BINOMIAL THEOREM

Binomial Theorem for integral index:

If n is a positive integer then $(\mathrm{x}+\mathrm{a})^{\mathrm{n}}={ }^{n} C_{0} \mathrm{x}^{\mathrm{n}}+{ }^{n} C_{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{a}+{ }^{n} C_{2} \mathrm{x}^{\mathrm{n}-2} \mathrm{a}^{2}+\ldots .+{ }^{n} C_{r} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$

$$
+\ldots .+{ }^{n} C_{n} \mathrm{a}^{\mathrm{n}}
$$

* The expansion of $(x+a)^{n}$ contains $(n+1)$ terms.
* In the expansion, the sum of the powers of x and a in each term is equal to n.
* In the expansion, the coefficients ${ }^{n} C_{0},{ }^{n} C_{1} .{ }^{n} C_{2} \ldots{ }^{n} C_{n}$ are called binomial coefficients and these are simply denoted by $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2} \ldots . \mathrm{C}_{\mathrm{n}}$.

$$
{ }^{n} C_{0}=1,{ }^{n} C_{n}=1,{ }^{n} C_{1}=\mathrm{n},{ }^{n} C_{r}={ }^{n} C_{n-r}
$$

* In the expansion, $(\mathrm{r}+1)^{\text {th }}$ term is called the general term. It is denoted by

$$
\mathrm{T}_{\mathrm{r}+1} \text {. Thus } \mathrm{T}_{\mathrm{r}+1}={ }^{n} C_{r} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}
$$

* $\quad(\mathrm{x}+\mathrm{a})^{\mathrm{n}}=\sum_{r=0}^{n}{ }^{n} C_{r} \mathrm{X}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}}$.
$*(\mathrm{x}-\mathrm{a})^{\mathrm{n}}=\sum_{r=0}^{n}{ }^{n} C_{r} \mathrm{x}^{\mathrm{n}-\mathrm{r}}(-\mathrm{a})^{\mathrm{r}}=\sum_{r=0}^{n}(-1)^{\mathrm{n}} C_{r} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \quad={ }^{n} C_{0} \mathrm{x}^{\mathrm{n}}-{ }^{n} C_{1} \mathrm{X}^{\mathrm{n}-1} \mathrm{a}+{ }^{n} C_{2} \mathrm{X}^{\mathrm{n}-2} \mathrm{a}^{2}-\ldots+(-1)^{\mathrm{n}}{ }^{n} C_{n} \mathrm{a}^{\mathrm{n}}$
* $\quad(1+\mathrm{x})^{\mathrm{n}}=\sum_{r=0}^{n}{ }^{n} C_{r} \mathrm{x}^{\mathrm{r}}={ }^{n} C_{0}+{ }^{n} C_{1} \mathrm{X}+\ldots+{ }^{n} C_{n} \mathrm{X}^{\mathrm{n}}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{X}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots \mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$

Middle term(s) in the expansion of $(x+a)^{n}$.
i) If n is even, then $\left(\frac{n}{2}+1\right)$ th term is the middle term
ii) If n is odd, then $\frac{n+1}{2}^{\text {th }}$ and $\frac{n+3}{2}^{\text {th }}$ terms are the middle terms.

* \quad Numerically greatest term in the expansion of $(1+x)^{n}$:
i) If $\frac{(n+1)|x|}{|x|+1}=\mathrm{p}$, a integer then $\mathrm{p}^{\text {th }}$ and $(\mathrm{p}+1)^{\text {th }}$ terms are the numerically greatest terms in the expansion of $(1+x)^{n}$.
ii) If $\frac{(n+1)|x|}{|x|+1}=\mathrm{p}+\mathrm{F}$ where p is a positive integer and $0<\mathrm{F}<1$ then $(\mathrm{p}+1)$ th term is the numerically greatest term in the expansion of $(1+x)^{n}$.
* Binomial Theorem for rational index: If n is a rational number and

$$
|x|<1, \text { then } 1+\mathrm{nx}+\frac{n(n-1)}{2!} \mathrm{x}^{2}+\frac{n(n-1)(n-2)}{3!} \mathrm{x}^{3}+\ldots=(1+\mathrm{x})^{\mathrm{n}}
$$

If $|x|<1$ then
i) $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots+(-1)^{r} x^{r}+\ldots$
ii) $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots+x^{r}+\ldots$
iii) $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots+(-1)^{r}(r+1) x^{r} \quad+\ldots$.
iv) $(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots+(r+1) x^{r}+\ldots$
v) $(1-\mathrm{x})^{-\mathrm{n}}=1-\mathrm{nx}+\frac{n(n-1)}{2!} \mathrm{x}^{2}-\frac{n(n-1)(n-2)}{3!} \mathrm{x}^{3} \quad+\ldots$.
vi) $(1-\mathrm{x})^{-\mathrm{n}}=1+\mathrm{nx}+\frac{n(n-1)}{2!} \mathrm{x}^{2}+\frac{n(n-1)(n-2)}{3!} \mathrm{x}^{3} \quad+\ldots$.

* If $|x|<1$ and n is a positive integer, then
i) $(1-\mathrm{x})^{-\mathrm{n}}=1+{ }^{n} C_{1} \mathrm{X}+{ }^{(n+1)} C_{2} \mathrm{X}^{2}+{ }^{(n+2)} C_{3} \mathrm{X}^{3}+\ldots$.
ii) $(1+\mathrm{x})^{-\mathrm{n}}=1-{ }^{n} C_{1} \mathrm{x}+{ }^{(n+1)} C_{2} \mathrm{x}^{2}-{ }^{(n+2)} C_{3} \mathrm{X}^{3}+\ldots$.
* When $|x|<1$,
* When $|x|<1$,
$(1+\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=1-\frac{p}{1!}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2!}\left(\frac{x}{q}\right)^{2}-\frac{p(p+q)(p+2 q)}{3!}\left(\frac{x}{q}\right)^{3}+\ldots \ldots \infty$

Binomial Theorem:

Let \boldsymbol{n} be \boldsymbol{a} positive integer and \boldsymbol{x}, a be real numbers,
then $(x+a)^{n}={ }^{n} C_{0} \cdot x^{n} a^{0}+{ }^{n} C_{1} \cdot x^{n-1} a^{1}+{ }^{n} C_{2} \cdot x^{n-2} a^{2}+\ldots+{ }^{n} C_{r} \cdot x^{n-r} a^{r}+\ldots \ldots+{ }^{n} C_{n} \cdot x^{0} a^{n}$

Proof:

We prove this theorem by using the principle of mathematical induction (on n).

When $n=1,(x+a)^{n}=(x+a)^{1}=x+a={ }^{1} C_{0} x^{1} a^{0}+{ }^{1} C_{1} x^{0} a^{1}$

Thus the theorem is true for $n=1$

Assume that the theorem is true for $n=k \geq 1$ (where k is a positive integer). That is
$(x+a)^{k}={ }^{k} C_{0} \cdot x^{k} \cdot a^{0}+{ }^{k} C_{1} \cdot x^{k-1} \cdot a^{1}+{ }^{k} C_{2} \cdot x^{k-2} \cdot a^{2}+\ldots+{ }^{k} C_{r} \cdot x^{k-r} \cdot a^{r}+\ldots+{ }^{k} C_{k} \cdot x^{0} \cdot a^{k}$

Now we prove that the theorem is true when $n=k+1$ also

$$
\begin{aligned}
& (x+a)^{k+1}=(x+a)(x+a)^{k} \\
& =(x+a)\left({ }^{k} C_{0} \cdot x^{k} \cdot a^{0}+{ }^{k} C_{1} \cdot x^{k-1} \cdot a^{1}+{ }^{k} C_{2} \cdot x^{k-2} \cdot a^{2}+\ldots . .+{ }^{k} C_{r} \cdot x^{k-r} \cdot a^{r}+\ldots . .+{ }^{k} C_{k} \cdot x^{0} \cdot a^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
&={ }^{k} C_{0} \cdot x^{k+1} \cdot a^{0}+{ }^{k} C_{1} \cdot x^{k} \cdot a^{1}+{ }^{k} C_{2} \cdot x^{k-1} \cdot a^{2}+\ldots+{ }^{k} C_{r} \cdot x^{k-r+1} \cdot a^{r}+\ldots+{ }^{k} C_{k} \cdot x^{1} \cdot a^{k}+{ }^{k} C_{0} \cdot x^{k} \cdot a^{1}+{ }^{k} C_{1} \cdot x^{k-1} \cdot a^{2}+\ldots \\
&+{ }^{k} C_{r-1} \cdot x^{k-r+1} \cdot a^{r}+\ldots+{ }^{k} C_{k-1} \cdot x^{1} \cdot a^{k}+{ }^{k} C_{k} \cdot x^{0} \cdot a^{k+1}
\end{aligned}
$$

$$
={ }^{k} C_{0} \cdot x^{k+1} \cdot a^{0}+\left({ }^{k} C_{1}+{ }^{k} C_{0}\right) \cdot x^{k} \cdot a^{1}+\left({ }^{k} C_{2}+{ }^{k} C_{1}\right) \cdot x^{k-1} \cdot a^{2}+\ldots .+\left({ }^{k} C_{r}+{ }^{k} C_{r-1}\right) \cdot x^{k-r+1} \cdot a^{r}+\ldots+\left({ }^{k} C_{k}+{ }^{k} C_{k-1}\right) \cdot x^{1} \cdot a^{k}
$$

$$
+{ }^{k} C_{k} \cdot x^{0} \cdot a^{k+1}
$$

Since ${ }^{k} C_{0}=1={ }^{k+1} C_{0},{ }^{k} C_{r}+{ }^{k} C_{r-1}={ }^{(k+1)} C_{r}$ for $1 \leq r \leq k,{ }^{k} C_{k}=1={ }^{(k+1)} C_{(k+1)}$

$$
\begin{aligned}
& (x+a)^{k+1} \\
& ={ }^{(k+1)} C_{0} \cdot x^{k+1} \cdot a^{0}+{ }^{(k+1)} C_{1} \cdot x^{k} \cdot a^{1}+{ }^{(k+1)} C_{2} \cdot x^{k-1} \cdot a^{2}+\ldots . .+{ }^{(k+1)} C_{r} \cdot x^{k-r+1} \cdot a^{r}+\ldots \cdot+ \\
& { }^{(k+1)} C_{k} \cdot x^{1} \cdot a^{k}+{ }^{k+1} C_{k+1} \cdot x^{0} \cdot a^{k+1}
\end{aligned}
$$

Therefore the theorem is true for $n=k+1$

Hence, by mathematical induction, it follows that the theorem is true of all positive integer n

Very Short Answer Questions

1. Expand the following using binomial theorem.

(i) $(4 x+5 y)^{7}$
(ii) $\left(\frac{2}{3} x+\frac{7}{4} y\right)^{5}$
(iii) $\left(\frac{2 p}{5}-\frac{3 p}{7}\right)^{6}$
(iv) $\left(3+x-x^{2}\right)^{4}$
i) $(4 x+5 y)^{7}$

Sol. $(4 x+5 y)^{7}=$

$$
\begin{aligned}
& { }^{7} \mathrm{C}_{0}(4 \mathrm{x})^{7}(5 \mathrm{y})^{0}+{ }^{7} \mathrm{C}_{1}(4 \mathrm{x})^{6}(5 \mathrm{y})^{1}+{ }^{7} \mathrm{C}_{2}(4 \mathrm{x})^{5}(5 \mathrm{y})^{2}+{ }^{7} \mathrm{C}_{3}(4 \mathrm{x})^{4}(5 \mathrm{y})^{3}+{ }^{7} \mathrm{C}_{4}(4 \mathrm{x})^{3}(5 \mathrm{y})^{4}+{ }^{7} \mathrm{C}_{5}(4 \mathrm{x})^{2}(5 \mathrm{y})^{5}+ \\
& { }^{7} \mathrm{C}_{6}(4 \mathrm{x})^{1}(5 \mathrm{y})^{6}+{ }^{7} \mathrm{C}_{7}(4 \mathrm{x})^{0}+(5 \mathrm{y})^{7} \\
& \quad=\sum_{\mathrm{r}=0}^{7}{ }^{7} \mathrm{C}_{\mathrm{r}}(4 \mathrm{x})^{7-\mathrm{r}}(5 \mathrm{y})^{\mathrm{r}}
\end{aligned}
$$

ii) $\left(\frac{2}{3} x+\frac{7}{4} y\right)^{5}$

Sol. $\left(\frac{2}{3} x+\frac{7}{4} y\right)^{5}=$

$$
{ }^{5} C_{0}\left(\frac{2}{3} x\right)^{5}+{ }^{5} C_{1}\left(\frac{2}{3} x\right)^{4}\left(\frac{7}{4} y\right)+{ }^{5} C_{2}\left(\frac{2}{3} x\right)^{3}\left(\frac{7}{4} y\right)^{2}+{ }^{5} C_{3}\left(\frac{2}{3} x\right)^{2}\left(\frac{7}{4} y\right)^{3}+{ }^{5} C_{4}\left(\frac{2}{3} x\right)^{1}\left(\frac{7}{4} y\right)^{4}+{ }^{5} C_{5}\left(\frac{7}{4} y\right)^{5}
$$

$$
=\sum_{r=0}^{5}{ }^{5} C_{r}\left(\frac{2}{3} x\right)^{5-r}\left(\frac{7}{4} y\right)^{r}
$$

iii) $\left(\frac{2 p}{5}-\frac{3 p}{7}\right)^{6}$

$$
=\sum_{r=0}^{6}(-1)^{r} C_{r}\left(\frac{2 p}{5}\right)^{6-r}\left(\frac{3 q}{7}\right)^{r}
$$

iv) $\left(3+x-x^{2}\right)^{4}$

$$
81+108 x-54 x^{2}-96 x^{3}+19 x^{4}+32 x^{5}-6 x^{6}-4 x^{7}+x^{8}
$$

2. Write down and simplify
i) 6 $^{\text {th }} \operatorname{term}$ in $\left(\frac{2 x}{3}+\frac{3 y}{2}\right)^{9}$
ii) $7^{\text {th }}$ term in $(3 x-4 y)^{10}$
iii) $10^{\text {th }}$ term in $\left(\frac{3 p}{4}-5 q\right)^{14}$
iv) $\mathbf{r}^{\text {th }}$ term in $\left(\frac{3 a}{5}+\frac{5 b}{7}\right)^{8}(1 \leq r \leq 9)$
i) $6^{\text {th }}$ term in $\left(\frac{2 x}{3}+\frac{3 y}{2}\right)^{9}$

Sol. $6^{\text {th }}$ term in $\left(\frac{2 x}{3}+\frac{3 y}{2}\right)^{9}$

The general term in $\left(\frac{2 x}{3}+\frac{3 y}{2}\right)^{9}$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}\left(\frac{2 \mathrm{x}}{3}\right)^{9-\mathrm{r}}\left(\frac{3 \mathrm{y}}{2}\right)^{\mathrm{r}}
$$

Putr $=5$
$\mathrm{T}_{6}={ }^{9} \mathrm{C}_{5}\left(\frac{2 \mathrm{x}}{3}\right)^{4}\left(\frac{3 \mathrm{y}}{2}\right)^{5}={ }^{9} \mathrm{C}_{5}\left(\frac{2}{3}\right)^{4}\left(\frac{3}{\mathrm{x}}\right)^{5} \mathrm{x}^{4} \mathrm{y}^{5}$
$=\frac{9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4} \frac{\left(2^{4}\right)}{3^{4}} \frac{3^{5}}{2^{5}} x^{4} y^{5}=189 x^{4} y^{5}$
ii) Ans. 280(12) ${ }^{5} \mathrm{x}^{4} \mathrm{y}^{6}$
iii) Ans. $\frac{-(2002) 3^{5} \cdot 5^{9}}{4^{5}} \mathrm{p}^{5} \mathrm{q}^{9}$
iv) Ans. ${ }^{8} \mathrm{C}_{(\mathrm{r}-1)}\left(\frac{3 \mathrm{a}}{5}\right)^{9-\mathrm{r}}\left(\frac{5 \mathrm{~b}}{7}\right)^{\mathrm{r}-1} ; 1 \leq \mathrm{r} \leq 9$

3. Find the number of terms in the expansion of

(i) $\left(\frac{3 a}{4}+\frac{b}{2}\right)^{9}$
(ii) $(3 p+4 q)^{14}$
(iii) $(2 x+3 y+z)^{7}$
i) $\left(\frac{3 a}{4}+\frac{b}{2}\right)^{9}$

Sol.Number of terms in $(x+a)^{n}$ is $(n+1)$, where n is a positive integer.
Hence number of terms in $\left(\frac{3 a}{4}+\frac{b}{2}\right)^{9}$ are:

$$
9+1=10
$$

iii) $(2 x+3 y+z)^{7}$

Sol.Number of terms in $(a+b+c)^{n}$ are $\frac{(n+1)(n+2)}{2}$, where n is a positive integer.
Hence number of terms in $(2 x+3 y+z)^{7}$ are: $\frac{(7+1)(7+2)}{2}=\frac{8 \times 9}{2}=36$
4. Find the range of \mathbf{x} for which the binomial expansions of the following are valid.
(i) $(2+3 x)^{-2 / 3}$
(ii) $(5+x)^{3 / 2}$
(iii) $(7+3 x)^{-5}$
(iv) $\left(4-\frac{x}{3}\right)^{-1 / 2}$

Sol.(i) $(2+3 \mathrm{x})^{-2 / 3}=$

$$
\left[2\left(1+\frac{3}{2} x\right)\right]^{-2 / 3}=2^{-2 / 3}\left(1+\frac{3}{2} x\right)^{-2 / 3}
$$

\therefore The binomial expansion of $(2+3 x)^{-2 / 3}$ is valid when $\left|\frac{3}{2} x\right|<1$.
i.e. $|x|<\frac{2}{3} \quad$ i.e. $x \in\left(-\frac{2}{3}, \frac{2}{3}\right)$
ii) $(5+x)^{3 / 2}=\left[5\left(1+\frac{x}{5}\right)\right]^{3 / 2}=5^{3 / 2}\left(1+\frac{x}{5}\right)^{3 / 2}$
\therefore The binomial expansion of $(5+\mathrm{x})^{3 / 2}$ is valid when $\left|\frac{\mathrm{x}}{5}\right|<1$.
i.e. $|x|<5$
i.e. $x \in(-5,5)$
iii) $(7+3 x)^{-5}=7\left[\left(1+\frac{3}{7} x\right)\right]^{-5}=7^{-5}\left(1+\frac{3}{7} x\right)^{-5}$
$(7+3 x)^{-5}$ is valid when $\left|\frac{3 x}{7}\right|<1$
$\Rightarrow|x|<\frac{7}{3} \Rightarrow x \in\left(\frac{-7}{3}, \frac{7}{3}\right)$
iv) $\left(4-\frac{x}{3}\right)^{-1 / 2}=\left[4\left(1-\frac{x}{12}\right)\right]^{-1 / 2}$
$\left(4-\frac{x}{3}\right)^{-1 / 2}$ is valid when $\left|\frac{-x}{12}\right|<1$
$\Rightarrow|\mathrm{x}|<12 \Rightarrow \mathrm{x} \in(-12,12)$
5. Find the (i) $6^{\text {th }}$ term of $\left(1+\frac{x}{2}\right)^{-5}$.

