					
		(A) 101110000	(B) 110110000	(C) 111010000	(D) 111100000		
	2.	The decimal equivale	ent of hex number 1A5	3 is	cO'		
		(A) 6793	(B) 6739	(C) 6973	(D) 6379		
	3.	$(734)_8 = ()_{16}$.:.0			
		(A) C 1 D	(B) D C 1	(C) 1 C D	(D) 1 D C		
	4.	The hexadecimal number 'A0' has the decimal value equivalent to					
		(A) 80	(B) 256	(C) 100	(D)160		
	5.	The 2's complement of the number 1101101 is					
		(A) 0101110	(B) 0111110	(C) 0110010	(D) 0010011		
	6.	68 is equal to signed binary number					
		(A) 10001000	(B) 00001000	(C) 10000000	(D) 11000000		
	7.	The decimal equivale	ent of Binary number 1	1010 is			
		(A)26	(B) 36	(C) 16	(D) 23		
	8.	The number 140 in o	ctal is equivalent to				
$\overline{\}$		$(\mathbf{A})(96)_{10}$	(B) (86) ₁₀	(C) (90) ₁₀	(D) none of these		
	9.	The result of adding l	nexadecimal number A	.6 to 3A is			
		(A) DD	(B) E0	(C) F0	(D) EF		
	10.	Converting $(153)_{10}$ to	base 8 yields which o	f the following results?	?		
		(A) 107	(B) 132	(C) 701	(D) 231		
	11.	Converting $(153)_8$ to	base 10 yields which o	of the following results	?		
		(A)107	(B) 132	(C) 701	(D) 231		

12. In 1's complement addition the carry generated at the last stage taken as end around carry is

- (A)Neglected (B) connected to the input of first stage
- (C) Stored in the sign bit (D) None of the above

13. In 2's complement addition the carry generated at the last stage taken as end around carry is

(D) None

- (A)Neglected (B) connected to the input of first stage
- (C) Stored in the sign bit (D) none of the above

14. The number 64_{10} is equivalent to the binary number:

(A) 1000000 (B) 1010000101 (C) 1011101001

15. The two's complement of an odd number always

•

(A)ends with a one (B) ends with a zero

- (C) starts with a zero (D) starts with a one.
- 16. The result of 1101110101₂-1111₂ is:
 - (A) 870_{10} (B) 678_{10} (C) 101110101_2 (D) 1101110111_2
- 17. Thetwo'sComplement of 101011001110 is
 - (A) 010100110110 (B) 101011001111 (C) 100100110001 (**D**) 010100110010
- 18. Conversion from decimal to hexadecimal requires repeated division by
 - (A) 16 (B) 4 (C) 10 (D) 8

19. The Gray code for decimal number 6 is equivalent to

- (A) 1100 (B) 1001 (C) 0101 (D) 0110
- 20. The code where all successive numbers differ from their preceding number by single bit is
 - (A) Binary code (B) BCD (C) Excess 3 (D) Gray
- 21. The excess 3 code of decimal number 26 is
 - (A) 0100 1001 (B) 01011001 (C) 1000 1001 (D) 01001101
- 22. A Hamming code 1010101 was received. What is the received data?
 - (A)1000 (B)1101 (C) 1010 (D) 0101

23. In 8421 BCD code,	the decimal number125 is	written as					
(A) 1111101	(B) 000100100101	(C) 7D	(D) None				
24. Binary Coded Decin	mal (BCD) numbers expres	ss each decimal digit a	s a				
(A) bit	(B) byte	(C) nibble	(D) None				
25. ASCII code is an alphanumeric code with							
(A) 4 bits	(B) 7 bits	(C) 6 bits	(D) 2 bits				
26. EBCDIC code is an	alphanumeric code with						
(A) 4 bits	(B) 7 bits	(C) 8 bits	(D) 2 bits				
27. The self-complement	nting code among the follo	wing is	\sim				
(A) 2421	(B) 8421	(C) 3322	(D) Gray code				
28. Which of the follow	ving is a non-weighted code	e?	×				
(A) 2421	(B) Excess-3	(C) 8421	(D) 5211				
29. Pick out the code fr	om the following which is	not a self-complement	ing code				
(A) 3321	(B) 8421	(C) 2421	(D) 642-3				
30. The sequential code	e among the following is						
(A) BCD	(B) Excess 3	(C) both	(D) Gray code				
NNN.							