Sol. $\mathrm{T}_{\mathrm{r}+1}$ in $(1+\mathrm{x})^{-\mathrm{n}}=(-1)^{\mathrm{r}} \frac{(\mathrm{n})(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{r}-1)}{1 \cdot 2 \cdot 3 \cdot \ldots \mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}$
Put $\mathrm{r}=5, \mathrm{n}=5, \mathrm{x}$ by $\mathrm{x} / 2$

$$
\begin{aligned}
& \mathrm{T}_{6}=(-1)^{5} \frac{(5)(5+1)(5+2)(5+3)(5+4)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot\left(\frac{\mathrm{x}}{2}\right)^{5} \\
& =\frac{-5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \cdot\left(\frac{1}{2}\right)^{5} \cdot \mathrm{x}^{5}=\frac{-63}{16} \cdot \mathrm{x}^{5}
\end{aligned}
$$

ii) $7^{\text {th }}$ term of $\left(1-\frac{x^{2}}{3}\right)^{-4}$

Sol. $\mathrm{T}_{\mathrm{r}+1}$ in $(1-\mathrm{x})^{-\mathrm{n}}=$

$$
=\frac{(\mathrm{n})(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{r}-1)}{1 \cdot 2 \cdot 3 \cdot \ldots \mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}
$$

Put $r=6, n=4, x$ by $\frac{x^{2}}{3}$
Then $7^{\text {th }}$ term in $\left(1-\frac{\mathrm{x}^{2}}{3}\right)^{-4}$ is
$=\frac{(4)(4+1)(4+2)(4+3)(4+4)(4+5)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}\left(\frac{-x^{2}}{3}\right)^{6}$
$=\frac{4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \cdot \frac{x^{12}}{3^{6}}=\frac{28}{243} \cdot x^{12}$
iii) $10^{\text {th }}$ term of $(3-4 x)^{-2 / 3}$.

Sol. $(3-4 x)^{-2 / 3}=\left[3\left(1-\frac{4}{3} x\right)\right]^{-2 / 3}=(3)^{-2 / 3}\left(1-\frac{4}{3} x\right)^{-2 / 3}$
First find $10^{\text {th }}$ term of $\left(1-\frac{4}{3} \mathrm{x}\right)^{-2 / 3}$
The general term of $(1-x)^{-p / q}$ is $T_{r+1}=\frac{(p)(p+q)(p+2 q)+\ldots+[p+(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}$
Here $\mathrm{p}=2, \mathrm{q}=3, \mathrm{r}=9$
$\frac{x}{q}=\left(\frac{(4 / 3) x}{3}\right)\left(\frac{4}{9} x\right)$
$\mathrm{T}_{10}=\frac{(2)(2+3)(2+6) \ldots[2+(9-1) 3]}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}\left(\frac{4}{9} \mathrm{x}\right)^{9}$
$=\frac{2 \cdot 5 \cdot 8 \cdot \ldots(26)}{9!}\left(\frac{4 x}{9}\right)^{9}$
$10^{\text {th }}$ term in $(3-4 x)^{-2 / 3}=3^{-2 / 3}\left[\frac{2 \cdot 5 \cdot 8 \cdot \ldots(26)}{9!}\left(\frac{4 x}{9}\right)^{9}\right]$
iv) $5^{\text {th }}$ term of $\left(7+\frac{8 y}{3}\right)^{7 / 4}$

Sol. $\left(7+\frac{8 y}{3}\right)^{7 / 4}=\left[7\left(1+\frac{8 y}{21}\right)\right]^{7 / 4}$
General term of $(1+x)^{p / q}$
$T_{r+1}=\frac{(p)(p-q)(p-2 q)+\ldots+[p-(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}$
Here $\mathrm{p}=7, \mathrm{q}=4, \mathrm{r}=4, \frac{\mathrm{x}}{\mathrm{q}}=\frac{(8 \mathrm{y} / 21)}{4}=\frac{2 \mathrm{y}}{21}$
$\therefore \mathrm{T}_{5}$ of $\left(1+\frac{8 \mathrm{y}}{21}\right)^{7 / 4}$ is
$=\frac{(7)(7-4)(7-2 \times 4)(7-3 \times 4)}{1 \times 2 \times 3 \times 4}\left(\frac{2 y}{21}\right)^{4}$
$=\frac{7(3)(-1)(-5)}{1 \times 2 \times 3 \times 4} \cdot \frac{2^{4} y^{4}}{(21)^{4}}=70\left(\frac{y}{21}\right)^{4}$
$\therefore 5^{\text {th }}$ term of $\left(7+\frac{8 y}{3}\right)^{7 / 4}$ is $7^{7 / 4}(70)\left(\frac{y}{21}\right)^{4}$
$\therefore \mathrm{T}_{5}$ in $\left(7+\frac{8 \mathrm{y}}{3}\right)^{7 / 4}=7^{7 / 4}(70)\left(\frac{\mathrm{y}}{21}\right)^{4}$

6. Write down the first 3 terms in the expansion of

(i) $(3+5 x)^{-7 / 3}$,
(ii) $(1+4 x)^{-4}$,
(iii) $(8-5 x)^{2 / 3}$,
(iv) $(2-7 x)^{-3 / 4}$.

Sol.i) $(3+5 \mathbf{x})^{-7 / 3}=\left[3\left(1+\frac{5}{3} x\right)\right]^{-7 / 3}=(3)^{-7 / 3}\left(1+\frac{5}{3} x\right)^{-7 / 3}$

Now we have

$$
(1+x)^{-p / q}=1-\frac{p}{11}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots
$$

Here $\mathrm{p}=7, \mathrm{q}=3, \frac{\mathrm{x}}{\mathrm{q}}=\frac{(5 / 3) \mathrm{x}}{3}=\frac{5}{9} \mathrm{x}$
$\therefore(3+5 \mathrm{x})^{-7 / 3}=$
$(3)^{-7 / 3}\left[1-\frac{7}{1!}\left(\frac{5}{9} x\right)+\frac{(7)(10)}{1 \cdot 2}\left(\frac{5}{9} x\right)^{2}+\ldots\right]$
$=3^{-7 / 3}\left[1-\frac{35}{9} x+\frac{875}{81} x^{2}-\ldots ..\right]$
\therefore The first 3 terms of $(3+5 x)^{-7 / 3}$ are

$$
3^{-7 / 3}, \frac{-3^{7 / 3} \cdot 35 x}{9}, 3^{-7 / 3} \frac{875}{81} x^{2}
$$

ii) $(1+4 x)^{-4}$ Try your self
iii) $(8-5 x)^{2 / 3}$

Sol. $\left[8\left(1-\frac{5}{8} x\right)^{2 / 3}\right]=\left(2^{3}\right)^{2 / 3}\left[1-\frac{5}{8} x\right]^{2 / 3}$

$$
=4\left[\left(1-\frac{5 x}{8}\right)^{2 / 3}\right]
$$

We know that

$$
(1-X)^{p / q}=1-p\left(\frac{X}{q}\right)+\frac{(p)(p-q)}{1 \cdot 2}\left(\frac{X}{q}\right)^{2}-\ldots
$$

$$
\text { Here } X=\frac{5 x}{8}, p=2, q=3, \frac{X}{q}=\frac{(5 x / 8)}{3}=\frac{5 x}{24}
$$

$\therefore(8-5 x)^{2 / 3}=$

$$
\begin{aligned}
& 4\left[1-2\left(\frac{5 x}{24}\right)+\frac{(2)(2-3)}{1 \cdot 2}\left(\frac{5 x}{24}\right)^{2}-\ldots\right] \\
= & 4\left[1-\frac{5 x}{12}-\left(\frac{5 x}{24}\right)^{2}+\ldots\right]
\end{aligned}
$$

\therefore The first 3 terms of $(8-5 \mathrm{x})^{2 / 3}$ are

$$
4, \frac{-5 x}{3}, \frac{-25}{144} x^{2}
$$

iv) $(2-7 x)^{-3 / 4}$ Try your self
7. Find the general term $(\mathrm{r}+1)^{\text {th }}$ term in the expansion of
(i) $(4+5 x)^{-3 / 2}$
(ii) $\left(1-\frac{5 x}{3}\right)^{-3}$
(iii) $\left(1+\frac{4 x}{5}\right)^{5 / 2}$
(iv) $\left(3-\frac{5 x}{4}\right)^{-1 / 2}$
i) $(4+5 x)^{-3 / 2}$

Sol.Write $(4+5 x)^{-3 / 2}=\left[4\left(1+\frac{5}{4} x\right)\right]^{-3 / 2}$

$$
=\left(2^{2}\right)^{-3 / 2}\left[\left(1+\frac{5}{4} x\right)^{-3 / 2}\right]=\frac{1}{8}\left[\left(1+\frac{5}{4} x\right)^{-3 / 2}\right]
$$

General term of $(1+x)^{-p / q}$ is

$$
\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}}
$$

$$
\frac{(p)(p+q)(p+2 q)+\ldots+[p+(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}
$$

Here $\mathrm{p}=3, \mathrm{q}=2, \frac{\mathrm{X}}{\mathrm{p}}=\frac{\left(\frac{5 \mathrm{x}}{4}\right)}{2}=\frac{5 \mathrm{x}}{8}$
$\therefore \mathrm{T}_{\mathrm{r}+1}$ in $(4+5 \mathrm{x})^{-3 / 2}$ is

$$
(-1)^{\mathrm{r}} \frac{1}{8}\left[\frac{(3)(3+2)(3+2 \times 2) \ldots[3+(\mathrm{r}-1) 2]}{\mathrm{r}!}\right]\left(\frac{5 \mathrm{x}}{8}\right)^{\mathrm{r}}
$$

$$
=(-1)^{\mathrm{r}} \frac{3 \cdot 5 \cdot 7 \ldots \ldots . .(2 \mathrm{r}+1)}{\mathrm{r}!} \frac{(5 \mathrm{x})^{\mathrm{r}}}{(8)^{\mathrm{r}+1}}
$$

ii) $\left(1-\frac{5 x}{3}\right)^{-3}$

Sol.General term of $(1-x)^{-n}$ is

$$
\mathrm{T}_{\mathrm{r}+1}=\frac{(\mathrm{n})(\mathrm{n}+1)(\mathrm{n}+2) \ldots(\mathrm{n}+\mathrm{r}-1)}{1 \cdot 2 \cdot 3 \cdot \ldots \mathrm{r}} \cdot \mathrm{X}^{\mathrm{r}}
$$

iii) $\left(1+\frac{4 x}{5}\right)^{5 / 2}$

Sol.General term of $(1+X)^{p / q}$ is $T_{r+1}=\frac{(p)(p-q)(p-2 q)+\ldots+[p-(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}$
iv) $\left(3-\frac{5 x}{4}\right)^{-1 / 2}$

Sol.Write $\left(3-\frac{5 x}{4}\right)^{-1 / 2}=\left[3\left(1-\frac{5 x}{12}\right)^{-1 / 2}\right]$

$$
=3^{-1 / 2}\left[\left(1-\frac{5 x}{12}\right)^{-1 / 2}\right]
$$

General term of $(1-X)^{-p / q}$ is $T_{r+1}=\frac{(p)(p-q)(p-2 q)+\ldots+[p-(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}$

8. Find the largest binomial coefficients in the expansion of

(i) $(1+x)^{19}$
(ii) $(1+x)^{24}$

Sol.i) Here $\mathrm{n}=19$ is an odd integer. Hence the largest binomial coefficients are

$$
\begin{aligned}
& { }^{\mathrm{n}} \mathrm{C}_{\left(\frac{\mathrm{n}-1}{2}\right)} \text { and }{ }^{\mathrm{n}} \mathrm{C}_{\left(\frac{\mathrm{n}+1}{2}\right)} \\
& \text { i.e. } \quad{ }^{19} \mathrm{C}_{9} \text { and }{ }^{19} \mathrm{C}_{10}\left({ }^{19} \mathrm{C}_{9}={ }^{19} \mathrm{C}_{10}\right)
\end{aligned}
$$

ii) Here $\mathrm{n}=24$ is an even integer. Hence the largest binomial coefficient is

$$
{ }^{\mathrm{n}} \mathrm{C}_{\left(\frac{\mathrm{n}}{2}\right)} \text { i.e. }{ }^{24} \mathrm{C}_{12}
$$

9. If ${ }^{22} C_{r}$ is the largest binomial coefficient in the expansion of $(1+x)^{22}$, find the value of ${ }^{13} C_{r}$.

Sol.Here $\mathrm{n}=22$ is an even integer. There is only one largest binomial coefficient and it is
${ }^{\mathrm{n}} \mathrm{C}_{(\mathrm{n} / 2)}={ }^{22} \mathrm{C}_{11}={ }^{22} \mathrm{C}_{\mathrm{r}} \Rightarrow \mathrm{r}=11$
$\therefore{ }^{13} \mathrm{C}_{\mathrm{r}}={ }^{13} \mathrm{C}_{11}={ }^{13} \mathrm{C}_{2}=\frac{13 \times 12}{1 \times 2}=78$
10. Find the $7^{\text {th }}$ term in the expansion of $\left(\frac{4}{x^{3}}+\frac{x^{2}}{2}\right)^{14}$.

Sol.The general term in the expansion of $(X+a)^{n}$ is

$$
T_{r+1}={ }^{n} C_{r}(X)^{n-r} a^{r}
$$

Put $X=\frac{4}{x^{3}}, a=\frac{x^{2}}{2}, n=14, r=6$

$$
\begin{aligned}
& \mathrm{T}_{7} \text { in }\left(\frac{4}{\mathrm{x}^{3}}+\frac{\mathrm{x}^{2}}{2}\right)^{14} \text { is }={ }^{14} \mathrm{C}_{6}\left(\frac{4}{\mathrm{x}^{3}}\right)^{14-6}\left(\frac{\mathrm{x}^{2}}{2}\right)^{6} \\
& ={ }^{14} \mathrm{C}_{6} \frac{4^{8}}{2^{6}} \cdot \frac{\mathrm{x}^{12}}{\mathrm{x}^{24}}={ }^{14} \mathrm{C}_{6} \cdot 4^{5} \cdot \frac{1}{\mathrm{x}^{12}}
\end{aligned}
$$

11. Find the $3^{\text {rd }}$ term from the end in the expansion of $\left(x^{-2 / 3}-\frac{3}{x^{2}}\right)^{8}$.

Sol.Comparing with $(X+a)^{n}$, we get

$$
\mathrm{X}=\mathrm{x}^{-2 / 3}, \mathrm{a}=\frac{-3}{\mathrm{x}^{2}}, \mathrm{n}=8
$$

In the given expansion $\left(x^{-2 / 3}-\frac{3}{x^{2}}\right)^{8}$, we have $n+1=8+1=9$ terms.
Hence the $3^{\text {rd }}$ term from the end is $7^{\text {th }}$ term from the beginning.

$$
\begin{aligned}
\therefore & \mathrm{T}_{7}={ }^{\mathrm{n}} \mathrm{C}_{6}(\mathrm{X})^{\mathrm{n}-6}\left(\mathrm{a}^{6}\right) \\
& ={ }^{8} \mathrm{C}_{6}\left(\mathrm{x}^{-2 / 3}\right)^{8-6}\left(\frac{-3}{\mathrm{x}^{2}}\right)^{6}={ }^{8} \mathrm{C}_{6} \mathrm{x}^{-4 / 3} \cdot \frac{3^{6}}{\mathrm{x}^{12}} \\
& =\frac{8 \times 7}{1 \times 2} \cdot 3^{6} \cdot \mathrm{x}^{-4 / 3-12}=28 \cdot 3^{6} \cdot \mathrm{x}^{-40 / 3}
\end{aligned}
$$

12. Find the coefficient of $\mathbf{x}^{\mathbf{9}}$ and $\mathbf{x}^{\mathbf{1 0}}$ in the expansion of $\left(2 \mathrm{x}^{2}-\frac{1}{\mathrm{x}}\right)^{20}$.

Sol.If we write $X=2 x^{2}$ and $a=-\frac{1}{x}$, then the general term in the expansion of

$$
\begin{aligned}
& \left(2 x^{2}-\frac{1}{x}\right)^{20}=(X+a)^{20} \text { is } \\
& T_{r+1}={ }^{n} C_{r} X^{n-r} a^{r}={ }^{20} C_{r}\left(2 x^{2}\right)^{20-r}\left(-\frac{1}{x}\right)^{r} \\
& =(-1)^{r}{ }^{20} C_{r} 2^{20-r} x^{40-3 r}
\end{aligned}
$$

Now x^{9} coefficient is $x^{40-3 r}$
$\Rightarrow \mathrm{x}^{9}=40-3 \mathrm{r}=9 \Rightarrow 3 \mathrm{r}=31 \Rightarrow \mathrm{r}=\frac{31}{3}$

Since $r=31 / 3$ which is impossible since r must be a positive integer. Thus there is no term containing x^{9} in the expansion of the given expression. In other words the coefficient of x^{9} is 0 .

Now to find the coefficient of x^{10}.
Put $40-3 r=10 \Rightarrow r=10$
$\mathrm{T}_{10+1}=(-1)^{10}{ }^{20} \mathrm{C}_{10} 2^{20-10} \mathrm{x} \mathrm{x}^{4-30}={ }^{20} \mathrm{C}_{10} 2^{10} \mathrm{x}^{10}$
\therefore The coefficient of x^{10} is ${ }^{20} \mathrm{C}_{10} 2^{10}$.
13. Find the term independent of x (that is the constant term) in the expansion of $\left(\frac{\sqrt{x}}{3}+\frac{3}{2 \mathrm{x}^{2}}\right)^{10}$.

Sol. $\mathrm{T}_{\mathrm{r}+1}={ }^{10} \mathrm{C}_{\mathrm{r}}\left(\sqrt{\frac{\mathrm{x}}{3}}\right)^{10-\mathrm{r}}\left(\frac{3}{2 \mathrm{x}^{2}}\right)^{\mathrm{r}}=\frac{{ }^{10} \mathrm{C}_{\mathrm{r}} \cdot 3^{\frac{3 \mathrm{r}-10}{2}}}{2^{\mathrm{r}}} \cdot \mathrm{x}^{\frac{10-5 \mathrm{~F}}{2}}$
To find the term independent of x , put

$$
\begin{aligned}
& \frac{10-5 r}{2}=10 \Rightarrow r=2 \\
\therefore & \mathrm{~T}_{3}=\frac{{ }^{10} \mathrm{C}_{2} 3^{\frac{6-10}{2}}}{2^{2}} \cdot x^{\frac{10-10}{2}}=\frac{{ }^{10} \mathrm{C}_{2} 3^{-2} \mathrm{x}^{0}}{2^{2}}=\frac{5}{4}
\end{aligned}
$$

14. Find the set \mathbf{E} of \mathbf{x} for which the binomial expansions for the following are valid
(i) $(3-4 x)^{3 / 4}$
(ii) $(2+5 x)^{-1 / 2}$
(iii) $(7-4 x)^{-5}$
(iv) $(4+9 x)^{-2 / 3}$
(v) $(a+b x)^{r}$

Sol.i) $(3-4 x)^{3 / 4}=3^{3 / 4}\left(1-\frac{4 x}{3}\right)^{3 / 4}$
The binomial expansion of $(3-4 x)^{3 / 4}$ is valid, when $\left|\frac{4 x}{3}\right|<1$.
i.e. $|x|<\frac{3}{4}$
i.e. $\mathrm{E}=\left(\frac{-3}{4}, \frac{3}{4}\right)$
ii) $(2+5 x)^{-1 / 2}=2^{-1 / 2}\left(1+\frac{5 x}{2}\right)^{-1 / 2}$

The binomial expansion of $(2+5 x)^{-1 / 2}$ is valid when $\left|\frac{5 x}{3}\right|<1 \Rightarrow|x|<\frac{2}{5}$
i.e. $\mathrm{E}=\left(\frac{-2}{5}, \frac{2}{5}\right)$
iii) $(7-4 x)^{-5}=7^{-5}\left(1-\frac{4 x}{7}\right)^{-5}$

The binomial expansion of $(7-4 x)^{-5}$ is valid when $\left|\frac{4 x}{7}\right|<1 \Rightarrow|x|<\frac{7}{4}$
i.e. $E=\left(\frac{-7}{4}, \frac{7}{4}\right)$
iv) $(4+9 x)^{-2 / 3}=4^{-2 / 3}\left(1+\frac{9 x}{4}\right)^{-2 / 3}$

The binomial expansion of $(4+9 x)^{-2 / 3}$ is valid when $\left|\frac{9 x}{4}\right|<1 \Rightarrow|x|<\frac{4}{9}$
$\Rightarrow \mathrm{x} \in\left(\frac{-4}{9}, \frac{4}{9}\right)$
i.e. $\mathrm{E}=\left(\frac{-4}{9}, \frac{4}{9}\right)$
v) For any non zero reals a and b, the set of x for which the binomial expansion of $(a+b x)^{r}$ is valid when $\mathrm{r} \notin \mathrm{Z}^{+} \cup\{0\}$, is $\left(-\frac{|\mathrm{a}|}{|\mathrm{b}|}, \frac{|\mathrm{a}|}{|\mathrm{b}|}\right)$.

15. Find the

i) $\mathbf{9}^{\text {th }}$ term of $\left(2+\frac{x}{3}\right)^{-5}$
ii) $10^{\text {th }}$ term of $\left(1-\frac{3 x}{4}\right)^{4 / 5}$
iii) $8^{\text {th }}$ term of $\left(1-\frac{5 x}{2}\right)^{-3 / 5}$
iv) b $^{\text {th }}$ term of $\left(3+\frac{2 x}{3}\right)^{3 / 2}$
i) $\quad 9^{\text {th }}$ term of $\left(2+\frac{x}{3}\right)^{-5}$

Sol. $\left(2+\frac{x}{3}\right)^{-5}=\left[2\left(1+\frac{x}{6}\right)\right]^{-5}=2^{-5}\left(1+\frac{x}{6}\right)^{-5} \ldots(1)$

Compare $\left(1+\frac{\mathrm{x}}{6}\right)^{-5}$ with $(1+\mathrm{x})^{-\mathrm{n}}$,
we get $X=x / 6, n=5$
The general term in the binomial expansion of $(1+x)^{-n}$ is

$$
\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{n}(\mathrm{n}+\mathrm{r}-1)} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{\mathrm{r}}
$$

Put $\mathrm{r}=8$

$$
\mathrm{T}_{9}=(-1)^{8(5+8-1)} \mathrm{C}_{8} \cdot \mathrm{x}^{8}={ }^{12} \mathrm{C}_{8}\left(\frac{\mathrm{x}}{6}\right)^{8}
$$

From (1), the $9^{\text {th }}$ term of $\left(2+\frac{x}{3}\right)^{-5}$ is

$$
=2^{-513} C_{8}\left(\frac{x}{6}\right)=\frac{495}{32} \cdot\left(\frac{x}{6}\right)^{8}
$$

ii) $10^{\text {th }}$ term of $\left(1-\frac{3 x}{4}\right)^{4 / 5}$

Sol.Compare $\left(1-\frac{3 x}{4}\right)^{4 / 5}$ with $(1-x)^{p / q}$, we get $x=\frac{3 x}{4}, p=4, q=5, \frac{x}{q}=\frac{3 x}{20}$.
The general term in $(1-x)^{p / q}$ is

$$
T_{r+1}=\frac{(-1)^{4}[p(p-q)(p-2 q) \ldots p-(r-1) q]}{r!}\left(\frac{x}{q}\right)^{r}
$$

Put $\mathrm{r}=9$

$$
\mathrm{T}_{10}=\frac{(-1)^{9}[4(4-5)(4-10) \ldots(4-40)]}{9!}\left(\frac{3 \mathrm{x}}{20}\right)^{9}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
(-10(-6)(-11)(-16)(-21) \\
\\
= \\
9! \\
= \\
=\frac{-4 \times 1 \times 6 \times 11 \times 16 \times 21 \times 26 \times 31 \times 36}{20}(-31)(-36) \\
9! \\
20
\end{array}\right)^{9}
\end{aligned}
$$

iii) $\mathbf{8}^{\text {th }}$ term of $\left(1-\frac{5 x}{2}\right)^{-3 / 5}$

Sol.Compare $\left(1-\frac{5 x}{2}\right)^{-3 / 5}$ with $(1-x)^{-p / q}$, we get $X=\frac{5 x}{2}, p=3, q=5, \frac{x}{q}=\frac{\frac{5 x}{2}}{5}=\frac{x}{2}$.
The general term in $(1-x)^{-p / q}$ is

$$
T_{r+1}=\frac{[p(p+q)(p+2 q) \ldots p+(r-1) q]}{r!}\left(\frac{x}{q}\right)^{r}
$$

Put $\mathrm{r}=7$

$$
\begin{aligned}
\mathrm{T}_{8} & =\frac{(3)(3+5)(3+2 \times 5) \ldots .[3+(7-1) 5]}{7!}\left(\frac{\mathrm{x}}{2}\right)^{7} \\
& =\frac{(3 \cdot 8 \cdot 13 \cdot 18 \cdot 23 \cdot 28 \cdot 33)}{7!}\left(\frac{\mathrm{x}}{2}\right)^{7}
\end{aligned}
$$

iv) $6^{\text {th }}$ term of $\left(3+\frac{2 x}{3}\right)^{3 / 2}$

Sol. $\left(3+\frac{2 \mathrm{x}}{3}\right)^{3 / 2}=\left[3\left(1+\frac{2 \mathrm{x}}{9}\right)\right]^{3 / 2}$

$$
=3^{3 / 2}\left(1+\frac{2 x}{9}\right)^{3 / 2} \ldots(1)
$$

Compare $\left(1+\frac{2 \mathrm{x}}{9}\right)^{3 / 2}$ with $(1+\mathrm{x})^{\mathrm{p} / \mathrm{q}}$, we get

$$
X=\frac{2 x}{9}, p=3, q=2 \Rightarrow \frac{x}{q}=\frac{(2 x / 9)}{2}=\frac{x}{9}
$$

The general term of $(1+x)^{p / q}$ is

$$
T_{r+1}=\frac{[p(p-q)(p-2 q) \ldots p-(r-1) q]}{r!}\left(\frac{x}{q}\right)^{r}
$$

Put $\mathrm{r}=5$, we get

$$
\begin{aligned}
\mathrm{T}_{6}= & \frac{(3)(3-2)(3-2 \times 2)(3-3 \times 2)(3-4 \times 2)}{5!}\left(\frac{\mathrm{x}}{9}\right)^{5} \\
& =\frac{(3)(1)(-1)(-3)(-5)}{5!}\left(\frac{\mathrm{x}}{9}\right)^{5}=-\frac{3}{8}\left(\frac{\mathrm{x}}{9}\right)^{5}
\end{aligned}
$$

From (1), the $6^{\text {th }}$ term of $\left(3+\frac{2 x}{3}\right)^{3 / 2}$ is $=3^{3 / 2}\left(-\frac{3}{8}\right)\left(\frac{x}{9}\right)^{5}=-\frac{9 \sqrt{3}}{8}\left(\frac{x}{9}\right)^{5}$
16. Write the first 3 terms in the expansion of
(i) $\left(1+\frac{\mathrm{x}}{2}\right)^{-5}$,
(ii) $(3+4 x)^{-2 / 3}$,
(iii) $(4-5 x)^{-1 / 2}$
i) $\left(1+\frac{x}{2}\right)^{-5}$

Sol.We have

$$
\begin{aligned}
(1+X)^{-n} & =1-n X+\frac{(n)(n+1)}{1 \cdot 2}(X)^{2}+\ldots \\
\therefore\left(1+\frac{x}{2}\right)^{5} & =1-\frac{5 x}{2}+\frac{(5)(6)}{1 \cdot 2}\left(\frac{x}{2}\right)^{2}-\ldots \\
& =1-\frac{5 x}{2}+\frac{15}{4} x^{2}-\ldots
\end{aligned}
$$

\therefore The first terms in the expansion of

$$
\left(1+\frac{x}{2}\right)^{-5} \text { are } 1, \frac{-5 x}{2}, \frac{15}{4} x^{2}
$$

ii) $(3+4 x)^{-2 / 3}$

Sol. $(3+4 x)^{-2 / 3}=\left[3\left(1+\frac{4}{3}\right)\right]^{-2 / 3}$

$$
\begin{equation*}
=3^{-2 / 3}\left(1+\frac{4}{3} x\right)^{-2 / 3} \tag{1}
\end{equation*}
$$

We have
$(1+X)^{-p / q}=1-\frac{p}{1} \frac{x}{q}+\frac{(p)(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}-\ldots$
$\therefore\left(1+\frac{4 \mathrm{x}}{3}\right)^{-2 / 3}=1-\frac{2}{1} \cdot \frac{4 \mathrm{x}}{9}+\frac{2 \cdot 5}{1 \cdot 2}\left(\frac{4 \mathrm{x}}{9}\right)^{2}-\ldots$
\therefore From (1), the first 3 terms of $(3+4 x)^{-2 / 3}$ is

$$
3^{-2 / 3}\left\{1-\frac{8 x}{9}+\frac{80}{81} x^{2}-\ldots . .\right\}
$$

i.e. $3^{-2 / 3},-3^{-2 / 3-2}(8 x), 3^{-2 / 3-4}\left(80 x^{2}\right)$

$$
\Rightarrow 3^{-2 / 3}-3^{-8 / 3}(8 x), 3^{-14 / 3}\left(80 x^{2}\right)
$$

iv) $(4-5 x)^{-1 / 2}$

Sol. $(4-5 x)^{-1 / 2}=\left[4\left(1-\frac{5}{4} x\right)\right]^{-1 / 2}$

$$
\begin{equation*}
=4^{-1 / 2}\left(1-\frac{5}{4} x\right)^{-1 / 2} \tag{1}
\end{equation*}
$$

We have

$$
(1-X)^{-p / q}=1+\frac{p}{1} \frac{x}{q}+\frac{(p)(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots
$$

Here $p=1, q=2, X=\frac{5}{4} x \Rightarrow \frac{x}{q}=\frac{5}{8} x$

$$
\begin{gathered}
\therefore\left(1-\frac{5}{4} x\right)^{-1 / 2}=1+\frac{1}{1}\left(\frac{5 x}{8}\right)+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{5 x}{8}\right)^{2}+\ldots \\
=1+\frac{5 x}{8}+\frac{75}{128} x^{2}+\ldots
\end{gathered}
$$

From (1),
$(4-5 x)^{-1 / 2}=2^{-1 / 2}\left(1+\frac{5 x}{8}+\frac{75}{128} x^{2}+\ldots\right)$
\therefore The first 3 terms of $(4-5 x)^{-1 / 2}$ are:

$$
\frac{1}{2}, \frac{5 x}{16}, \frac{75}{256} x^{2}
$$

17. Write the general term of
(i) $\left(3+\frac{x}{2}\right)^{-2 / 3}$
(ii) $\left(2+\frac{3 x}{4}\right)^{4 / 5}$
(iii) $(1-4 x)^{-3}$
(iv) $(2-3 x)^{-1 / 3}$

Sol.i) $\left(3+\frac{x}{2}\right)^{-2 / 3}$

$$
\begin{gather*}
\left(3+\frac{x}{2}\right)^{-2 / 3}=\left[3\left(1+\frac{x}{6}\right)\right]^{-2 / 3} \\
=3^{-2 / 3}\left(1+\frac{x}{6}\right)^{-2 / 3} \tag{1}
\end{gather*}
$$

The general term of $(1+x)^{-p / q}$

$$
\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}}
$$

$$
\left\{\frac{(\mathrm{p})(\mathrm{p}+\mathrm{q})(\mathrm{p}+2 \mathrm{q}) \ldots(\mathrm{p})+(\mathrm{r}-1) \mathrm{q}}{(\mathrm{r})!}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)^{\mathrm{r}}\right\}
$$

Here $\mathrm{p}=2, \mathrm{q}=3, X=\frac{\mathrm{x}}{6} \Rightarrow \frac{\mathrm{x}}{\mathrm{q}}=\frac{\left(\frac{\mathrm{x}}{6}\right)}{3}=\frac{\mathrm{x}}{18}$
$\therefore \mathrm{T}_{\mathrm{r}+1}$ of $\left(3+\frac{\mathrm{x}}{2}\right)^{-2 / 3}$ is

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}=(3)^{-2 / 3}(-1)^{\mathrm{r}} \\
& \quad\left[\frac{(2)(2+3)(2+2 \cdot 3)+\ldots[2+(\mathrm{r}-1) 3]}{\mathrm{r}!}\left(\frac{\mathrm{x}}{18}\right)^{\mathrm{r}}\right]
\end{aligned}
$$

$$
\frac{1}{\sqrt{27}}\left\{\frac{(-1)^{\mathrm{r}}(2)(5)(8) \ldots(3 \mathrm{r}-1)}{\mathrm{r}!}\left(\frac{\mathrm{x}}{18}\right)^{\mathrm{r}}\right\}
$$

ii) $\left(2+\frac{3 x}{4}\right)^{4 / 5}$

Sol. $\left(2+\frac{3 x}{4}\right)^{4 / 5}=\left[2\left(1+\frac{3 x}{8}\right)\right]^{4 / 5}$

$$
\begin{equation*}
=2^{4 / 5}\left(1+\frac{3 x}{8}\right)^{4 / 5} \tag{1}
\end{equation*}
$$

$\mathrm{T}_{\mathrm{r}+1}$ of $(1+\mathrm{X})^{\mathrm{p} / \mathrm{q}}$ is

$$
T_{r+1}=\frac{[p(p-q)(p-2 q) \ldots(p-(r-1) q)]}{r!}\left(\frac{X}{q}\right)^{r}
$$

Here $\mathrm{p}=4, \mathrm{q}=5$,

$$
X=\frac{3 x}{8}, \frac{x}{q}=\frac{\left(\frac{3 x}{8}\right)}{5}=\frac{3 x}{40}
$$

$$
\therefore \mathrm{T}_{\mathrm{r}+1} \text { of }\left(1+\frac{3 \mathrm{x}}{8}\right)^{4 / 5} \text { is }
$$

$$
T_{r+1}=\frac{(4)(4-5)(4-2 \times 5) \ldots(4-(r-1) 5)}{r!}\left(\frac{3 x}{40}\right)^{r}
$$

$$
=\frac{4(-1)(-6) \ldots . .(-5 r+9)}{r!}\left(\frac{3 x}{40}\right)^{r}
$$

$$
=(-1)^{\mathrm{r}-1} \frac{(4)(1)(6) \ldots(5 \mathrm{r}-9)}{\mathrm{r}!}\left(\frac{3 \mathrm{x}}{40}\right)^{\mathrm{r}}
$$

\therefore The general term of $\left(2+\frac{3 x}{4}\right)^{4 / 5}$ is
$2^{4 / 5}\left[(-1)^{\mathrm{r}-1} \frac{4 \cdot 1 \cdot 6 \ldots(5 \mathrm{r}-9)}{\mathrm{r}!}\right]\left(\frac{3 \mathrm{x}}{40}\right)^{\mathrm{r}}$
iii) $(1-4 x)^{-3}$

Sol. $(1-4 x)^{-3}=(1-X)^{-n}$, here $X=4 x, n=3$.
The general term of $(1-X)^{-n}$ is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{\mathrm{n}+\mathrm{r}-1} \mathrm{C}_{\mathrm{r}} \cdot X^{\mathrm{r}} \\
& ={ }^{(3+r-1)} C_{r}(4 x)^{r} \\
& ={ }^{(r+2)} C_{r}(4 x)^{r}
\end{aligned}
$$

\therefore General term of $(1-4 \mathrm{x})^{-3}$ is

$$
\mathrm{T}_{\mathrm{r}+1}={ }^{(\mathrm{r}+2)} \mathrm{C}_{\mathrm{r}}(4 \mathrm{x})^{\mathrm{r}}
$$

iv) $(2-3 x)^{-1 / 3}$

Sol. $(2-3 x)^{-1 / 3}=\left[2\left(1-\frac{3}{2} x\right)\right]^{-1 / 3}$

$$
=2^{-1 / 3}\left(1-\frac{3}{2} x\right)^{-1 / 3}
$$

General term of $(1-x)^{-\mathrm{p} / \mathrm{q}}$
$T_{r+1}=\frac{(p)(p+q)(p+2 q) \ldots(p)+(r-1) q}{(r)!}\left(\frac{x}{q}\right)^{r}$

Here $\mathrm{p}=1, \mathrm{q}=3, X=\frac{3}{2} \mathrm{x} \Rightarrow \frac{\mathrm{x}}{\mathrm{q}}=\frac{\frac{3}{2} \mathrm{x}}{3}=\frac{\mathrm{x}}{2}$
\therefore General term of $(2-3 \mathrm{x})^{-1 / 3}$ is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & =2^{-1 / 3}\left[\frac{(1)(1+3)(1+2 \cdot 3) \ldots[1+(\mathrm{r}-1) 3]}{\mathrm{r}!}\left(\frac{\mathrm{x}}{2}\right)^{\mathrm{r}}\right] \\
& =\frac{1}{\sqrt[3]{2}}\left[\frac{(1)(4)(7) \ldots(3 \mathrm{r}-2)}{\mathrm{r}!}\right]\left(\frac{\mathrm{x}}{2}\right)^{2}
\end{aligned}
$$

1. Find the coefficient of

i) x^{-6} in $\left(3 x-\frac{4}{x}\right)^{10}$
ii) x^{11} in $\left(2 x^{2}+\frac{3}{x^{3}}\right)^{13}$
iii) x^{2} in $\left(7 x^{3}-\frac{2}{x^{2}}\right)^{9}$
iv) x^{-7} in $\left(\frac{2 x^{2}}{3}-\frac{5}{4 x^{5}}\right)^{7}$
i) x^{-6} in $\left(3 \mathrm{x}-\frac{4}{\mathrm{x}}\right)^{10}$

Sol.The general term in $\left(3 x-\frac{4}{x}\right)^{10}$ is

$$
\begin{align*}
T_{r+1} & =(-1)^{r}{ }^{10} C_{r}(3 x)^{10-r}\left(\frac{4}{x}\right)^{r} \\
& =(-1)^{r}{ }^{10} C_{r} 3^{10-r}(4)^{r} x^{10-r-r} \\
& =(-1)^{r}{ }^{10} C_{r} 3^{10-r}(4)^{r} x^{10-2 r} \tag{1}
\end{align*}
$$

For coefficient of x^{-6}, put $10-2 \mathrm{r}=-6$
$\Rightarrow 2 r=10+6=16 \Rightarrow r=8$
Put $r=8$ in (1)
$\mathrm{T}_{8+1}=(-1)^{8}{ }^{10} \mathrm{C}_{8} 3^{10-8}(4)^{8} \mathrm{x}^{10-16}={ }^{10} \mathrm{C}_{8} 3^{2} 4^{8} \mathrm{x}^{-6}$
\therefore Coefficient of x^{-6} in $\left(3 x-\frac{4}{x}\right)^{10}$ is

$$
\begin{aligned}
& { }^{10} \mathrm{C}_{8} 3^{2} 4^{8}={ }^{10} \mathrm{C}_{2} 3^{2} 4^{8} \\
& \quad=\frac{10 \times 9}{1 \times 2} \times 9 \times 4^{8}=405 \times 4^{8}
\end{aligned}
$$

ii) x^{11} in $\left(2 x^{2}+\frac{3}{x^{3}}\right)^{13}$

Sol.The general term in $\left(2 x^{2}+\frac{3}{x^{3}}\right)^{13}$ is:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{13} \mathrm{C}_{\mathrm{r}}\left(2 \mathrm{x}^{2}\right)^{13-\mathrm{r}}\left(\frac{3}{x^{3}}\right)^{\mathrm{r}} \\
& ={ }^{13} \mathrm{C}_{\mathrm{r}}(2)^{13-\mathrm{r}} 3^{\mathrm{r}} \mathrm{x}^{26-2 \mathrm{r}} \mathrm{x}^{-3 \mathrm{r}} \\
& ={ }^{13} \mathrm{C}_{\mathrm{r}}(2)^{13-\mathrm{r}}(3)^{\mathrm{r}} \mathrm{x}^{26-5 \mathrm{r}}
\end{aligned}
$$