Chapter 2: Boolean algebra & Logic families

1	ι.	The NAND gate output will be low if the two inputs are					
		(A) 00	(B) 01	(C) 10	(D) 11		
2	2.	The output of a logic gate is 1 when all its inputs are at logic 0. The gate is either					
		(A) a NAND o	or an EX-OR		(B) an OR or an EX-N	OR	
		(C) an AND o	or an EX-OR		(D) a NOR or an EX-N	VOR	
3	3.	DeMorgan's f	irst theorem sh	nows the equiva	lence of		
		(A) OR gate a	nd Exclusive (OR gate	(B) NOR gate and Bubbled AND gate		
		(C) NOR gate	and NAND ga	ate	(D) NAND gate and N	OT gate	
4	1.	In a positive logic system, logic state 1 corresponds to					
		(A) positive v	oltage	(B) higher vol	ltage level		
		(C) zero volta	ge level	(D) lower vol	tage level		
5	5.	The OR gate output will be low if the two inputs are					
		(A) 00	-	(B) 01	(C) 10	(D) 11	
6	5.	When an input signal A=11001 is applied to a NOT gate serially, its output signal is					
		(A) 00111	N.C	(B) 00110	(C) 10101	(D) 11001	
7	7.	A universal logic gate is one, which can be used to generate any logic function. Which					
		of the followin	ng is a universa	al logic gate?			
		(A) OR		(B) AND	(C) XOR	(D) NAND	
8	3.	An EX-OR gate gives a high output					
1		(A) if there ar	e odd number	of 1s	(B) if it has even number of 1s		
		(C) if the dec	cimal value of	digital word is o	even (D) for odd decimal value		
9).	Bubbled OR g	gate is equal to				
		a) AND		(B) NOR	(C) NAND	(D) None	
1	0.	An equivalent	representation	for the Boolea	n expression A' + 1 is		
		(A) A		(B) A'	(C)1	(D) 0	
1	1.	An equivalent	representation	for the Boolea	n expression A + A' is		

	(A) A	(B) A'		(C)1	(D) 0	
12. res	. Simplification of the sults?	e Boolean exp	pression AE	B + A(BC)' yield	ds which of following	
	(A) A	(B) B0	2	(C) B	(D) AB	
13.	Simplifying (AB)' + A	B to most bas	ic form yiel	ds which of the f	ollowing expressions?	
	(A) A'	(B) B'		(C) B	(D) (AB)'	
14 sy	4. The expression A' ymbols?	+ B' + C is	represented	by which of th	ne following canonical	
	$(\mathbf{A})\mathbf{M}_1$	(B) M	6	(C) m ₁	(D) m ₆	
15.	. A 2-input gate has inp	outs of A= 1 an	d B = 0; if t	the output is a 1,	the gate could be:	
	(A) an AND, ENOR of	or a NOR gate.	(B) an AN	D, XOR or an N	OR gate.	
	(C) a NAND, XOR or an OR gate. (D) a NAND, XNOR or an OR gate					
16.	. Which one of the foll	lowing is the o	dd one out?	0.0		
	(A) C + AB	(B) A.B + C	(C	(A.(B) + C)	(D) A.(C + (B)	
17.	. The least number of	gates that coul	ld be used	to build alogic ci	rcuit with the Boolean	
	expression $(A + B + ($	C)' would be:	2			
	(A) 1 (B) 2	(C) 3	(D) 4		
18.	Which of the following	g statements re	present Con	mmutative law?		
	(A) $A+(B+(C) = (A+(C))$	(B)+C	(B) A+B=	B+A		
	(C) $A(B+(C)=AB+AC)$	2	(D) None			
19.	Which of the following	g gates is know	vn as Equali	ity detector?		
1	(A) OR gate	(B) AND	(C) NOT	(D) Ex-NOF	R	
20.	. Which of the following	ng operations i	s not associ	ative?		
	(A) EX-OR	(B) AND	(C) NOR	(D) OR	
21.	. A literal is a					
	(A) primed variable		(B) primed	d or un primed va	riable	
	(C) un primed variable	e	(D) None			
22.	Which one of the follo	wing is De-Mo	organ's theo	orem?		
	(A) $(A+B)' = A'+B'$	(B) (A+B)' =	A'.B' (C) Both	(D) $(A.B)' = A'.B'$	