For coefficient of x^{11}, put $26-5 r=11$
$\Rightarrow 5 \mathrm{r}=15 \Rightarrow \mathrm{r}=3$
Put $r=3$ in (1)

$$
\begin{aligned}
& \mathrm{T}_{3+1}={ }^{13} \mathrm{C}_{3}(2)^{10}(3)^{3} \mathrm{x}^{26-15} \\
& \mathrm{~T}_{4}=\frac{13 \times 12 \times 11}{1 \times 2 \times 3} \cdot 2^{10} \cdot 3^{3} \cdot \mathrm{x}^{11}
\end{aligned}
$$

\therefore Coefficient of x^{11} in $\left(2 \mathrm{x}^{2}+\frac{3}{\mathrm{x}^{3}}\right)^{13}$ is: $\quad(286)\left(2^{10}\right)\left(3^{3}\right)$
iii) x^{2} in $\left(7 \mathrm{x}^{3}-\frac{2}{\mathrm{x}^{2}}\right)^{9}$ Ans. Coefficient of x^{2} in $\left(7 \mathrm{x}^{3}-\frac{2}{\mathrm{x}^{2}}\right)^{9}$ is $-126 \times 7^{4} \times 2^{5}$.
iv) x^{-7} in $\left(\frac{2 x^{2}}{3}-\frac{5}{4 x^{5}}\right)^{7}$

Sol.The general term in $\left(\frac{2 x^{2}}{3}-\frac{5}{4 x^{5}}\right)^{7}$ is

$$
\begin{align*}
& \begin{aligned}
& \mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}} \cdot{ }^{7} \mathrm{C}_{\mathrm{r}}\left(\frac{2 \mathrm{x}^{2}}{3}\right)^{7-\mathrm{r}}\left(\frac{5}{4 \mathrm{x}^{5}}\right)^{\mathrm{r}} \\
& \quad=(-1)^{\mathrm{r}} \cdot{ }^{7} \mathrm{C}_{\mathrm{r}}\left(\frac{2}{3}\right)^{7-\mathrm{r}}\left(\frac{5}{4}\right)^{\mathrm{r}} x^{14-2 \mathrm{r}} \mathrm{x}^{-5 \mathrm{r}} \\
& \therefore \mathrm{~T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}}{ }^{7} \mathrm{C}_{\mathrm{r}}\left(\frac{2}{3}\right)^{7-\mathrm{r}}\left(\frac{5}{4}\right)^{\mathrm{r}} \mathrm{x}^{14-7 \mathrm{r}} .
\end{aligned} . .
\end{align*}
$$

For coefficient of x^{-7}, put $14-7 \mathrm{r}=-7$

$$
\Rightarrow 7 \mathrm{r}=21 \Rightarrow \mathrm{r}=3
$$

Put $\mathrm{r}=3$ in equation (1)

$$
\begin{aligned}
\mathrm{T}_{3+1} & =(-1)^{3}{ }^{7} \mathrm{C}_{3}\left(\frac{2}{3}\right)^{4}\left(\frac{5}{4}\right)^{3} \mathrm{x}^{14-21} \\
& =\frac{-7 \times 6 \times 5}{1 \times 2 \times 3}\left(\frac{2}{3}\right)^{4}\left(\frac{5}{4}\right)^{3} \mathrm{x}^{-7}
\end{aligned}
$$

\therefore Coefficient of x^{-7} in $\left(\frac{2 \mathrm{x}^{2}}{3}-\frac{5}{4 \mathrm{x}^{5}}\right)^{7}$ is:

$$
=-35 \times \frac{1}{3^{4}} \cdot \frac{5^{3}}{2^{2}}=\frac{-4375}{324}
$$

2. Find the term independent of x in the expansion of
(i) $\left(\frac{x^{1 / 2}}{3}-\frac{4}{x^{2}}\right)^{10}$
(ii) $\left(\frac{3}{\sqrt[3]{x}}+5 \sqrt{x}\right)^{25}$
(iii) $\left(4 x^{3}+\frac{7}{x^{2}}\right)^{14}$
(iv) $\left(\frac{2 x^{2}}{5}+\frac{15}{4 x}\right)^{9}$
i) $\left(\frac{\mathrm{x}^{1 / 2}}{3}-\frac{4}{\mathrm{x}^{2}}\right)^{10}$

Sol.The general term in $\left(\frac{x^{1 / 2}}{3}-\frac{4}{x^{2}}\right)^{10}$ is

$$
\begin{align*}
T_{r+1} & =(-1)^{r}{ }^{10} C_{r}\left(\frac{x^{1 / 2}}{3}\right)^{10-r}\left(\frac{4}{x^{2}}\right)^{r} \\
& =(-1)^{r}{ }^{10} C_{r}\left(\frac{1}{3}\right)^{10-r}(4)^{r} \cdot x^{5-\frac{r}{2}} \cdot x^{-2 r} \\
& =(-1)^{r}{ }^{10} C_{r}\left(\frac{1}{3}\right)^{10-r}(4)^{r} \cdot x^{5-\frac{r}{2}-2 r} \\
& =(-1)^{r}{ }^{10} C_{r}\left(\frac{1}{3}\right)^{10-r}(4)^{r} \cdot x^{\frac{10-5 r}{2}} \ldots(1 \tag{1}
\end{align*}
$$

For the term independent of x,

$$
\text { Put } \frac{10-5 r}{2}=0 \Rightarrow 5 r=10 \Rightarrow r=2
$$

$$
\text { Put } \mathrm{r}=2 \text { in eq.(1) }
$$

$$
\begin{aligned}
& \mathrm{T}_{2+1}=(-1)^{2}{ }^{10} \mathrm{C}_{2}\left(\frac{1}{3}\right)^{8} 4^{2} \cdot \mathrm{x}^{0} \\
& \mathrm{~T}_{3}=\frac{80}{729}
\end{aligned}
$$

ii) $\left(\frac{3}{\sqrt[3]{\mathrm{x}}}+5 \sqrt{\mathrm{x}}\right)^{25}$

Sol.The general term in $\left(\frac{3}{\sqrt[3]{x}}+5 \sqrt{x}\right)^{25}$ is

$$
\begin{align*}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{25} \mathrm{C}_{\mathrm{r}}\left(\frac{3}{\sqrt[3]{\mathrm{x}}}\right)^{25-\mathrm{r}}(5 \sqrt{\mathrm{x}})^{\mathrm{r}} \\
& ={ }^{25} \mathrm{C}_{\mathrm{r}}(3)^{25-\mathrm{r}}(5)^{\mathrm{r}} \cdot \mathrm{x}^{-1 / 3(25-\mathrm{r})} \mathrm{x}^{\mathrm{r} / 2} \\
& ={ }^{25} \mathrm{C}_{\mathrm{r}}(3)^{25-\mathrm{r}}(5)^{\mathrm{r}} \cdot \mathrm{x}^{-\frac{25}{3}+\frac{\mathrm{r}}{3}+\frac{\mathrm{r}}{2}} \\
& ={ }^{25} \mathrm{C}_{\mathrm{r}}(3)^{25-\mathrm{r}}(5)^{\mathrm{r}} \cdot \mathrm{x}^{-\frac{50+2 \mathrm{r}+3 \mathrm{r}}{6}} \ldots(1) \tag{1}
\end{align*}
$$

For term independent of x, put

$$
\frac{-50+5 r}{6}=0 \Rightarrow 5 r=50 \Rightarrow r=10
$$

Put $\mathrm{r}=10$ in equation (1),

$$
\mathrm{T}_{10+1}={ }^{25} \mathrm{C}_{10}(3)^{15}(5)^{10} \mathrm{x}^{0}
$$

i.e. $\quad \mathrm{T}_{11}={ }^{25} \mathrm{C}_{10}(3)^{15}(5)^{10}$
iii) $\left(4 x^{3}+\frac{7}{x^{2}}\right)^{14}$

Sol. The general term in $\left(4 x^{3}+\frac{7}{x^{2}}\right)^{14}$ is

$$
\begin{align*}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{14} \mathrm{C}_{\mathrm{r}}\left(4 \mathrm{x}^{3}\right)^{14-\mathrm{r}}\left(\frac{7}{\mathrm{x}^{2}}\right)^{\mathrm{r}} \\
& ={ }^{14} \mathrm{C}_{\mathrm{r}}(4)^{14-\mathrm{r}}(7)^{\mathrm{r}} \mathrm{x}^{42-3 \mathrm{r}} \mathrm{x}^{-2 \mathrm{r}} \\
& ={ }^{14} \mathrm{C}_{\mathrm{r}}(4)^{14-\mathrm{r}}(7)^{\mathrm{r}} \mathrm{x}^{42-5 \mathrm{r}} \quad \ldots \tag{1}
\end{align*}
$$

For term independent of x,

Put $4 \mathrm{x}-5 \mathrm{r}=0 \Rightarrow \mathrm{r}=42 / 5$ which is not an integer.

Hence term independent of x in the given expansion does not exist.
iv) $\left(\frac{2 x^{2}}{5}+\frac{15}{4 x}\right)^{9}$

Ans.

$$
\begin{aligned}
\mathrm{T}_{6+1} & ={ }^{9} \mathrm{C}_{6}\left(\frac{2}{5}\right)^{3}\left(\frac{15}{4}\right)^{6} \mathrm{x}^{0}={ }^{9} \mathrm{C}_{6} \cdot \frac{2^{3}}{5^{3}} \cdot \frac{3^{6} \times 5^{6}}{4^{6}} \\
& =\frac{9 \times 8 \times 7}{1 \times 2 \times 3} \cdot \frac{3^{6} \times 5^{6}}{4^{6}}=\frac{3^{7} \times 5^{3} \times 7}{2^{7}}
\end{aligned}
$$

3. Find the middle term(s) in the expansion of

(i) $\left(\frac{3 x}{7}-2 y\right)^{10}$
(ii) $\left(4 a+\frac{3}{2} b\right)^{11}$
(iii) $\left(4 x^{2}+5 x^{3}\right)^{17}$
(iv) $\left(\frac{3}{a^{3}}+5 a^{4}\right)^{20}$

Sol.The middle term in $(x+a)^{n}$ when n is even is $T_{\left(\frac{n+1}{2}\right)}$, when n is odd, we have two middle terms, i.e. $T_{\left(\frac{n+1}{2}\right)}$ and $T_{\left(\frac{n+3}{2}\right)}$.
i) $\left(\frac{3 x}{7}-2 y\right)^{10}$

Sol. $\mathrm{n}=10$ is even, we have only one middle term.
i.e. $\frac{10}{2}+1=6^{\text {th }}$ term
$\therefore \mathrm{T}_{6}$ in $\left(\frac{3 \mathrm{x}}{7}-2 \mathrm{y}\right)^{10}$ is :
$={ }^{10} \mathrm{C}_{5}\left(\frac{3 \mathrm{x}}{7}\right)^{5}(-2 \mathrm{y})^{5}=-\left({ }^{10} \mathrm{C}_{5}\right) \frac{3^{5}}{7^{5}} \cdot 2^{5}(x y)^{5}$
$=-{ }^{10} C_{5}\left(\frac{6}{7}\right)^{5} x^{5} y^{5}$
ii) $\left(4 a+\frac{3}{2} b\right)^{11}$

Sol.Here $\mathrm{n}=11$ is an odd integer, we have two middle terms, i.e. $\frac{\mathrm{n}+1}{2}$ and $\frac{\mathrm{n}+3}{2}$ terms $=7^{\text {th }}$ and $7^{\text {th }}$ terms are middle terms.
T_{6} in $\left(4 a+\frac{3}{2} b\right)^{11}$ is:

$$
\begin{aligned}
& ={ }^{11} C_{5}(4 a)^{6}\left(\frac{3}{2} b\right)^{5}={ }^{11} C_{5}(4)^{6} \frac{3^{5}}{2^{5}} a^{6} b^{5} \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4 \times 5} 2^{7} \cdot 3^{5} \cdot a^{6} b^{5} \\
& =77 \times 2^{8} \times 3^{6} \times a^{6} b^{5}
\end{aligned}
$$

T_{7} in $\left(4 a+\frac{3}{2} b\right)^{11}$ is:

$$
\begin{aligned}
& ={ }^{11} C_{6}(4 a)^{5}\left(\frac{3}{2} b\right)^{6}={ }^{11} C_{5}(4)^{5} \frac{3^{6}}{2^{6}} a^{5} b^{6} \\
& =\frac{11 \times 10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4 \times 5} 2^{4} \cdot 3^{6} \cdot a^{5} b^{6} \\
& =77 \times 2^{5} \times 3^{7} \times a^{5} b^{6}
\end{aligned}
$$

iii) $\left(4 x^{2}+5 x^{3}\right)^{17}$ Try yourself.
iv) $\left(\frac{3}{a^{3}}+5 a^{4}\right)^{20}$ Try your self
4. Fin the numerically greatest term (s) in the expansion of
i) $(4+3 x)^{15}$ when $x=\frac{7}{2}$
ii) $(\mathbf{3 x}+5 y)^{\mathbf{1 2}}$ when $x=\frac{1}{2}$ and $y=\frac{4}{3}$
iii) $(4 a-6 b)^{13}$ when $a=3, b=5$
iv) $(3+7 x)^{n}$ when $x=\frac{4}{5}, n=15$
i) $(\mathbf{4}+\mathbf{3 x})^{15}$ when $x=\frac{7}{2}$

Sol.Write $(4+3 x)^{15}=\left[4\left(1+\frac{3}{4} x\right)\right]^{15}$

$$
\begin{equation*}
=4^{15}\left(1+\frac{3}{4} x\right)^{15} \tag{1}
\end{equation*}
$$

First we find the numerically greatest term in the expansion of $\left(1+\frac{3}{4} \mathrm{x}\right)^{15}$
Write $\mathrm{X}=\frac{3}{4} \mathrm{x}$ and calculate $\frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}$
Here $|X|=\left(\frac{3}{4} X\right)=\frac{3}{4} \times \frac{7}{2}=\frac{21}{8}$

$$
\begin{gathered}
\text { Now } \frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}=\frac{15+1}{1+\frac{21}{8}} \cdot \frac{21}{8} \\
=\frac{16 \times 21}{29}=\frac{336}{29}=11 \frac{17}{29}
\end{gathered}
$$

Its integral part $\mathrm{m}=\left[11 \frac{17}{29}\right]=11$
$\mathrm{T}_{\mathrm{m}+1}$ is the numerically greatest term in the expansion $\left(1+\frac{3}{4} \mathrm{x}\right)^{15}$ and

$$
\mathrm{T}_{\mathrm{m}+1}=\mathrm{T}_{12}={ }^{15} \mathrm{C}_{11}\left(\frac{3}{4} \mathrm{x}\right)^{4}={ }^{15} \mathrm{C}_{11}\left(\frac{3}{4} \cdot \frac{7}{2}\right)^{11}
$$

\therefore Numerically greatest term in $(4+3 x)^{15}$

$$
=4^{15}\left[{ }^{15} \mathrm{C}_{11}\left(\frac{21}{8}\right)^{11}\right]={ }^{15} \mathrm{C}_{4} \frac{(21)^{11}}{2^{3}}
$$

ii) $(3 x+5 y)^{12}$ when $x=\frac{1}{2}$ and $y=\frac{4}{3}$

Sol.Write $(3 x+5 y)^{12}=\left[3 x\left(1+\frac{5 y}{3 x}\right)\right]^{12}$

$$
=3^{12} x^{12}\left(1+\frac{5}{3} \frac{y}{x}\right)^{12}
$$

On comparing $\left(1+\frac{5}{3} \frac{y}{x}\right)^{12}$ with $(1+x)^{n}$, we get

$$
\mathrm{n}=17, \mathrm{x}=\frac{5}{3} \cdot \frac{\mathrm{y}}{\mathrm{x}}=\frac{5}{3} \frac{(4 / 3)}{(1 / 2)}=\frac{5}{3} \cdot \frac{8}{3}=\frac{40}{9}
$$

$\operatorname{Now} \frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}=\frac{(12+1)\left(\frac{40}{9}\right)}{1+\frac{40}{9}}$

$$
=\frac{13 \times 40}{49}=\frac{520}{49}=10 \frac{30}{49}
$$

Which is not an integer.
$\therefore \mathrm{m}=\left[10 \frac{30}{49}\right]=10$
N.G. term in $\left(1+\frac{5 y}{3 x}\right)^{12}$ is

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{m}+1}=\mathrm{T}_{11}={ }^{12} \mathrm{C}_{10}\left(\frac{5}{3} \frac{\mathrm{y}}{\mathrm{x}}\right)^{10}={ }^{12} \mathrm{C}_{10}\left(\frac{5}{3} \times \frac{(4 / 3)}{(1 / 2)}\right)^{10} \\
& \quad={ }^{12} \mathrm{C}_{10}\left(\frac{5}{3} \times \frac{8}{3}\right)^{10}={ }^{12} \mathrm{C}_{10}\left(\frac{40}{9}\right)^{10}
\end{aligned}
$$

\therefore N.G. term in $(3 x+5 y)^{12}$ is
$=3^{12}\left(\frac{1}{2}\right)^{12}{ }^{12} \mathrm{C}_{10}\left(\frac{40}{9}\right)^{10}$
$={ }^{12} \mathrm{C}_{10} \frac{3^{12}}{2^{12}} \frac{\left(2^{2}\right)^{10} \times(10)^{10}}{\left(3^{2}\right)^{10}}={ }^{12} \mathrm{C}_{10}\left(\frac{3}{2}\right)^{2}\left(\frac{20}{3}\right)^{10}$
iii) $(4 a-6 b)^{13}$ when $a=3, b=5$

Sol.Write $(4 a-6 b)^{13}=\left[4 a\left(1-\frac{6 b}{4 a}\right)\right]^{13}$

$$
=(4 a)^{13}\left(1-\frac{3}{2} \frac{b}{a}\right)^{13}
$$

On comparing $\left(1-\frac{3}{2} \frac{b}{a}\right)^{13}$ with $(1+x)^{n}$

We get $\mathrm{n}=13, x=\frac{-3}{2}\left(\frac{b}{a}\right)$

$$
x=\frac{-3}{2} \times \frac{5}{3}=\frac{-5}{2}
$$

$\operatorname{Now} \frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}=\frac{(13+1)\left|\frac{-5}{2}\right|}{1+\left|\frac{-5}{2}\right|}=\frac{14 \times \frac{5}{2}}{1+\frac{5}{2}}$
$=\frac{70}{7}=10$ which is an integer.

Hence we have two numerically greatest terms namely T_{10} and T_{11}.
T_{10} in $\left(1-\frac{3}{2} \frac{\mathrm{~b}}{\mathrm{a}}\right)^{13}={ }^{13} \mathrm{C}_{9}\left|-\frac{3}{2} \cdot \frac{\mathrm{~b}}{\mathrm{a}}\right|^{9}$

$$
={ }^{13} \mathrm{C}_{9}\left(\frac{3}{2} \cdot \frac{5}{3}\right)^{9}={ }^{13} \mathrm{C}_{9}\left(\frac{5}{2}\right)^{9}
$$

T_{10} in $(4 a-6 b)^{13}$ is

$$
\begin{aligned}
& =(4 \mathrm{a})^{13} \cdot{ }^{13} \mathrm{C}_{9}\left(\frac{5}{2}\right)^{9}=(4 \times 3)^{13} \cdot{ }^{13} \mathrm{C}_{9}\left(\frac{5}{2}\right)^{9} \\
& ={ }^{13} \mathrm{C}_{9}(12)^{4}(12)^{9}\left(\frac{5}{2}\right)^{9}={ }^{13} \mathrm{C}_{9}(12)^{4}(30)^{9}
\end{aligned}
$$

T_{11} in $\left(1-\frac{3}{2} \frac{\mathrm{~b}}{\mathrm{a}}\right)^{13}$ is $={ }^{13} \mathrm{C}_{10}\left(\frac{-3}{2} \cdot \frac{\mathrm{~b}}{\mathrm{a}}\right)^{10}$

$$
={ }^{13} \mathrm{C}_{10}\left(\frac{3}{2} \times \frac{5}{3}\right)^{10}={ }^{13} \mathrm{C}_{10}\left(\frac{5}{2}\right)^{10}
$$

\therefore N.G. term in $(4 a-6 b)^{13}$ is

$$
=(4 \mathrm{a})^{13} \cdot{ }^{13} \mathrm{C}_{10}\left(\frac{5}{2}\right)^{10}=(4 \times 3)^{13} \cdot{ }^{13} \mathrm{C}_{10}\left(\frac{5}{2}\right)^{10}
$$

$$
\begin{aligned}
& =(12)^{13} \cdot{ }^{13} \mathrm{C}_{10} \frac{5^{10}}{2^{10}}={ }^{13} \mathrm{C}_{10}(12)^{3} \cdot(12)^{10} \cdot \frac{5^{10}}{2^{10}} \\
& ={ }^{13} \mathrm{C}_{10}(12)^{3}(30)^{10}
\end{aligned}
$$

iv) $(\mathbf{3}+\mathbf{7 x})^{\mathrm{n}}$ when $\mathrm{x}=\frac{4}{5}, \mathrm{n}=\mathbf{1 5}$ Try your self

5. Prove the following

i) $2 \cdot \mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+8 \cdot \mathrm{C}_{2}+\ldots+(3 \mathrm{n}+2) \cdot \mathrm{C}_{\mathrm{n}}$

$$
=(3 n+4) \cdot 2^{n-1}
$$

Sol.Let $S=2 \cdot C_{0}+5 \cdot C_{1}+8 \cdot C_{2}+\ldots \quad \ldots+(3 n-1) \cdot C_{n-1}+(3 n+2) C_{n}$

$$
\begin{aligned}
& \because C_{n}=C_{0}, C_{n-1}=C_{1} \cdots \\
& S=(3 n+2) C_{0}+(3 n-1) C_{1}+(3 n-4) C_{2}+\ldots \ldots .+5 C_{n-1}+2 \cdot C_{n}
\end{aligned}
$$

$$
2 S=(3 n+4) C_{0}+(3 n+4) C_{1}+(3 n+4) C_{2}+\ldots+(3 n+4) C_{n}
$$

Adding $=(3 n+4)\left(C_{0}+C_{1}+C_{2}+\ldots+C_{n}\right)=(3 n+4) 2^{n}$

$$
\therefore S=(3 n+4) \cdot 2^{n-1}
$$

ii) $\mathrm{C}_{0}-4 \cdot \mathrm{C}_{1}+7 \cdot \mathrm{C}_{2}-10 \cdot \mathrm{C}_{3}+\ldots=0$

Sol. 1, 4, 7, $10 \ldots$ are in A.P.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}+1}=\mathrm{a}+\mathrm{nd}=1+\mathrm{n}(3)=3 \mathrm{n}+1 \\
& \therefore \mathrm{C}_{0}-4 \cdot \mathrm{C}_{1}+7 \cdot \mathrm{C}_{2}-10 \cdot \mathrm{C}_{3}+\ldots(\mathrm{n}+1) \text { terms } \\
& =\mathrm{C}_{0}-4 \cdot \mathrm{C}_{1}+7 \cdot \mathrm{C}_{2}-10 \cdot \mathrm{C}_{3}+\ldots+(-1)^{\mathrm{n}}(3 \mathrm{n}+1) \mathrm{C}_{\mathrm{n}} \\
& =\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}}(3 \mathrm{r}+1) \mathrm{C}_{\mathrm{r}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}\left\{(-1)^{\mathrm{r}}(3 \mathrm{r}) \mathrm{C}_{\mathrm{r}}+(-1)^{\mathrm{r}} \mathrm{C}_{\mathrm{r}}\right\} \\
& =3 \cdot \sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \mathrm{r} \cdot \mathrm{C}_{\mathrm{r}}+\sum_{\mathrm{r}=0}^{\mathrm{n}}(-1)^{\mathrm{r}} \cdot \mathrm{C}_{\mathrm{r}}=3(0)+0=0 \\
& \therefore \mathrm{C}_{0}-4 \cdot \mathrm{C}_{1}+7 \cdot \mathrm{C}_{2}-10 \cdot \mathrm{C}_{3}+\ldots=0
\end{aligned}
$$

iii) $\frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+\frac{C_{7}}{8}+\ldots=\frac{2^{n}-1}{n+1}$
$\ldots \frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{3}}{4}+\frac{\mathrm{C}_{5}}{6}+\frac{\mathrm{C}_{7}}{8}+\ldots . . .$.

$$
\begin{aligned}
& \quad=\frac{{ }^{n} C_{1}}{2}+\frac{{ }^{n} C_{3}}{4}+\frac{{ }^{n} C_{5}}{6}+\frac{{ }^{n} C_{7}}{8}+\ldots \\
& =\frac{n}{2}+\frac{n(n-1)(n-2)}{4 \times 3!}+\frac{n(n-1)(n-2)(n-3)(n-4)}{6 \times 5!}+\ldots \\
& =\frac{1}{n+1}\left[\frac{(n+1) n}{2!}+\frac{(n+1) n(n-1)(n-2)}{4!}+\ldots . \frac{(n+1) n(n-1)(n-2)(n-3)(n-4)}{6!}+\ldots\right] \\
& =\frac{1}{n+1}\left[{ }^{(n+1)} C_{2}+{ }^{(n+1)} C_{4}+{ }^{(n+1)} C_{6}+\ldots\right] \\
& =\frac{1}{n+1}\left[{ }^{(n+1)} C_{0}+{ }^{(n+1)} C_{2}+{ }^{(n+1)} C_{4}+\ldots-{ }^{(n+1)} C_{0}\right]=\frac{1}{n+1}\left[2^{n}-1\right]=\frac{2^{n}-1}{n+1} \\
& \therefore \frac{C_{1}}{2}+\frac{C_{3}}{4}+\frac{C_{5}}{6}+\frac{C_{7}}{8}+\ldots=\frac{2^{n}-1}{n+1}
\end{aligned}
$$

$$
\text { iv) } C_{0}+\frac{3}{2} C_{1}+\frac{9}{3} C_{2}+\frac{27}{4} C_{3}+\ldots+\frac{3^{n}}{n+1} C_{n}
$$

$$
=\frac{4^{\mathrm{n}+1}-1}{3(\mathrm{n}+1)}
$$

Sol.Let $\mathrm{S}=$

$$
\begin{aligned}
& C_{0}+\frac{3}{2} C_{1}+\frac{3^{2}}{3} C_{2}+\frac{3^{3}}{4} C_{3}+\ldots+C_{n} \frac{3^{n}}{n+1} \ldots \text { (1) } \\
& \Rightarrow 3 S=C_{0} \cdot 3+\frac{3^{2}}{2} C_{1}+\frac{3^{3}}{3} C_{2}+\frac{3^{4}}{4} C_{3}+\ldots+C_{n} \frac{3^{n+1}}{n+1} \ldots(2 \\
& \Rightarrow(n+1) 3 \cdot S \\
& =(n+1) C_{0} \cdot 3+(n+1) C_{1} \cdot \frac{3^{2}}{2}+(n+1) C_{2} \cdot \frac{3^{3}}{3}+(n+1) C_{3} \cdot \frac{3^{4}}{3}+\ldots+(n+1) C_{n} \cdot \frac{3^{n+1}}{n+1}
\end{aligned}
$$

$\Rightarrow(\mathrm{n}+1) 3 \cdot \mathrm{~S}$
$={ }^{(n+1)} \mathrm{C}_{1} \cdot 3+{ }^{(\mathrm{n}+1)} \mathrm{C}_{2} \cdot 3^{2}+{ }^{(\mathrm{n}+1)} \mathrm{C}_{3} \cdot 3^{3}+\ldots \ldots .+{ }^{(\mathrm{n}+1)} \mathrm{C}_{\mathrm{n}+1} \cdot 3^{\mathrm{n}+1}$
$=(1+3)^{\mathrm{n}+1}-{ }^{(\mathrm{n}+1)} \mathrm{C}_{0}=4^{\mathrm{n}+1}-1$
$\therefore S=\frac{4^{\mathrm{n}+1}-1}{3(\mathrm{n}+1)}$
v) $\mathrm{C}_{0}+2 \cdot \mathrm{C}_{1}+4 \cdot \mathrm{C}_{2}+8 \cdot \mathrm{C}_{3}+\ldots+2^{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{n}}=3^{\mathrm{n}}$

Sol.L.H.S. $=\mathrm{C}_{0}+2 \cdot \mathrm{C}_{1}+4 \cdot \mathrm{C}_{2}+8 \cdot \mathrm{C}_{3}+\ldots+2^{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{n}}$

$$
\begin{aligned}
& =C_{0}+C_{1}(2)+C_{2}\left(2^{2}\right)+C_{3}\left(2^{3}\right)+\ldots+C_{n}\left(2^{\mathrm{n}}\right) \\
& =(1+2)^{\mathrm{n}}=3^{\mathrm{n}}
\end{aligned}
$$

$$
\left[(1+x)^{n}=C_{0}+C_{1} \cdot x+C_{2} x^{2}+\ldots+C_{n} x^{n}\right]
$$

6. Using binomial theorem, prove that $50^{n}-49 n-1$ is divisible by 49^{2} for all positive integers
n.

Sol. $50^{n}-49 n-1=(49+1)^{n}-49 n-1$

$$
\begin{aligned}
& =\left[{ }^{n} C_{0}(49)^{n}+{ }^{n} C_{1}(49)^{n-1}+{ }^{n} C_{2}(49)^{n-2}+\ldots+{ }^{n} C_{n-2}(49)^{2}+{ }^{n} C_{n-1}(49)+{ }^{n} C_{n}(1)\right]-49 n-1 \\
& =(49)^{n}+{ }^{n} C_{1}(49)^{n-1}+{ }^{n} C_{2}(49)^{n-2}+\ldots+{ }^{n} C_{n-2}(49)^{2}+(n)(49)+1-49 n-1 \\
& =49^{2}\left[(49)^{n-2}+{ }^{n} C_{1}(49)^{n-3}+{ }^{n} C_{2}(49)^{n-4}+\ldots+\ldots .+\ldots .+{ }^{n} C_{n-2}\right]
\end{aligned}
$$

$=49^{2}$ [a positive integer]
Hence $50^{n}-49 n-1$ is divisible by 49^{2} for all positive integers of n.
7. Using binomial theorem, prove that $5^{4 n}+52 n-1$ is divisible by 676 for all positive integers
n.

Sol. $5^{4 n}+52 n-1=\left(5^{2}\right)^{2 n}+52 n-1$
$=(25)^{2 \mathrm{n}}+52 \mathrm{n}-1=(26-1)^{2 \mathrm{n}}+52 \mathrm{n}-1$
$=\left[{ }^{2 \mathrm{n}} \mathrm{C}_{0}(26)^{2 \mathrm{n}}-{ }^{2 \mathrm{n}} \mathrm{C}_{1}(26)^{2 \mathrm{n}-1}+{ }^{2 \mathrm{n}} \mathrm{C}_{2}(26)^{2 \mathrm{n}-2}-\ldots . .+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}-2}(26)^{2}-{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}-1}(26)+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}}(1)\right]+52 \mathrm{n}-1$
$={ }^{2 \mathrm{n}} \mathrm{C}_{0}(26)^{2 \mathrm{n}}-{ }^{2 \mathrm{n}} \mathrm{C}_{1}(26)^{2 \mathrm{n}-1}+{ }^{2 \mathrm{n}} \mathrm{C}_{2}(26)^{2 \mathrm{n}-2}-\ldots . .+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}-2}-2 \mathrm{n}(26)+1+52 \mathrm{n}-1$
$=(26)^{2}\left[{ }^{2 \mathrm{n}} \mathrm{C}_{0}(26)^{2 \mathrm{n}-2}-{ }^{2 \mathrm{n}} \mathrm{C}_{1}(26)^{2 \mathrm{n}-3}+{ }^{2 \mathrm{n}} \mathrm{C}_{2}(26)^{2 \mathrm{n}-4}+\ldots+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}-2}\right]$
is divisible by $(26)^{2}=676$
$\therefore 5^{4 n}+52 n-1$ is divisible by 676 , for all positive integers n.
8. If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$, then prove that
i) $\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}}=3^{\mathrm{n}}$
ii) $\mathrm{a}_{0}+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots+\mathrm{a}_{2 \mathrm{n}}=\frac{3^{\mathrm{n}}+1}{2}$
iii) $a_{1}+a_{3}+a_{5}+\ldots+a_{2 n-1}=\frac{3^{n}-1}{2}$
iv) $a_{0}+a_{3}+a_{6}+a_{9}+\ldots=3^{n-1}$

Sol. $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{2 n} x^{2 n}$
Put $\mathrm{x}=1$,
$\therefore a_{0}+a_{1}+a_{2}+\ldots+a_{2 n}=(1+1+1)^{n}=3^{n}$
Put $x=-1$,

$$
\mathrm{a}_{0}-\mathrm{a}_{1}+\mathrm{a}_{2}-\ldots+\mathrm{a}_{2 \mathrm{n}}=(1-1+1)^{\mathrm{n}}=1 \ldots \text { (2) }
$$

i) $\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}}=3^{\mathrm{n}}$
ii) $(1)+(2) \Rightarrow 2\left(a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}\right)=3^{n}+1$

$$
\therefore \mathrm{a}_{0}+\mathrm{a}_{2}+\mathrm{a}_{4}+\ldots+\mathrm{a}_{2 \mathrm{n}}=\frac{3^{\mathrm{n}}+1}{2}
$$

iii) $(1)-(2) \Rightarrow 2\left(a_{1}+a_{3}+a_{5}+\ldots+a_{2 n-1}\right)=3^{n}-1$
$\therefore \mathrm{a}_{1}+\mathrm{a}_{3}+\mathrm{a}_{5}+\ldots+\mathrm{a}_{2 \mathrm{n}-1}=\frac{3^{\mathrm{n}}-1}{2}$
iv) Put $x=1$

$$
\begin{equation*}
\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}}=3^{\mathrm{n}} \tag{a}
\end{equation*}
$$

Hint: $1+\omega+\omega^{2}=0 ; \omega^{3}=1$

Put $x=\omega$

$$
\begin{equation*}
\mathrm{a}_{0}+\mathrm{a}_{1} \omega+\mathrm{a}_{2} \omega^{2}+\mathrm{a}_{3} \omega^{3}+\ldots+\mathrm{a}_{2 \mathrm{n}} \omega^{2 \mathrm{n}}=0 \tag{b}
\end{equation*}
$$

Put $\mathrm{x}=\omega^{2}$

$$
\mathrm{a}_{0}+\mathrm{a}_{1} \omega^{2}+\mathrm{a}_{2} \omega^{4}+\mathrm{a}_{3} \omega^{6}+\ldots+\mathrm{a}_{2 \mathrm{n}} \omega^{4 \mathrm{n}}=0 \ldots \text { (c) }
$$

Adding (a), (b), (c)

$$
\begin{aligned}
& 3 a_{0}+a_{1}\left(1+\omega+\omega^{2}\right)+a_{2}\left(1+\omega^{2}+\omega^{4}\right)+a_{3}\left(1+\omega^{3}+\omega^{6}\right)+\ldots+a_{2 n}\left(1+\omega^{2 n}+\omega^{4 n}\right)=3^{n} \\
& \Rightarrow 3 a_{0}+a_{1}(0)+a_{2}(0)+3 a_{3}+\ldots+\ldots=3^{n}
\end{aligned}
$$

$\therefore \mathrm{a}_{0}+\mathrm{a}_{3}+\mathrm{a}_{6}+\mathrm{a}_{9}+\ldots=\frac{3^{\mathrm{n}}}{3}=3^{\mathrm{n}-1}$
9. If the coefficients of $(2 r+4)^{\text {th }}$ term and $(3 r+4)^{\text {th }}$ term in the expansion of $(1+x)^{21}$ are equal, find r.

Sol. $\mathrm{T}_{2 \mathrm{r}+4}$ in $(1+\mathrm{x})^{21}$ is $={ }^{21} \mathrm{C}_{2 \mathrm{r}+3}(\mathrm{x})^{2 \mathrm{r}+3}$
$\mathrm{T}_{3 \mathrm{r}+4}$ in $(1+\mathrm{x})^{21}$ is $={ }^{21} \mathrm{C}_{3 \mathrm{r}+3}(\mathrm{x})^{3 \mathrm{r}+3}$
\Rightarrow Coefficients are equal
$\Rightarrow{ }^{21} \mathrm{C}_{2 \mathrm{r}+3}={ }^{21} \mathrm{C}_{3 \mathrm{r}+3}$
$\Rightarrow 21=(2 r+3)+(3 r+3)($ or $) 2 r+3=3 r+3$
$\Rightarrow 5 \mathrm{r}=15 \Rightarrow \mathrm{r}=3$ (or) $\mathrm{r}=0$
Hence $r=0,3$.
10. If the coefficients of $x^{\mathbf{1 0}}$ in the expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is equal to the coefficient of
$\mathbf{x}^{\mathbf{- 1 0}}$ in the expansion of $\left(\mathrm{ax}-\frac{1}{\mathrm{bx}^{2}}\right)^{11}$; find the relation between a and b where a and b are real numbers.