- 23. Minterm m₃₁ must be represented by at least how many literals?
 - (A) 6 (B) 31 (C) 3 (D) 5

24. Which of the following canonical expressions is generated by the NOR gate shown? $(A)F = m_0$ (B) $F = M_0$ $(C)F = m_7$ (D) $F = M_7$ 25. The number of rows in a truth table of n variables is (C) n^{3} (B) n **(D)** n^2 (A) 2n 26. The reduced SOP for the expression $F(A, B, C) = \sum m (0, 1, 5) + \sum d(4,7)$ is (A) B' (C) A' **(B)** 0 (D) 27. An Ex-OR gate can be used as a NOT gate if (B) one input is constant at logic 0 (A) one input is constant at logic 1 (D) None of the above (C) both of the above 28. The given max term is A+B+C, its equivalent binary representation is (A) 111 (B) 101 (C) 000 (D) 010 29. The logic gate that will produce a HIGH output whenever the two inputs are at opposite logic levels is the (B) Exclusive NOR (A) Exclusive OR (C) NOR (D) NAND 30. The basic logic device that always has a single input is the (A) OR gate (B) Comparator (C) AND gate **(D)** Inverter. 31. NAND gates are preferred over others because these (A) have lower fabrication area (B) can be used to make any gate (C) consume least electronic power (D) provide maximum density in a chip. 32. An AND gate will function as OR if (A) all the inputs to the gates are "1" (B) all the inputs are '0' (C) either of the inputs is "1" (**D**) all the inputs and outputs are complemented 33. Implementation of the Boolean expressionX = ABC + AB + AC' results in _____. (A) three AND gates, one OR gate (B) three AND gates, one NOT gate, one OR gate

(C) three AND gates, one NOT gate, three OR gates

(D) three AND gates, three OR gates

34. How many 2-input NOR gates does it take to produce a 2-input NAND gate?

(A) 1 (B) 2 (C) 3 (D) 4

35. A logic circuit with an output X = A'BC + AB' consists of _____.

(A) two AND gates, two OR gates, two inverters

(B) three AND gates, two OR gates, one inverter

(C) two AND gates, one OR gate, two inverters

(D) two AND gates, one OR gate

36. The output of an exclusive-NOR gate is 1. Which input combination is correct?

(A) A=1, B=0 (B) A=0, B=1 (C) A=0, B=0 (D) None

37. How many NOT gates are required to implement the Boolean expression, X = AB'C + A'BC?

(A) 1 (B) 2 (C) 4 (D) 5

38.Karnaugh map is used for the purpose of

(A) Reducing the electronic circuits used

(B) To map the given Boolean logic function

(C)To minimize the terms in a Boolean expression

(D) To maximize the terms of a given a Boolean expression

39.A reduction in the number of gates can be achieved by using the:

(A) identities or the commutative law. (B) the commutative and the associative laws.

(C) identities or the distributive law. (D) identities but none of the other laws.