Sol.The general term in the expansion of $\left(\mathrm{ax}^{2}+\frac{1}{\mathrm{bx}}\right)^{11}$ is

$$
\begin{aligned}
T_{r+1}= & { }^{11} C_{r}\left(a x^{2}\right)^{11-r}\left(\frac{1}{b x}\right)^{r} \\
& ={ }^{11} C_{r} a^{11-b}\left(\frac{1}{b}\right)^{r} x^{22-2 r-r}
\end{aligned}
$$

To find the coefficient of x^{10}, put

$$
22-3 r=10 \Rightarrow 3 r=12 \Rightarrow r=4
$$

Hence the coefficient of x^{10} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is $={ }^{11} \mathrm{C}_{7} \cdot \mathrm{a}^{7}\left(\frac{1}{\mathrm{~b}}\right)^{4}={ }^{11} \mathrm{C}_{7} \frac{\mathrm{a}^{7}}{\mathrm{~b}^{4}}$

The general term in the expansion of $\left(a x-\frac{1}{\mathrm{bx}^{2}}\right)^{11}$ is

$$
\begin{aligned}
T_{r+1}= & { }^{11} C_{r}(a x)^{11-r}\left(\frac{-1}{b x^{2}}\right)^{r} \\
& =(-1)^{r}{ }^{r} C_{r} a^{11-r}\left(\frac{1}{b}\right)^{r} x^{11-r-2 r}
\end{aligned}
$$

For the coefficient of x^{-10} put

$$
11-3 r=-10 \Rightarrow 3 r=21 \Rightarrow r=7
$$

\therefore The coefficient of x^{-10} in $\left(\mathrm{ax}-\frac{1}{\mathrm{bx}^{2}}\right)^{11}$ is

$$
\begin{equation*}
=(-1)^{7} \cdot{ }^{11} \mathrm{C}_{7}(\mathrm{a})^{4}\left(\frac{1}{\mathrm{~b}}\right)^{7}=(-1){ }^{11} \mathrm{C}_{7} \frac{\left(\mathrm{a}^{4}\right)}{\mathrm{b}^{7}} . . \tag{2}
\end{equation*}
$$

Given that the coefficients are equal.

Hence from (1) and (2), we get

$$
\begin{aligned}
& { }^{11} C_{7} \cdot \frac{a^{7}}{a^{4}}=-{ }^{11} C_{7} \cdot \frac{a^{4}}{b^{7}} \\
& \Rightarrow a^{3}=\frac{-1}{b^{3}} \Rightarrow a^{3} b^{3}=-1 \Rightarrow a b=-1
\end{aligned}
$$

11. If the $\mathbf{k}^{\text {th }}$ term is the middle term in the expansion of $\left(x^{2}-\frac{1}{2 x}\right)^{20}$, find T_{k} and $T_{k+3 \cdot}$.

Sol.The general term in the expansion of $\left(x^{2}-\frac{1}{2 x}\right)^{20}$ is

$$
\begin{equation*}
\mathrm{T}_{\mathrm{r}+1}={ }^{20} \mathrm{C}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)^{20-\mathrm{r}}\left(\frac{-1}{2 \mathrm{x}}\right)^{\mathrm{r}} \tag{1}
\end{equation*}
$$

\because The given expansion has $(20+1)=21$ times, $\left(\frac{\mathrm{n}}{2}+1\right)^{\text {th }}$ term, i.e. $\left(\frac{20}{2}+1\right)=11^{\text {th }}$ term is the only middle term.
$\therefore \mathrm{k}=11$

Put $\mathrm{r}=10$ in eq.(1)
$\mathrm{T}_{13+1}={ }^{20} \mathrm{C}_{13}\left(\mathrm{x}^{2}\right)^{7}\left(\frac{-1}{2 \mathrm{x}}\right)^{13}=(-1){ }^{20} \mathrm{C}_{13} \frac{1}{2^{13}} \mathrm{x}$
12. If the coefficients of $(2 r+4)^{\text {th }}$ and $(r-2)$ nd terms in the expansion of $(1+x)^{18}$ are equal, find r.

Sol. $T_{2 r+4}$ term of $(1+x)^{18}$ is

$$
\mathrm{T}_{2 \mathrm{r}+4}={ }^{18} \mathrm{C}_{2 \mathrm{r}+3}(\mathrm{x})^{2 \mathrm{r}+3}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}-2} \text { term of }(1+\mathrm{x})^{18} \\
& \mathrm{~T}_{\mathrm{r}-2}={ }^{18} \mathrm{C}_{\mathrm{r}-3}(\mathrm{x})^{\mathrm{r}-3}
\end{aligned}
$$

Given that the coefficients of $(2 r+4)^{\text {th }}$ term $=$ The coefficient of $(r-2)$ nd term.
$\Rightarrow{ }^{18} \mathrm{C}_{2 \mathrm{r}+3}={ }^{18} \mathrm{C}_{\mathrm{r}-3}$
$\Rightarrow 2 r+3=r-3$ (or) $(2 r+3)+(r-3)=18$
$\Rightarrow \mathrm{r}=-6$ (or) $3 \mathrm{r}=18 \Rightarrow \mathrm{r}=6$
13. Find the coefficient of $\mathbf{x}^{\mathbf{1 0}}$ in the expansion of $\frac{1+2 \mathrm{x}}{(1-2 \mathrm{x})^{2}}$.

Sol. $\frac{1+2 \mathrm{x}}{(1-2 \mathrm{x})^{2}}=(1+2 \mathrm{x})(1-2 \mathrm{x})^{-2}$
$=(1+2 x)\left[1+2(2 x)+3(2 x)^{2}+4(2 x)^{3}+5(2 x)^{4}+6(2 x)^{5}+7(2 x)^{6}+8(2 x)^{7}+9(2 x)^{8}+10(2 x)^{9}\right.$

$$
\left.+11(2 x)^{10}+\ldots+(r+1)(2 x)^{r}+\ldots\right]
$$

\therefore The coefficient of x^{10} in $\frac{1+2 \mathrm{x}}{(1-2 \mathrm{x})^{2}}$ is
$=(11)(2)^{10}+10(2)\left(2^{9}\right)=2^{10}(11+10)=2 \times 1^{10}$
14. Find the coefficient of x^{4} in the expansion of $(1-4 x)^{-3 / 5}$.

Sol.General term in $(1-x)^{-p / q}$ is

$$
T_{r+1}=\frac{(p)(p-q)(p-2 q)+\ldots+[p-(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}
$$

Here $\mathrm{p}=3, \mathrm{q}=5, \frac{\mathrm{X}}{\mathrm{q}}=\left(\frac{4 \mathrm{x}}{5}\right)$

Put $\mathrm{r}=4$

$$
\mathrm{T}_{4+1}=\frac{(3)(3+5)(3+2 \times 5)(3+3 \times 5)}{1 \times 2 \times 3 \times 4}\left(\frac{4 \mathrm{x}}{5}\right)^{4}
$$

\therefore Coefficient of x^{4} in $(1-4 \mathrm{x})^{-3 / 5}$ is

$$
\frac{(3)(8)(13)(18)}{1 \times 2 \times 3 \times 4}\left(\frac{4}{5}\right)^{4}=\frac{234 \times 256}{625}=\frac{59904}{625}
$$

15. Find the sum of the infinite series

i) $1+\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\ldots$

Sol.The given series can be written as

$$
S=1+\frac{1}{1} \cdot \frac{1}{3}+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{3}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{3}\right)^{2}+\ldots
$$

The series of the right is of the form

$$
1+\frac{p}{1}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)+\frac{\mathrm{p}(\mathrm{p}+\mathrm{q})}{1 \cdot 2}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)^{2}+\frac{\mathrm{p}(\mathrm{p}+\mathrm{q})(\mathrm{p}+2 \mathrm{q})}{1 \cdot 2 \cdot 3}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)^{3}+\ldots
$$

Here $\mathrm{p}=1, \mathrm{q}=2, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{3} \Rightarrow \mathrm{x}=\frac{2}{3}$

The sum of the given series $\quad \mathrm{S}=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=\left(1-\frac{2}{3}\right)^{-1 / 2}=\left(\frac{1}{3}\right)^{-1 / 2}=\sqrt{3}$
ii) $\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \ldots$

Sol.Let $S=\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \ldots$

$$
\begin{aligned}
& =\frac{3}{1} \cdot \frac{1}{4}+\frac{3 \cdot 5}{1 \cdot 2}\left(\frac{1}{4}\right)^{2}+\frac{3 \cdot 5 \cdot 7}{1 \cdot 2 \cdot 3}\left(\frac{1}{4}\right)^{3}+\ldots \ldots \\
& \Rightarrow 1+\mathrm{S}=1+\frac{3}{1} \cdot \frac{1}{4}+\frac{3 \cdot 5}{1 \cdot 2}\left(\frac{1}{4}\right)^{2}+\ldots \ldots
\end{aligned}
$$

Comparing $(1+S)$ with

$$
(1-x)^{-p / q}=1+\frac{p}{1}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots
$$

Here $\mathrm{p}=3, \mathrm{q}=2, \frac{\mathrm{x}}{\mathrm{p}}=\frac{1}{4} \Rightarrow \mathrm{x}=\frac{1}{2}$
$\therefore 1+\mathrm{S}=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=\left(1-\frac{1}{2}\right)^{-3 / 2}$

$$
=\left(\frac{1}{2}\right)^{-3 / 2}=2^{3 / 2}=\sqrt{8}
$$

$\therefore S=2 \sqrt{2}-1$
iii) $1-\frac{4}{5}+\frac{4 \cdot 7}{5 \cdot 10}-\frac{4 \cdot 7 \cdot 10}{5 \cdot 10 \cdot 15}+\ldots \ldots$

Sol.Let $S=1-\frac{4}{5}+\frac{4 \cdot 7}{5 \cdot 10}-\frac{4 \cdot 7 \cdot 10}{5 \cdot 10 \cdot 15}+\ldots \ldots$
$=1+\frac{4}{1}\left(-\frac{1}{5}\right)+\frac{4 \cdot 7}{1 \cdot 2}\left(-\frac{1}{5}\right)^{2}+\frac{4 \cdot 7 \cdot 10}{1 \cdot 2 \cdot 3}\left(-\frac{1}{5}\right)^{3}+\ldots$

Comparing S with $(1-x)^{-p / q}=1+\frac{p}{1}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots$

Here $\mathrm{p}=4, \mathrm{q}=3, \frac{\mathrm{x}}{\mathrm{q}}=-\frac{1}{5} \Rightarrow \mathrm{x}=\frac{-3}{5}$
$\therefore \mathrm{S}=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=\left(1+\frac{3}{5}\right)^{-4 / 3}=\left(\frac{8}{5}\right)^{-4 / 3}$
$=\left(\frac{5}{8}\right)^{4 / 3}=\frac{5^{4 / 3}}{8^{4 / 3}}=\frac{\sqrt[3]{5^{4}}}{2^{4}}=\frac{\sqrt[3]{625}}{16}$
$\therefore 1-\frac{4}{5}+\frac{4 \cdot 7}{5 \cdot 10}-\frac{4 \cdot 7 \cdot 10}{5 \cdot 10 \cdot 15}+\ldots .=\frac{\sqrt[3]{625}}{16}=\frac{5^{4 / 3}}{16}$
iv) $\frac{3}{4 \cdot 8}-\frac{3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}-\ldots$.

Sol.Let $S=\frac{3}{4 \cdot 8}-\frac{3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}-\ldots$.

$$
=\frac{1 \cdot 3}{4 \cdot 8}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12 \cdot 16}-\ldots .
$$

Add $1-\frac{1}{4}$ on both sides,

$$
\begin{aligned}
& 1-\frac{1}{4}+\mathrm{S}=1-\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots . \\
& \Rightarrow \frac{3}{4}+\mathrm{S}=1-\frac{1}{1} \cdot \frac{1}{4}+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{4}\right)^{2}-\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{4}\right)^{3}+\ldots \quad \text { Here } \mathrm{p}=1, \mathrm{q}=2, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{4} \Rightarrow \mathrm{x}=\frac{1}{2} \\
& =1-\frac{\mathrm{p}}{1} \frac{\mathrm{x}}{\mathrm{q}}+\frac{(\mathrm{p})(\mathrm{p}+\mathrm{q})}{1 \cdot 2}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)^{2}-\frac{(\mathrm{p})(\mathrm{p}+\mathrm{q})(\mathrm{p}+2 \mathrm{q})}{1 \cdot 2 \cdot 3}\left(\frac{\mathrm{x}}{\mathrm{q}}\right)^{3}+\ldots
\end{aligned}
$$

$$
=(1+\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=\left(1+\frac{1}{2}\right)^{-1 / 2}=\left(\frac{3}{2}\right)^{-1 / 2}=\sqrt{\frac{2}{3}}
$$

$\therefore \mathrm{S}=\sqrt{\frac{2}{3}}-\frac{3}{4}$
16. Find an approximate value of the following corrected to $\mathbf{4}$ decimal places.
(i) $\sqrt[5]{242}$
(ii) $\sqrt[7]{127}$
(iii) $\sqrt[5]{32.16}$
(iv) $\sqrt[7]{199}$
(v) $\sqrt[3]{1002}-\sqrt[3]{998}$

Sol. i) $\sqrt[5]{242}=(243-1)^{1 / 5}=(243)^{1 / 5} \cdot\left(1-\frac{1}{243}\right)^{1 / 5}$
$=\left(3^{5}\right)^{1 / 5}\left[1-\frac{1}{5} \cdot \frac{1}{243}+\frac{\frac{1}{5}\left(\frac{1}{5}-1\right)}{1 \cdot 2}\left(\frac{1}{243}\right)^{2}-\ldots\right]$
$=3\left\{1-\frac{1}{5}(0.00243)-\frac{2}{25}(0.00243)^{2}-\ldots\right\}$
$\because \frac{1}{243}=\left(\frac{1}{3}\right)^{5}=(0.3)^{5}=0.00243$
$\simeq 3-\frac{3}{5}(0.00243)-\frac{6}{25}(0.00243)^{2}-\ldots$
$\simeq 3-0.001458-0.000001417176$
$\simeq 2.998541$
ii) $\sqrt[7]{127} \quad$ Try yourself \quad iii) $\sqrt[5]{32.16} \quad$ Try yourself \quad iv) $\sqrt{199}$ Try yourself
v) $\sqrt[3]{1002}-\sqrt[3]{998}$ Try yourself
17. If $|x|$ is so small that x^{2} and higher powers of x may be neglected then find the approximate values of the following.
i) $\frac{(4+3 x)^{1 / 2}}{(3-2 x)^{2}}$

Sol. $\frac{(4+3 x)^{1 / 2}}{(3-2 x)^{2}}=\frac{\left[4\left(1+\frac{3}{4} x\right)\right]^{1 / 2}}{\left[3\left(1-\frac{2}{3} x\right)\right]^{2}}$
$=\frac{2}{9}\left(1+\frac{3}{4} \mathrm{x}\right)^{1 / 2}\left(1-\frac{2}{3}\right)^{-2}$
$=\frac{2}{9}\left(1+\frac{1}{2} \cdot \frac{3}{4} \mathrm{x}\right)\left(1-(-2) \frac{2}{3} \mathrm{x}\right)$
(After neglecting x^{2} and higher powers of x)
$=\frac{2}{9}\left(1+\frac{3}{8} x\right)\left(1+\frac{4}{3} x\right)=\frac{2}{9}\left(1+\frac{3}{8} x+\frac{4}{3} x\right)$
(Again by neglecting x^{2} term)
$=\frac{2}{9}\left(1+\frac{41}{24} x\right)=\frac{2}{9}+\frac{41}{108} x$
$\therefore \frac{(4+3 \mathrm{x})^{1 / 2}}{(3-2 \mathrm{x})^{2}}=\frac{2}{9}+\frac{82}{108} \mathrm{x}=\frac{2}{9}+\frac{41}{108} \mathrm{x}$
ii) $\frac{\left(1-\frac{2 x}{3}\right)^{3 / 2}(32+5 x)^{1 / 5}}{(3-x)^{3}}$

Sol. $\frac{\left(1-\frac{2 x}{3}\right)^{3 / 2}(32+5 x)^{1 / 5}}{(3-x)^{3}}$

$$
=\frac{\left(1-\frac{2}{3} x\right)^{3 / 2}(32)^{1 / 5}\left(1+\frac{5}{32} x\right)^{1 / 5}}{3^{3}\left(1-\frac{x}{3}\right)^{3}}
$$

$=\frac{2}{27}\left(1-\frac{2 x}{3}\right)^{3 / 2}\left(1+\frac{5}{32} x\right)^{1 / 5}\left(1-\frac{x}{3}\right)^{-3}$
$=\frac{2}{27}\left(1-\frac{3}{2} \cdot \frac{2 \mathrm{x}}{3}\right)\left(1+\frac{1}{5} \frac{5}{32} \mathrm{x}\right)\left(1+3 \frac{\mathrm{x}}{3}\right)$
(By neglecting x^{2} and higher powers of x)

$$
\begin{aligned}
& =\frac{2}{27}(1-x)\left(1+\frac{x}{32}\right)(1+x) \\
& =\frac{2}{27}\left(1-x^{2}\right)\left(1+\frac{x}{32}\right)=\frac{2}{27}\left(1+\frac{x}{32}\right)
\end{aligned}
$$

iii) $\sqrt{4-x}\left(3-\frac{x}{2}\right)^{-1} \quad$ Try yourself
iv) $\frac{\sqrt{4+x}+\sqrt[3]{8+x}}{(1+2 x)+(1-2 x)^{-1 / 3}}$ Try yourself
v) $\frac{(8+3 x)^{2 / 3}}{(2+3 x) \sqrt{4-5 x}}$ Try yourself
18. Suppose s and t are positive and t is very small when compared to s, then find an approximate value of $\left(\frac{s}{s+t}\right)^{1 / 3}-\left(\frac{s}{s-t}\right)^{1 / 3}$.

Sol.Since t is very small when compared with $s, t / s$ is very small.

$$
\begin{aligned}
& \left(\frac{\mathrm{s}}{\mathrm{~s}+\mathrm{t}}\right)^{1 / 3}-\left(\frac{\mathrm{s}}{\mathrm{~s}-\mathrm{t}}\right)^{1 / 3}=\left[\frac{1}{1+\frac{\mathrm{t}}{\mathrm{~s}}}\right]^{1 / 3}-\left[\frac{1}{1-\frac{\mathrm{t}}{\mathrm{~s}}}\right]^{1 / 3} \\
& =\left(1+\frac{\mathrm{t}}{\mathrm{~s}}\right)^{-1 / 3}-\left(1-\frac{\mathrm{t}}{\mathrm{~s}}\right)^{-1 / 3} \\
& =\left(1+\left(-\frac{1}{3}\right)\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)}{1 \cdot 2}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)^{2}+\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)\left(-\frac{1}{3}-2\right)}{3!}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)^{3}+\ldots\right) \\
& =\left(1-\left(-\frac{1}{3}\right)\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)}{1 \cdot 2}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)^{2}-\frac{\left(-\frac{1}{3}\right)\left(-\frac{1}{3}-1\right)\left(-\frac{1}{3}-2\right)}{3!}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)^{3}+\ldots\right) \\
& =2\left[-\frac{1}{3}\left(\frac{\mathrm{t}}{\mathrm{~s}}\right)-\frac{1 \cdot 4 \cdot 7}{27 \times 6} \frac{\mathrm{t}^{3}}{\mathrm{~s}^{3}}\right]=\frac{-2}{3} \frac{\mathrm{t}}{\mathrm{~s}}-\frac{28}{81} \frac{\mathrm{t}^{3}}{\mathrm{~s}^{3}}
\end{aligned}
$$

19. Suppose p, q are positive and p is very small when compared to q. Then find an approximate value of $\left(\frac{q}{q+p}\right)^{1 / 2}+\left(\frac{q}{q-p}\right)^{1 / 2}$

Sol. Do it yourself. Same as above.
20. By neglecting x^{4} and higher powers of x, find an approximate value of $\sqrt[3]{x^{2}+64}-\sqrt[3]{x^{2}+27}$.