40. Which of the following logic families has the shortest propagation delay?

(A) CMOS (B) ECL (C) TTL (D) HTL

41. Why must CMOS devices be handled with care?

(A)so they don't get dirty (B) because they break easily

(C) because they can be damaged by static electricity discharge (D) none

42. What is the major advan	tage of ECL logic?				
(A) very high speed	(B)	(B) wide range of operating voltage			
(C) very low cost	(D)	very high power			
43. What is the range of inva	alid TTL output volta	age?			
(A) 0.0–0.4 V	(B) 0.4–2.4 V	(C) 2.4–5.0 V	(D) 0.0–5.0 V		
44. What should be done wi	th unused inputs to a	TTL NAND gate?			
(A) let them float	(B) tie them LOW	(C)tie them HIGH	(D) none		
45. Why is a pull-up resistor needed for an open collector gate?					
(A) to provide V_{cc} for the IC (B) to provide ground for the IC					
(C) to provide the H	IGH voltage (D)	to provide the LOW vo	ltage		
46. The high input impedance	ce of MOSFETs:				
(A)allows faster swit	tching (B) reduces	s input current and powe	er dissipation		
(C)prevents dense pa	acking (D) creates	low-noise reactions			
47. The time needed for an o	output to change from	n the result of an input of	change is known as:		
(A) noise immunity	(B) fan-out (C)	propagation delay	(D) rise time		
48. What is the advantage of	f using low-power Sc	chottky (LS) over standa	ard TTL logic?		
(A)more power dissi	pation	(B)less power dissipation			
(C) cost is less		(D) cost is more			
49. Which family of devices	has the characteristi	c of preventing saturation	on during operation?		
(A) TTL	(B) MOS	(C) ECL	(D) IIL		
50 TTL contains ad	ctive pull up in the ci	rcuit.			
(A) Open collector	(B) Totem pole	(C) both	(D) none		
51. Fastest of the saturated h	ogic families is				
(A) ECL	(B) TTL	(C) CMOS	(D) none		

Chapter 3: Combinational Logic Circuits

1.	The number of contro	ol lines for a $8 - to - 1$	multipl	exer is	
	(A) 2	(B) 3	(C) 4		(D) 5
2.	The correction to be a	applied in BCD adder t	to the g	enerated sum is	
	(A) 0101	(B) 0110	(C) 11	01	(D) 1010
3.	The gates required to	build a half adder are			
	(A) EX-OR gate and	NOR gate	(B) E2	X-OR gate and (OR gate
	(C) EX-OR gate and	AND gate	(D) Fo	our NAND gates	
4.	The device which cha	anges from serial data	to paral	lel data is	$\overline{\mathbf{v}}$
	(A) Counter	(B) Multiplexer	(C) D	emultiplexer	(D) Flip-Flop
5.	A device which conve	erts BCD to Seven Seg	gment c	ode is called	
	(A) Encoder	(B) Decoder	(C) M	ultiplexer	(D) Demultiplexer
6.	How many select line	es will a 16 to 1 multip	lexer w	ill have	
	(A) 4	(B) 3	(C) 5		(D) 1
7.	When the set of input	data to an even parity	genera	tor is 0111, the	output will be
	(A) 1 (B) 0	(C) Unpredict	able	(D) Depends of	on the previous input
8.	A full adder logic circ	cuit will have			
	(A) Two inputs and o	ne output	(B) Tł	nree inputs and t	hree outputs
	(C) Two inputs and tw	wo outputs	(D)Th	ree inputs and t	wo outputs
9.	How many select line	es will a 32:1 multiplex	ker will	have	
\mathbf{N}	(A)5	(B) 8	(C) 9		(D) 11
10	. The number of select	lines <i>m</i> , required to se	lect one	e out of <i>n</i> input	lines is
	$(\mathbf{A})m = \log_2 n$	$(B) m = \log_2(n+1)$)	$(\mathbf{C})m = \ln n$	(D) $m = 2^n$
11.	. The minimum numbe	er of 2-input NAND ga	tes requ	uired to realize a	half-subtractor is
	(A) 3	(B) 4	(C) 6		(D) 2
12	. Which logic device is	called a distributor?			
	(A) multiplexer	(B)demultiple	exer	(C) encoder	(D) decoder

13. BCD subtraction	13. BCD subtraction is performed by using					
(A) 1's complem	nent	(B) 2's compl	(B) 2's complement			
(C) 9's complem	nent	(D) 5's comp	(D) 5's complement			
14. In which of the f	following adder circ	uits is the carry ripple	delay eliminat	ed?		
(A) half-adder	(B) full-adder	(C) parallel adder	(D) carry loo	k ahead adder		
15. How many full-a	adders are required t	o construct an <i>m</i> -bit p	arallel adder?			
(A) $m/2$	(B) <i>m</i> – 1	(C) <i>m</i>	(D) <i>m</i> + 1	0		
16. What device will required to drive a L	ll perform the conve ED read out.	ersion of a 4 bit BCD	code to sever	a segment code		
(A) Decoder	(B) BCD to D	ecimal decoder (C) N	Iultiplexer	(D) None		
17. A circuit which	gates one input of da	ata line to one of 2 ⁿ ou	tput lines is de	fined as a		
(A) MUX	(B) DeMUX	(C) Encoder	(D) D	Decoder		
18. A magnitude cor	18. A magnitude comparator 7485 outputs depend on cascading inputs only when					
(A) comparing in	nputs are not equal	(B) comparing inputs	s are equal			
(C) Both (A) & ((B)	(D) None				
19. A carry look ahead a	adder is frequently u	used for addition, becau	use it			
(A) is faster	(B) is more ac	ccurate (C) uses fewe	er gates (D) co	osts less		
20. A combinational circ	cuit is one in which	the output depends on	the			
(A) input combin	nation at that time	(B) previous	(B) previous output and input			
(C) present output	ut and the previous of	output (D) None				
21. The number of full a	adders required to ac	ld two 4 – bit numbers	in a serial add	ler		
(A) 1	(B) 4	(C) 2	(D) 5			
22.3 - to - 8 line deco	der is also called					
(A) one of 16 de	coder (B) bin	nary to octal converter	(C) Both	(D) None		
23.Multiplexer can be	implemented with					
(A) OR – AND	(B) AND – O	R (C) NAND –	OR (D) N	IOR – AND		

24. How many outputs are on a BCD decoder?

(A) 4 (B) 16 (C) 8 (**D**) 10

25. What is the function of an enable input on a multiplexer chip?

(A) to apply V_{cc}

(B) to connect ground

(**C**)to active the entire chip

(D) to active one half of the chip

Chapter 4: Sequential Logic Circuits

- A mod 5 synchronous counter is designed using JK flip-flops. The number of counts it will skip is
 - (A) 2 (B) 3 (C) 5 (D) 10
- A 4-bit synchronous counter uses flip-flops with propagation delay time of 25 ns each. The maximum possible time required for change of state will be

	(A) 25 ns	(B) 50 ns	(C) 75 ns	(D) 100 ns
3.	In a 4 bit ripple count	er, for every input cloo	ck pulse	
	(A) all the flip-flops g	get clocked simultaneo	usly	G
	(B) only one flip-flop	gets clocked at a time		\mathcal{A}
	(C) two of the flip-flo	ps get clocked at a tim	ie	J *
	(D) all the above state	ements are false	2	
4.	A universal shift regis	ster		
	a) accepts serial inpu	it O	(B) accepts parall	el input
	(C) gives serial and	parallel outputs	(D) is capable of	all of the above
5.	The maximum number	er that can be obtained	by a ripple counter	r using five flip-flops is
	a) 32	(B) 15	(C) 7 (D) 31
6.	The number of flip-fl	ops required for a mod	-12 Johnson count	er is
	a) 4	(B) 6	(C) 15	(D) 24
7.	The output frequency	of a mod 12 counter is	s 6 KHz. Its input f	frequency is
	a) 6 KHz	(B) 500 Hz	(C) 24 KHz	(D) 72 KHz
8.	The minimum numbe	r of flip-flops required	for a mod-12 cour	nter is
	(A) 3	(B) 4	(C)6	(D) 12
9.	A bidirectional shift r	egister works as		
	(A) left shift	(B) right shift	(C) both	(D) none
10.	To generate a sequence	ce of length S, the con	dition to identify t	he number of flip-flops is
	$(\mathbf{A})S \le 2^N - 1$	$(B)S \ge 2^N - 1$	$(C)S > 2^N + 1$	(D) None