Sol. $\sqrt[3]{x^{2}+64}-\sqrt[3]{x^{2}+27}$

$$
\begin{aligned}
& =\left(64+x^{2}\right)^{1 / 3}-\left(27+x^{2}\right)^{1 / 3} \\
& =(64)^{1 / 3}\left(1+\frac{x^{2}}{64}\right)^{1 / 3}-(27)^{1 / 3}\left(1+\frac{x^{2}}{27}\right)^{1 / 3} \\
& =4\left(1+\frac{x^{2}}{192}\right)-3\left(1+\frac{x^{2}}{81}\right)
\end{aligned}
$$

(By neglecting x^{4} and higher powers of x)

$$
\begin{aligned}
& =4+\frac{\mathrm{x}^{2}}{48}-3-\frac{\mathrm{x}^{2}}{27}=1+\frac{(27-48)}{48 \times 27} \mathrm{x}^{2} \\
& =1+\left(\frac{-21}{48 \times 27}\right) \mathrm{x}^{2}=1-\frac{7 \mathrm{x}^{2}}{432}=1-\frac{7}{432} \mathrm{x}^{2} \\
& \therefore \sqrt[3]{\mathrm{x}^{2}+64}-\sqrt[3]{\mathrm{x}^{2}+27}=1-\frac{7}{432} \mathrm{x}^{2}
\end{aligned}
$$

21. Expand $3 \sqrt{3}$ in increasing powers of 2/3.

Sol. $3 \sqrt{3}=3^{3 / 2}=\left(\frac{1}{3}\right)^{-3 / 2}=\left(1-\frac{2}{3}\right)^{-3 / 2}$

$$
\begin{aligned}
& =1+\frac{\frac{3}{2}}{1} \cdot\left(\frac{2}{3}\right)+\frac{\frac{3}{2}\left(\frac{3}{2}+1\right)}{1 \cdot 2}\left(\frac{2}{3}\right)^{2}+\ldots \ldots+\frac{\frac{3}{2}\left(\frac{3}{2}+1\right) \ldots . .\left(\frac{3}{2}+r-1\right)}{(1 \cdot 2 \cdot 3 \ldots . . r) 2^{r}}\left(\frac{2}{3}\right)^{r}+\ldots \ldots \\
& =1+\frac{3}{1 \cdot 2}\left(\frac{2}{3}\right)+\frac{3 \cdot 5}{(1 \cdot 2) 2^{2}}\left(\frac{2}{3}\right)^{2}+\ldots \ldots+\frac{3 \cdot 5 \ldots(2 \mathrm{r}+1)}{(1 \cdot 2 \cdot \ldots \mathrm{r}) 2^{r}}\left(\frac{2}{3}\right)^{\mathrm{r}}+\ldots \ldots
\end{aligned}
$$

$=1+3\left(\frac{1}{3}\right)+\frac{3 \cdot 5}{2!}\left(\frac{1}{3}\right)^{2}+\ldots \ldots+\frac{3 \cdot 5 \cdot 7 \ldots(2 r+1)}{r!}\left(\frac{1}{3}\right)^{\mathrm{r}}+\ldots$
22. Prove that $2 \cdot C_{0}+7 \cdot C_{1}+12 \cdot C_{2}+\ldots+(5 n+2) C_{n}=(5 n+4) 2^{n-1}$

Sol.First method:
The coefficients of $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \ldots \mathrm{C}_{\mathrm{n}}$ are in A.P. with first term $\mathrm{a}=2$, C.d. $(\mathrm{d})=5$
$\because \mathrm{a} \cdot \mathrm{C}_{0}+(\mathrm{a}+\mathrm{d}) \mathrm{C}_{1}+(\mathrm{a}+2 \mathrm{~d}) \mathrm{C}_{2}+\ldots+(\mathrm{a}+(\mathrm{n}-1) \mathrm{d}) \mathrm{C}_{\mathrm{n}-1}+(\mathrm{a}+\mathrm{nd}) \mathrm{C}_{\mathrm{n}}$
$=(2 a+n d) 2^{n-1}$
$=(2 \times 2+n \cdot 5) \cdot 2^{n-1}=(4+5 n) 2^{n-1}$

Second method:

General term in L.H.S.
i.e. $T_{r+1}=(5 r+2) C_{n}$

23. Prove that

i) $\mathrm{C}_{0}+3 \mathrm{C}_{1}+3^{2} \mathrm{C}_{2}+\ldots+3^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=4^{\mathrm{n}}$
ii) $\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}+2 \cdot \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}+3 \cdot \frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots+\mathrm{n} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

Sol.(i) We have

$$
(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}
$$

Put $x=3$, we get

$$
\begin{aligned}
& (1+3)^{\mathrm{n}}=\mathrm{C}_{0}+\mathrm{C}_{1} \cdot 3+\mathrm{C}_{2} 3^{2}+\ldots+\mathrm{C}_{\mathrm{n}} 3^{\mathrm{n}} \\
& \therefore \mathrm{C}_{0}+3 \mathrm{C}_{1}+3^{2} \mathrm{C}_{2}+\ldots+3^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=4^{\mathrm{n}}
\end{aligned}
$$

(ii) $\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}+2 \cdot \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}+3 \cdot \frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots+n \frac{\mathrm{C}_{n}}{\mathrm{C}_{\mathrm{n}-1}}$

$$
\begin{aligned}
& =\frac{{ }^{n} C_{1}}{{ }^{n} C_{0}}+2\left(\frac{{ }^{n} C_{2}}{{ }^{n} C_{1}}\right)+3\left(\frac{{ }^{n} C_{3}}{{ }^{n} C_{2}}\right)+\ldots+n\left(\frac{{ }^{n} C_{n}}{{ }^{n} C_{1}}\right) \\
& =\frac{n}{1}+2 \frac{n-1}{2}+3 \frac{n-2}{3}+\ldots+n \frac{1}{n} \\
& =n+(n-1)+(n-2)+\ldots+3+2+1 \\
& =1+2+3+\ldots+n=\frac{n(n+1)}{2}
\end{aligned}
$$

24. For $\mathbf{n}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \mathbf{n}$, prove that $\mathrm{C}_{0} \cdot \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{1} \cdot \mathrm{C}_{\mathrm{r}+1}+\mathrm{C}_{2} \cdot \mathrm{C}_{\mathrm{r}+2}+\ldots+\mathrm{C}_{\mathrm{n}-\mathrm{r}} \cdot \mathrm{C}_{\mathrm{n}}={ }^{2 n} \mathrm{C}_{\mathrm{n}+\mathrm{r}}$ and hence deduce that
i) $\mathrm{C}_{0}^{2}+\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}+\ldots+\mathrm{C}_{\mathrm{n}}^{2}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
ii) $\mathrm{C}_{0} \cdot \mathrm{C}_{1}+\mathrm{C}_{1} \cdot \mathrm{C}_{2}+\mathrm{C}_{2} \cdot \mathrm{C}_{3}+\ldots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}$

Sol.We know that

$$
\begin{equation*}
(1+x)^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n} \tag{1}
\end{equation*}
$$

On replacing x by $1 / x$ in the above equation,

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{n}=C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots+\frac{C_{n}}{x^{n}} . . \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\begin{array}{r}
\left(1+\frac{1}{x}\right)^{n}(1+x)^{n}=\left(C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots+\frac{C_{n}}{x^{n}}\right) \\
\left(C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}\right) \ldots(3) \tag{3}
\end{array}
$$

The coefficient of x^{r} in R.H.S. of (3)
$=\mathrm{C}_{0} \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{1} \mathrm{C}_{\mathrm{r}+1}+\mathrm{C}_{2} \mathrm{C}_{\mathrm{r}+2}+\ldots+\mathrm{C}_{\mathrm{n}-\mathrm{r}} \mathrm{C}_{\mathrm{n}}$

The coefficient of x^{r} in L.H.S. of (3)
$=$ the coefficient of x^{r} in $\frac{(1+x)^{2 n}}{x^{n}}$
$=$ the coefficient of x^{n+r} is $(1+x)^{2 n}$
$={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+\mathrm{r}}$
From (3) and (4), we get

$$
\mathrm{C}_{0} \cdot \mathrm{C}_{1}+\mathrm{C}_{1} \cdot \mathrm{C}_{2}+\mathrm{C}_{2} \cdot \mathrm{C}_{3}+\ldots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1}
$$

i) On putting $r=0$ in (i), we get
$\mathrm{C}_{0}^{2}+\mathrm{C}_{1}^{2}+\mathrm{C}_{2}^{2}+\ldots+\mathrm{C}_{\mathrm{n}}^{2}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}$
ii) On substituting $r=1$ in (i) we get

$$
\begin{gathered}
\mathrm{C}_{0} \cdot \mathrm{C}_{1}+\mathrm{C}_{1} \cdot \mathrm{C}_{2}+\mathrm{C}_{2} \cdot \mathrm{C}_{3}+\ldots+\mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}+1} \\
3 \cdot \mathrm{C}_{0}^{2}+7 \cdot \mathrm{C}_{1}^{2}+11 \cdot \mathrm{C}_{2}^{2}+\ldots+(4 \mathrm{n}+3) \mathrm{C}_{\mathrm{n}}^{2} \\
=(2 \mathrm{n}+3){ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}
\end{gathered}
$$

Sol.Let $S=3 \cdot C_{0}^{2}+7 \cdot C_{1}^{2}+11 \cdot C_{2}^{2}+\ldots+(4 n-1) C_{n-1}^{2}+(4 n+3) C_{n}^{2} \ldots(1)$
$\because \mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{1}=\mathrm{C}_{\mathrm{n}-1}$ etc., on writing the terms of R.H.S. of (1) in the reverse order, we get

$$
\begin{equation*}
S=(4 n+3) C_{0}^{2}+(4 n-1) C_{1}^{2}+\ldots+7 C_{n-1}^{2}+3 C_{n}^{2} \tag{2}
\end{equation*}
$$

Add (1) and (2)

$$
\begin{aligned}
& 2 S=(4 n+6) C_{0}^{2}+(4 n+6) C_{1}^{2}+\ldots+(4 n+6) C_{n}^{2} \\
& \Rightarrow 2 S=(4 n+6)\left(C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+\ldots+C_{n}^{2}\right) \\
& \quad=2(2 n+3){ }^{2 n} C_{n} \\
& \therefore S=(2 n+3)^{2 n} C_{n}
\end{aligned}
$$

25. Find the numerically greatest term(s) in the expansion of
i) $(\mathbf{2}+3 \mathbf{x})^{\mathbf{1 0}}$ when $\mathrm{x}=\frac{11}{8}$

Sol.Write $(2+3 x)^{10}=\left[2\left(1+\frac{3}{2} x\right)^{10}\right]=2^{10}\left(1+\frac{3 x}{2}\right)^{10}$

First find N.G. term in $\left(1+\frac{3 x}{2}\right)^{10}$
Let $X=\frac{3 x}{2}=\frac{3 \times \frac{11}{8}}{2}=\frac{33}{16}$

Now consider

$$
\frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}=\frac{(10+1)\left(\frac{33}{16}\right)}{\frac{33}{16}+1}=\frac{11 \times 33}{48}=\frac{363}{48}
$$

Its integral part $\mathrm{m}=\left[\frac{363}{48}\right]=7$
$\therefore \mathrm{T}_{\mathrm{m}+1}$ is the numerically greatest term in

$$
\left(1+\frac{3 x}{2}\right)^{10}
$$

i.e. $\mathrm{T}_{7+1}=\mathrm{T}_{8}={ }^{10} \mathrm{C}_{7}\left(\frac{3 \mathrm{x}}{2}\right)^{7}$
$={ }^{10} \mathrm{C}_{7}\left(\frac{3}{2} \times \frac{11}{8}\right)^{7}={ }^{10} \mathrm{C}_{7}\left(\frac{33}{16}\right)^{7}$
\therefore N.G. term in the expansion of $(2+3 \mathrm{x})^{10}$ is $=22^{10} \cdot{ }^{10} \mathrm{C}_{7}\left(\frac{33}{16}\right)^{7}$.
ii) $(3 x-4 y)^{14}$ when $x=8, y=3$.

Sol. $(3 x-4 y)^{14}=\left(3 x\left(1-\frac{4 y}{3 x}\right)\right)^{14}$

$$
=(3 x)^{14}\left(1-\frac{4 y}{3 x}\right)^{14}
$$

Write $X=\frac{-4 y}{3 x}=-\left(\frac{4 \times 3}{3 \times 8}\right)=-\frac{1}{2}$
$|X|=\frac{1}{2}$

Now $\frac{(\mathrm{n}+1)|\mathrm{X}|}{1+|\mathrm{X}|}=\frac{(14+1) \frac{1}{2}}{1+\frac{1}{2}}=5$, an integer.

Here $\left|T_{5}\right|=\left|T_{6}\right|$ are N.G. terms.
T_{5} in the expansion of $\left(1-\frac{4 y}{3 x}\right)^{14}$ is
$\mathrm{T}_{5}={ }^{14} \mathrm{C}_{4}\left(\frac{-4 y}{3 \mathrm{x}}\right)^{4}={ }^{14} \mathrm{C}_{4}\left(\frac{1}{2}\right)^{4}$
and $\mathrm{T}_{6}={ }^{14} \mathrm{C}_{5}\left(\frac{-4 y}{3 x}\right)^{5}=-{ }^{14} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{5}$

Here N.G. terms are T_{5} and T_{6}. They are

$$
\mathrm{T}_{5}={ }^{14} \mathrm{C}_{4}\left(\frac{1}{2}\right)^{4}(24)^{14}
$$

$$
\mathrm{T}_{6}=-{ }^{14} \mathrm{C}_{5}\left(\frac{1}{2}\right)^{5}(24)^{14}
$$

But $\left|\mathrm{T}_{5}\right|=\left|\mathrm{T}_{6}\right|$
26. Prove that $6^{2 n}-35 n-1$ is divisible by 1225 for all natural numbers of n.

Sol. $6^{2 n}-35 n-1=(36)^{n}-35 n-1$
$=(35+1)^{\mathrm{n}}-35 \mathrm{n}-1$
$=\left[(35)^{n}+{ }^{n} C_{1}(35)^{n-1}+{ }^{n} C_{2}(35)^{n-2}+\ldots \ldots .+{ }^{n} C_{n-2}(35)^{2}+{ }^{n} C_{n-1}(35)^{1}+{ }^{n} C_{n}\right]-35 n-1$
$=(35)^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1}(35)^{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{2}(35)^{\mathrm{n}-2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-2}(35)^{2}$
$=(35)^{2}\left[\begin{array}{r}(35)^{\mathrm{n}-2}+{ }^{\mathrm{n}} \mathrm{C}_{1}(35)^{\mathrm{n}-3}+{ }^{\mathrm{n}} \mathrm{C}_{2}(35)^{\mathrm{n}-4} \\ +\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-2}\end{array}\right]$
$=1225(\mathrm{k})$, for same integer k .
Hence $6^{2 n}-35 n-1$ is divisible by 1225 for all integral values of n.
27. Find the number of terms with non-zero coefficients in $(4 x-7 y)^{49}+(4 x+7 y)^{49}$.

Sol: We know that

$$
\begin{aligned}
& (4 x-7 y)^{49}={ }^{40} \mathrm{C}_{0}(4 \mathrm{x})^{49}-{ }^{49} \mathrm{C}_{1}(4 \mathrm{x})^{48}(7 \mathrm{y})+{ }^{49} \mathrm{C}_{2}(4 \mathrm{x})^{47}(7 \mathrm{y})^{2}-{ }^{49} \mathrm{C}_{3}(4 \mathrm{x})^{46}(7 \mathrm{y})^{3}+\ldots-{ }^{409} \mathrm{C}_{49}(7 \mathrm{y})^{49} \ldots(1) \\
& (4 \mathrm{x}+7 \mathrm{y})^{49}={ }^{40} \mathrm{C}_{0}(4 \mathrm{x})^{49}+{ }^{49} \mathrm{C}_{1}(4 \mathrm{x})^{48}(7 \mathrm{y})+{ }^{49} \mathrm{C}_{2}(4 \mathrm{x})^{47}(7 \mathrm{y})^{2}+{ }^{49} \mathrm{C}_{3}(4 \mathrm{x})^{46}(7 \mathrm{y})^{3}+\ldots+{ }^{409} \mathrm{C}_{49}(7 \mathrm{y})^{49} \ldots(2) \\
& (1)+(2) \Rightarrow \\
& (4 \mathrm{x}-7 \mathrm{y})^{49}+(4 \mathrm{x}+7 \mathrm{y})^{49}=2\left[^{49} \mathrm{C}_{0}(4 \mathrm{x})^{49}+{ }^{49} \mathrm{C}_{2}(4 \mathrm{x})^{47}(7 \mathrm{y})^{2}+{ }^{49} \mathrm{C}_{4}(4 \mathrm{x})^{45}(7 \mathrm{y})^{4}+\ldots+{ }^{49} \mathrm{C}_{48}(7 \mathrm{y})^{48}\right] \text { which } \\
& \text { contains } 25 \text { non-zero coefficients. }
\end{aligned}
$$

28. Find the sum of last 20 coefficients in the expansion of $(\mathbf{1 + x})^{39}$.

Sol: The last 20 coefficients in the expansion of $(1-\mathrm{x})^{39}$ are ${ }^{30} \mathrm{C}_{20},{ }^{39} \mathrm{C}_{21}, \ldots,{ }^{39} \mathrm{C}_{39}$.
We know that

$$
\begin{aligned}
& \therefore{ }^{39} \mathrm{C}_{0}+{ }^{39} \mathrm{C}_{1}+{ }^{39} \mathrm{C}_{2}+\ldots+{ }^{39} \mathrm{C}_{19}+{ }^{39} \mathrm{C}_{20}+\ldots+{ }^{39} \mathrm{C}_{39}=2^{39} \\
& \Rightarrow{ }^{39} \mathrm{C}_{39}+{ }^{39} \mathrm{C}_{38}+{ }^{39} \mathrm{C}_{37}+\ldots+{ }^{39} \mathrm{C}_{20}+{ }^{39} \mathrm{C}_{20}+{ }^{39} \mathrm{C}_{21}+\ldots+{ }^{39} \mathrm{C}_{39}=2^{39} \\
& \quad\left(\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}\right)
\end{aligned} \begin{aligned}
& \Rightarrow 2\left[{ }^{39} \mathrm{C}_{20}+{ }^{39} \mathrm{C}_{21}+{ }^{39} \mathrm{C}_{22}+\ldots+{ }^{39} \mathrm{C}_{39}\right]=2^{39} \Rightarrow\left[{ }^{39} \mathrm{C}_{20}+{ }^{39} \mathrm{C}_{21}+{ }^{39} \mathrm{C}_{22}+\ldots+{ }^{39} \mathrm{C}_{39}\right]=2^{38}
\end{aligned}
$$

\therefore The sum of last 20 coefficients in expansion of $(1+\mathrm{x})^{39}$ is 2^{38}.
29. If A and B are coefficients of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, then find the value of A / B.