11. The following sequential circuit is self-starting

	(A) Ring counter	(B) Johnson d	counter	(C) Both	(D)			
None								
12	2. The characteristic equation	of JK flip-flop i	S					
	(A) $Q_{n+1} = JQ_n + KQ_n(\mathbf{B})$	$Q_{n+1} = JQ'_n +$	$K'Q_n$ (C) Q_{n+1}	$_{+1} = J'Q'_{n} -$	+ $K'Q_n$ (D) None			
13	13. Johnson counter is also known as							
	(A) Twisted ring counter	(B) Switch ta	il ring counter	(C) both	(D)			
none								
14	A synchronous counter will	have						
	(A) high propagation delay	(B) low propa	agation delay	(C) both	(D) none			
15	5. The number of flip-flops re	quired for a mo	d-12 Ring count	er is	*			
	(A) 4 (B) 1	2	(C) 15	(D) 24			
16	5. The minimum number of fl	ip-flops required	d for a mod-8 co	ounter is				
	(A) 3 (B)	4	(C) 6	(]	D) 12			
17	. Determine the output frequ	ency for a freq	uency division	circuit that	contains 12 flip-			
flops	with an input clock frequency	/ of 20.48 MHz.						
	(A) 10.24 kHz (B)5	kHz	(C) 30.24 kHz	(D) 15 kHz			
18	. Which statement BEST des	cribes the operat	ion of a negative	e-edge-trig	gered D flip-flop?			
	(A) The logic level at the D	input is transfe	rred to Q on NG	T of <i>CLK</i> .				
	(B) The Q output is ALWA	YS identical to	the CLK input if	f the D inpu	ut is HIGH.			
	(C) The <i>Q</i> output is ALWA	YS identical to	the <i>D</i> input whe	n CLK = P	GT.			
. ٢	(D) The Q output is ALWA	YS identical to	the D input.					
19. H	ow is a <i>J-K</i> flip-flop made to	toggle?						
	(A) $J = 0, K = 0$ (B) J	V = 1, K = 0	(C) $J = 0, K =$	1 (D	J = 1, K = 1			
20. W	hich of the following is corre	ect for a gated D	flip-flop?					
	(A) The output toggles if or	ne of the inputs	s held HIGH.					
	(B) Only one of the inputs of	can be HIGH at	a time.					
	(C) The output complement	t follows the inp	ut when enabled	l.				

(**D**) Q output follows the input D when the enable is HIGH.

21. A J-K flip-flop is	in a "no change" cond	lition when							
(A)J = 1, K = 1	(B) $J = 1, K = 0$	(C) $J = 0, K = 1$	(D) $J = 0, K = 0$						
22. What is the signif	ficance of the S and R	terminals in the SR flip	-flop?						
(A) There is no know	vn significance in thei	r designations.							
(B) The <i>S</i> represents	"Set," and R represen	its "Reset"							
(C) The letters were	(C) The letters were chosen in honor of Jack Kilby, the inventory of the integrated circuit.								
(D) All of the other l	(D) All of the other letters of the alphabet are already in use.								
23. If both inputs of an S-R flip-flop are low, what will happen when the clock goes HIGH?									
(A) An invalid state	will exist.	(B) No change will c	occur in the output.						
(C) The output will t	oggle.	(D) The output will	reset.						
24. How many flip-flops are required to make a MOD-32 binary counter?									
(A) 3	(B) 45	(C) 5	(D) 6						
25. When two count	ers are cascaded, the	overall MOD number	is equal to the of						
their individual MOE) numbers.								
(A) product	(B) sum	(C) log	(D) reciprocal						
26. A MOD-12 and	a MOD-10 counter a	re cascaded. Determin	e the output frequency if the						
input clock frequency	y is 60 MHz.								
(A)5000 kHz	(B)1,500 kHz	(C) 6 MHz	(D) 500 KHz						
27. To operate correc	tly, starting a ring cou	inter requires:							
(A)clearing on	ne flip-flop and preset	ting all the others.							
(B) clearing a	ll the flip-flops.	(C) presetting all the	flip-flops.						
(D)presetting	one flip-flop and clea	ring all the others.							
28. Which of the follo	owing is an invalid ou	tput state for an 8421 H	3CD counter?						
(A) 1111	(B) 0000	(C) 0010	(D) 0001						
29. A 4-bit up/down	binary counter is in th	e DOWN mode and in	the 1100 state. To what state						
does the counter go o	on the next clock pulse	?							

(A) 1011 (B) 0000 (C) 1111 (D) 1101

30. Synchronous (parallel) counters eliminate the delay problems encountered with asynchronous (ripple) counters because the:

(A)input clock pulses are applied only to the first and last stages.

(B)input clock pulses are applied only to the last stage.

(C)input clock pulses are applied simultaneously to each stage.

(D)input clock pulses are not used to activate any of the counter stages.

31. Why can a synchronous counter operate at a higher frequency than a ripple counter?

(A)The flip-flops change one after the other.

(**B**) The flip-flops change at the same time.

(C)A synchronous counter cannot operate at higher frequencies.

(D)A ripple counter is faster.

32. Which of the following is a type of shift register counter?

(A) Decade	(B) Johnson	(C) Binary	(D) BCD
------------	----------------------	------------	---------

33. Hazards may occur in ______ sequential circuits.

(A) asynchronous (B) synchronous (C) both (D)none

34. An asynchronous sequential circuit consisting of a NAND latch and OR-AND combinational circuit is

(A) hazard free (B) fault free (C) both (D) none

35. Essential hazard causes _____ of an asynchronous sequential circuit.

(A) Malfunctioning (B) better working (C) both (D) none

36. In asynchronous sequential circuit, critical race must be _____.

(A) Neglected (B) considered (C) avoided (D) none

37. A minimum number of _____ changes must occur in the output corresponding to dynamic hazard.

```
(A) three (B) four (C) five (D) one
```

38. The number of inputs which can change simultaneously in a fundamental mode asynchronous circuit is

(A) two	(B) one	(C) three	(D) four	
39. Race condition may	v exist insequer	ntial circuits.		
(A)Synchronou	s (B) Asynchrono	ous (C) both	h (D) none	
40.A minimum of hazard to occur.	paths must exist be	etween an input varia	ble and output for dynamic	2
(A) three	(B) one	(C) two	(D) four	

Chapter 5: Memory Devices & PLDs

1. The difference between a PLA and a PAL is:									
(A) The PLA has a programmable OR plane and a programmable AND plane, while the PAL only has a programmable AND plane.									
(B) The PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane.									
(C) The PAL has more possible product terms than the PLA.									
(D) PALs and PLAs are the same thing.									
2. PALs tend to execute logic.									
(A) SAP	(B) SOP	(C) PLA	(D) POS						
3. What does a dot mean when placed on a PLD circuit diagram?									
(A) A point that is programmable (B) A point that cannot change									
(C) An intersection of logic blocks (D) An input or output point									
4. Which of the following is not a programmable device?									
(A) EPROM	(B) FLASH	(C) FPGA	(D) None						
5. Inside any memory device, the external address lines are directly connected with									
(A) decoder	(B) data buffer	(C)memory	(D) multiplexer						
6. With m address lines, ho	ow many memory lo	ocations can be addressed d	lirectly?						
(A) m (B) 2	(A) m (B) $2m$ (C) $4m$ (D) 2^m								
7. The storage cell of DRA	M is made of								
(A) capacitor	(B) resistor	(C) BJT	(D) none						
8. The maximum addressable memory space with 12 address lines are									
(A) 12 K	(B) 36 K	(C) 1.2 K	(D) none						
9. ROM is a semi conductor memory device which is									
(A) volatile	(B) non volatile	(C) both	(D) none						
10. RAM is a semi conductor memory device which is									
(A) volatile	(B) non volatile	(C) both	(D) none						

11. Information is stored in	form in memory chip	s.						
(A) octal	(B) binary	(C) BCD	(D) none					
12. The maximum number of bytes that can be stored in a memory of size 1024 x 8 is								
(A) 2048	(B) 512	(C) 1024	(D) 8					
13. The data rate of a synchronous SRAM operating at 200 MHz is								
(A) 200 MHz	(B) 400 MHz	(C) 100 MHz	(D) None					
14. An EPROM is erased by	у							
(A) UV light	(B) sun light	(C) both	(D) none					
15.The number of address lines required in a memory of 128 K x 8 is								
(A) 17	(B) 128	(C) 8	(D) 16					
16. For designing a digital logic circuit of 32 variables, PLAs with 16 inputs and 8								
outputs are required.		-;0						
(A) Two	(B) Eight	(C) Nine	(D) One					
17. Input buffers in PLA and PAL devices have outputs.								
(A) Inverting	(B) Non inverting	(C) both	(D) none					
18. A PLA is comprised of programmable arrays.								
(A) OR	(B) Ex-OR	(C) AND and OR	(D) None					
19. The basic storage cell of a static RAM is								
(A) latch	(B) transistor	(C) capacitor	(D) none					
Nn								

Chapter 6

ASM Charts

1.	An ASM chart can be represented as a								
	(A) state equation	on	(B) state diag	ram	(C) both		(D) none		
2.	In an ASM char	rt, Mealy type	of outputs						
	(A) can be repre	esented in the	decision box		(B) cannot b	e represer	nted		
	(C) can be repre	esented by cor	ditional outpu	ıt box	(D) none				
3.	. A synchronous sequential circuit can be represented using								
	(A) state equation	on (B) stat	e diagram	(C) AS	M chart	(D) all	of the above		
4.	An ASM chart	can be implem	ented using			\sim			
	(A)flip-flops an	nd multiplexers	s (B) de	multiple	xers (C) a	dders	(D) none		
5.	A decision box (A) does not ha	in an ASM ch we exit paths	art (B) ha	s only o	ne exit path	~			
6.	(C) has two exi An ASM chart ((A) outputs men	t paths of the Moore 1 ntioned inside	(D) ha nodel contains state box	s one en s (B) une	try and one e	exit path			
	(C) both	introlled inside	state box	(D) und (D) not	ne	utput box			
7.	A row in the sta	ate table is the	same as	in an AS	SM chart.				
0	(A)state box	(B) dec	ision box	(C) cor	ditional box		(D) none		
8.	(A) synchronou (C) finite state 1	is the same as is sequential ci machine	rcuit	(B) clo (D) all	cked sequent	ial circuit			
9.	A state box in a	an ASM chart							
	(A) is not inclue	ded in any AS	M block						
~	(B) may be shar	red by two AS	M blocks						
	(C) is included	in only one A	SM block						
•	(D) may be incl	luded in any n	umber of ASN	I blocks					
10.	ASM charts rep	presents							
	(A) gates ((B) multiplexe	rs (C) sy	nchrono	us sequential	circuits	(D) none		