Sol: Coefficient of x^{n} in the expansion of $(1-x)^{2 n}$ is ${ }^{2 n} C_{n}$.
Coefficient of x^{n} in the expansion of

$$
\begin{aligned}
& (1+x)^{2 n-1} \text { is }{ }^{2 n-1} C_{n} . \\
& \therefore A={ }^{2 n} C_{n} \text { and } B={ }^{2 n-1} C_{n} \\
& \begin{aligned}
\therefore \frac{A}{B}= & \frac{{ }^{2 n} C_{n}}{{ }^{2 n-1}} C_{n}
\end{aligned}=\frac{\frac{2 n!}{n!n!}}{\frac{(2 n-1)!}{(n-1)!n!}} \\
& \quad=\frac{2 n!}{(2 n-1)!n!}(n-1)! \\
& \quad=\frac{2 n}{n}=2 \\
& \quad \Rightarrow \frac{A}{B}=2 .
\end{aligned}
$$

30. Find the sum of the following:
i) $\frac{{ }^{15} \mathrm{C}_{1}}{{ }^{15} \mathrm{C}_{0}}+2 \frac{{ }^{15} \mathrm{C}_{2}}{{ }^{15} \mathrm{C}_{1}}+3 \cdot \frac{{ }^{15} \mathrm{C}_{3}}{{ }^{15} \mathrm{C}_{2}}+\ldots+15 \cdot \frac{{ }^{15} \mathrm{C}_{15}}{{ }^{15} \mathrm{C}_{14}}$
ii) $\mathrm{C}_{0} \cdot \mathrm{C}_{3}+\mathrm{C}_{1} \cdot \mathrm{C}_{4}+\mathrm{C}_{2} \cdot \mathrm{C}_{5}+\ldots . .+\mathrm{C}_{\mathrm{n}-3} \cdot \mathrm{C}_{\mathrm{n}}$
iii) $\quad 2^{2} \cdot \mathrm{C}_{0}+3^{2} \cdot \mathrm{C}_{1}+4^{2} \cdot \mathrm{C}_{2}+\ldots+(\mathrm{n}+2)^{2} \mathrm{C}_{\mathrm{n}}$
iv) $3 \mathrm{C}_{0}+6 \mathrm{C}_{1}+12 \mathrm{C}_{2}+\ldots \ldots .+3.2{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$

Sol: i)We know that

$$
\begin{aligned}
\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}} & =\frac{n!}{(n-r)!r!} \times \frac{(r-1)!(n-r+1)!}{n!} \\
& =\frac{n-r+1}{r}
\end{aligned}
$$

$\therefore \frac{{ }^{15} \mathrm{C}_{1}}{{ }^{15} \mathrm{C}_{0}}+2 \frac{{ }^{15} \mathrm{C}_{2}}{{ }^{15} \mathrm{C}_{1}}+3 \cdot \frac{{ }^{15} \mathrm{C}_{3}}{{ }^{15} \mathrm{C}_{2}}+\ldots+15 \cdot{ }^{15} \mathrm{C}_{15}{ }^{15} \mathrm{C}_{14}$
$=\frac{15}{1}+2\left(\frac{14}{2}\right)+3\left(\frac{13}{3}\right)+\ldots+10 \times \frac{1}{10}$
$=15+14+13+\ldots+1$
$=\frac{15 \times 16}{2}=120$
ii) $(1+\mathrm{x})^{\mathrm{n}}=\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots . .+\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \ldots$
$(\mathrm{x}+1)^{\mathrm{n}}=\mathrm{C}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{C}_{2} \mathrm{x}^{\mathrm{n}-2}+\ldots . .+\mathrm{C}_{\mathrm{n}}$.
$(1) \times(2) \Rightarrow(1+x)^{2 n}$
$=\left(\mathrm{C}_{0}+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2} \mathrm{x}^{2}+\ldots . .+\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right)$

$$
\left(\mathrm{C}_{0} \mathrm{x}^{\mathrm{n}}+\mathrm{C}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{C}_{2} \mathrm{x}^{\mathrm{n}-2}+\ldots . .+\mathrm{C}_{\mathrm{n}}\right)
$$

Comparing coefficients of $\mathrm{x}^{\mathrm{n}-3}$ on both sides,

$$
\begin{aligned}
& { }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-3}=\mathrm{C}_{0} \cdot \mathrm{C}_{3}+\mathrm{C}_{1} \cdot \mathrm{C}_{4}+\mathrm{C}_{2} \cdot \mathrm{C}_{5}+\ldots .+\mathrm{C}_{\mathrm{n}-3} \cdot \mathrm{C}_{\mathrm{n}} \\
& \text { i.e. } \mathrm{C}_{0} \cdot \mathrm{C}_{3}+\mathrm{C}_{1} \cdot C_{4}+\mathrm{C}_{2} \cdot \mathrm{C}_{5}+\ldots+\mathrm{C}_{\mathrm{n}-3} \cdot \mathrm{C}_{\mathrm{n}} \\
& \quad={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-3}={ }^{2 n} \mathrm{C}_{\mathrm{n}+3}\left[\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}\right]
\end{aligned}
$$

iii) $2^{2} \cdot \mathrm{C}_{0}+3^{2} \cdot \mathrm{C}_{1}+4^{2} \cdot \mathrm{C}_{2}+\ldots+(\mathrm{n}+2)^{2} \mathrm{C}_{\mathrm{n}}$
$=\sum_{\mathrm{r}=0}^{\mathrm{n}}(\mathrm{r}+2)^{2} \mathrm{C}_{\mathrm{n}}$
$=\sum_{r=0}^{n}\left(r^{2}+4 r+4\right) C_{r}$
$=\sum_{r=0}^{n} r^{2} C_{r}+4 \sum_{r=0}^{n} r C_{r}+4 \sum_{r=0}^{n} C_{r}$
$=\sum_{r=0}^{n} r(r-1) C_{r}+\sum_{r=0}^{n} r C_{r}+4 \sum_{r=0}^{n}{ }^{r} C_{r}+4 \sum_{r=0}^{n} C_{r}$
$=\sum_{\mathrm{r}=2}^{\mathrm{n}} \mathrm{r}(\mathrm{r}-1) \mathrm{C}_{\mathrm{r}}+5 \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{rC} \mathrm{r}_{\mathrm{r}}+4 \sum_{\mathrm{r}=0}^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$
$=\mathrm{n}(\mathrm{n}-1) 2^{\mathrm{n}-2}+5 \mathrm{n} .2^{\mathrm{n}-1}+4.2^{\mathrm{n}}$
$=\left(n^{2}+9 n+44\right) 2^{n-2}$
$=\left(n^{2}+9 n+16\right) 2^{n-2}$.
iv) $3 \mathrm{C}_{0}+6 \mathrm{C}_{1}+12 \mathrm{C}_{2}+\ldots \ldots .+3.2{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}$
$=\sum_{\mathrm{r}=0}^{\mathrm{n}} 3 \cdot 2^{\mathrm{r}} \cdot \mathrm{C}_{\mathrm{r}}$
$=3 \sum_{\mathrm{r}=0}^{\mathrm{n}} 2^{\mathrm{r}} \cdot \mathrm{C}_{\mathrm{r}}$
$=3\left[1+\mathrm{C}_{1}(2)+\mathrm{C}_{2}\left(2^{2}\right)+\mathrm{C}_{3}\left(2^{3}\right)+\ldots+\mathrm{C}_{\mathrm{n}} 2^{\mathrm{n}}\right)$
$=3[1+2]^{n}$
$=3 \cdot 3^{\mathrm{n}}$
$=3^{\mathrm{n}+1}$.
31.If $\left(1+x+x^{2}+x^{3}\right)^{7}=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{21} x^{21}$, then find the value of
i) $\mathrm{b}_{0}+\mathrm{b}_{2}+\mathrm{b}_{4}+\ldots .+\mathrm{b}_{20}$
ii) $b_{1}+b_{3}+b_{5}+\ldots+b_{21}$

Sol: Given
$\left(1+x+x^{2}+x^{3}\right)^{7}=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{21} x^{21}$.
Substituting $x=1$ in (1),
We get
$\mathrm{b}_{0}+\mathrm{b}_{1}+\mathrm{b}_{2}+\ldots .+\mathrm{b}_{20}+\mathrm{b}_{21}=4^{7}$
Substituting $x=-1$ in (1),
We get $b_{0}-b_{1}+b_{2}+\ldots .+b_{20}-b_{21}=0$
i) $(2)+(3)$

$$
\Rightarrow 2 \mathrm{~b}_{0}+2 \mathrm{~b}_{2}+2 \mathrm{~b}_{4}+\ldots+2 \mathrm{~b}_{20}=4^{7}
$$

ii) $(2)-(3)$

$$
\begin{aligned}
& \Rightarrow 2 b_{1}+2 b_{3}+2 b_{5}+\ldots+2 b_{21}=4^{7} \\
& \Rightarrow b_{1}+b_{3}+b_{5}+\ldots .+b_{21}=2^{13}
\end{aligned}
$$

32. If the coefficients of x^{11} and x^{12} in the binomial expansion of $\left(2+\frac{8 x}{3}\right)^{n}$ are equal, find n.

Sol: We know that $\left(2+\frac{8 x}{3}\right)^{n}=2^{n}\left(1+\frac{4 x}{3}\right)^{n}$
Coefficient of x^{11} in the expansion of

$$
\left(2+\frac{8 x}{3}\right)^{n} \text { is }{ }^{n} C_{11} \cdot 2^{n}\left(\frac{4}{3}\right)^{11}
$$

Coefficient of x^{12} in the expansion of

$$
\left(2+\frac{8 \mathrm{x}}{3}\right)^{\mathrm{n}} \text { is }{ }^{\mathrm{n}} \mathrm{C}_{12} \cdot 2^{\mathrm{n}}\left(\frac{4}{3}\right)^{12}
$$

Given coefficients of x^{11} and x^{12} are same

$$
\begin{aligned}
& \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{11} \cdot 2^{\mathrm{n}}\left(\frac{4}{3}\right)^{11}={ }^{\mathrm{n}} \mathrm{C}_{12} \cdot 2^{\mathrm{n}}\left(\frac{4}{3}\right)^{12} \\
& \Rightarrow \frac{\mathrm{n}!}{(\mathrm{n}-11)!11!}=\frac{\mathrm{n}!}{(\mathrm{n}-12)!12!}\left(\frac{4}{3}\right) \\
& \Rightarrow 12=(\mathrm{n}-11) \frac{4}{3} \\
& \Rightarrow 9=\mathrm{n}-11 \\
& \Rightarrow \mathrm{n}=20 .
\end{aligned}
$$

33. Find the remainder when $2^{\mathbf{2 0 1 3}}$ is divided by 17.

Sol: We have 2^{2013}

$$
\begin{aligned}
& =2\left(2^{2012}\right) \\
& =2\left(2^{4}\right)^{503} \\
& =2(16)^{503} \\
& =2(17-1)^{503} \\
& =2\left[{ }^{503} \mathrm{C}_{0} 17^{503}-{ }^{503} \mathrm{C}_{1} 17{ }^{502}+{ }^{503} \mathrm{C}_{2} 17^{501}-\ldots . .+{ }^{503} \mathrm{C}_{502} 17-{ }^{503} \mathrm{C}_{503}\right]
\end{aligned}
$$

$=2\left[{ }^{503} \mathrm{C}_{0} 17{ }^{503}-{ }^{503} \mathrm{C}_{1} 17{ }^{502}+{ }^{503} \mathrm{C}_{2} 17^{501}-\ldots . . .+{ }^{503} \mathrm{C}_{502} 17\right]-2$
$=17 \mathrm{~m}-2$ where m is some integer.
$\therefore 2^{2013}=17 \mathrm{~m}-2$ (or) $17 \mathrm{k}+15$
\therefore The remainder is -2 or 15 .

Long Answer Questions

1. If $\mathbf{3 6}, \mathbf{8 4}, \mathbf{1 2 6}$ are three successive binomial coefficients in the expansion of $(1+x)^{\mathbf{n}}$, find \mathbf{n}.

Sol.Let ${ }^{n} C_{r-1},{ }^{n} C_{r},{ }^{n} C_{r+1}$ are three successive binomial coefficients in the expansion of $(1+x)^{n}$, find n.

Then ${ }^{n} C_{r-1}=36,{ }^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$

Now $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{84}{36} \Rightarrow \frac{n-r+1}{r}=\frac{7}{3}$
$3 n-3 r+3=7 r \Rightarrow 3 n=10 r-3$
$\Rightarrow \frac{3 \mathrm{n}+3}{10}=\mathrm{r}$
$\Rightarrow \frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}=\frac{126}{84} \Rightarrow \frac{\mathrm{n}-\mathrm{r}}{\mathrm{r}+1}=\frac{3}{2}$
$\Rightarrow 2 \mathrm{n}-2 \mathrm{r}=3 \mathrm{r}+3 \Rightarrow 2 \mathrm{n}=5 \mathrm{r}+3$
$\Rightarrow 2 \mathrm{n}=5\left(\frac{3 \mathrm{n}+3}{10}\right)+3$ from (1)
$\Rightarrow 2 \mathrm{n}=\frac{3 \mathrm{n}+3+6}{2} \Rightarrow 4 \mathrm{n}=3 \mathrm{n}+9 \Rightarrow \mathrm{n}=9$
2. If the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(a+x)^{n}$ are respectively $240,720,1080$, find a, \mathbf{x}, \mathbf{n}.

Sol. $T_{2}=240 \Rightarrow{ }^{n} C_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{x}=240$
$\mathrm{T}_{3}=720 \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{x}^{2}=720$
$\mathrm{T}_{4}=1080 \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{a}^{\mathrm{n}-3} \mathrm{x}^{3}=1080$
$\frac{(2)}{(1)} \Rightarrow \frac{{ }^{n} C_{2} a^{n-2} x^{2}}{{ }^{n} C_{1} a^{n-1} x}=\frac{720}{240}$
$\Rightarrow \frac{\mathrm{n}-1}{2} \frac{\mathrm{x}}{\mathrm{a}}=3 \Rightarrow(\mathrm{n}-1) \mathrm{x}=6 \mathrm{a}$
$\frac{(3)}{(2)} \Rightarrow \frac{{ }^{n} C_{3} a^{n-3} x^{3}}{{ }^{n} C_{2} a^{n-2} x^{2}}=\frac{1080}{720} \Rightarrow \frac{n-2}{3} \frac{x}{a}=\frac{3}{2} \Rightarrow 2(n-2) x=9 a \ldots$ (5)
$\frac{(4)}{(5)} \Rightarrow \frac{(\mathrm{n}-1) \mathrm{x}}{2(\mathrm{n}-2) \mathrm{x}}=\frac{6 \mathrm{a}}{9 \mathrm{a}} \Rightarrow \frac{\mathrm{n}-1}{2 \mathrm{n}-4}=\frac{2}{3}$
$\Rightarrow 3 \mathrm{n}-3=4 \mathrm{n}-8 \Rightarrow \mathrm{n}=5$

From (4), $(5-1) x=6 a \Rightarrow 4 x=6 a$
$\Rightarrow \mathrm{x}=\frac{3}{2} \mathrm{a}$

Substitute $\mathrm{x}=\frac{3}{2} \mathrm{a}, \mathrm{n}=5$ in (1)

$$
\begin{aligned}
& { }^{5} \mathrm{C}_{1} \cdot \mathrm{a}^{4} \cdot \frac{3}{2} \mathrm{a}=240 \Rightarrow 5 \times \frac{3}{2} \mathrm{a}^{5}=240 \\
& \mathrm{a}^{5}=\frac{480}{15}=32=2^{5}
\end{aligned}
$$

$\therefore \mathrm{a}=2, \mathrm{x}=\frac{3}{2} \mathrm{a}=\frac{3}{2}(2)=3 \quad \therefore \mathrm{a}=2, \mathrm{x}=3, \mathrm{n}=5$
3. If the coefficients of $r^{\text {th }},(r+1)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the expansion of $(1+x)^{\text {th }}$ are in A.P. then show that $n^{2}-(4 r+1) n+4 r^{2}-2=0$.

Sol.Coefficient of $\mathrm{T}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}$

Coefficient of $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$

Coefficient of $\mathrm{T}_{\mathrm{r}+2}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}$
Given ${ }^{n} C_{r-1},{ }^{n} C_{r},{ }^{n} C_{r+1}$ are in A.P.
$\Rightarrow 2{ }^{n} C_{r}={ }^{n} C_{r-1}+{ }^{n} C_{r+1}$
$\Rightarrow 2 \frac{n!}{(n-r)!r!}=\frac{n!}{(n-r+1)!(r-1)!}+\frac{n!}{(n-r-1)!(r+1)!}$
$\Rightarrow \frac{2}{(n-r) r}=\frac{1}{(n-r+1)(n-r)}+\frac{1}{(r+1) r}$
$\Rightarrow \frac{1}{\mathrm{n}-\mathrm{r}}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{n}-\mathrm{r}+1}\right]=\frac{1}{(\mathrm{r}+1) \mathrm{r}}$
$\Rightarrow \frac{1}{n-r}\left[\frac{2 n-2 r+2-r}{r(n-r+1)}\right]=\frac{1}{r(r+1)}$
$\Rightarrow(2 \mathrm{n}-3 \mathrm{r}+2)(\mathrm{r}+1)=(\mathrm{n}-\mathrm{r})(\mathrm{n}-\mathrm{r}+1)$
$\Rightarrow 2 \mathrm{nr}+2 \mathrm{n}-3 \mathrm{r}^{2}-3 \mathrm{r}+2 \mathrm{r}+2=\mathrm{n}^{2}-2 \mathrm{nr}+\mathrm{r}^{2}+\mathrm{n}-\mathrm{r}$
$\Rightarrow \mathrm{n}^{2}-4 \mathrm{nr}+4 \mathrm{r}^{2}-\mathrm{n}-2=0$
$\therefore \mathrm{n}^{2}-(4 \mathrm{r}+1) \mathrm{n}+4 \mathrm{r}^{2}-2=0$
4. Find the sum of the coefficients of $\mathrm{x}^{\mathbf{3 2}}$ and $\mathbf{x}^{\mathbf{- 1 8}}$ in the expansion of $\left(2 \mathrm{x}^{3}-\frac{3}{\mathrm{x}^{2}}\right)^{14}$.

Sol.The general term in $\left(2 x^{3}-\frac{3}{x^{2}}\right)^{14}$ is:

$$
\begin{align*}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{14} \mathrm{C}_{\mathrm{r}}\left(2 \mathrm{x}^{3}\right)^{14-\mathrm{r}}\left(-\frac{3}{\mathrm{x}^{2}}\right)^{\mathrm{r}} \\
& =(-1)^{\mathrm{r}}{ }^{14} \mathrm{C}_{\mathrm{r}}(2)^{14-\mathrm{r}} \cdot(3)^{\mathrm{r}} \cdot \mathrm{x}^{42-\mathrm{r}} \cdot \mathrm{x}^{-2 \mathrm{r}} \\
& =(-1)^{\mathrm{r}} \cdot{ }^{14} \mathrm{C}_{\mathrm{r}} 2^{14-\mathrm{r}}(3)^{\mathrm{r}} \mathrm{x}^{42-5 \mathrm{r}} \tag{1}
\end{align*}
$$

From coefficients of x^{32},

Put $42-5 r=32 \Rightarrow 5 r=10 \Rightarrow r=2$
Put $r=2$ in equation (1)

$$
\begin{aligned}
\mathrm{T}_{3} & =(-1)^{2}{ }^{14} \mathrm{C}_{2}(2)^{12}(3)^{2} \cdot \mathrm{x}^{42-10} \\
& ={ }^{14} \mathrm{C}_{2}(2)^{12}(3)^{2} \cdot \mathrm{x}^{32}
\end{aligned}
$$

Coefficient of x^{32} is ${ }^{14} \mathrm{C}_{2}(2)^{12}(3)^{2}$
For coefficient of x^{-18}
Put $42-5 r=-18 \Rightarrow 5 r=60 \Rightarrow r=12$
Put $\mathrm{r}=12$ in equation (1)

$$
\begin{aligned}
\mathrm{T}_{13} & =(-1)^{12{ }^{14}} \mathrm{C}_{12}(2)^{2}(3)^{12} \cdot \mathrm{x}^{42-60} \\
& ={ }^{14} \mathrm{C}_{12}(2)^{2}(3)^{12} \cdot \mathrm{x}^{-18}
\end{aligned}
$$

\therefore Coefficient of x^{-18} is ${ }^{14} \mathrm{C}_{12}(2)^{2} 3^{12}$
Hence sum of the coefficients of x^{32} and x^{-18} is ${ }^{14} \mathrm{C}_{2}(2)^{12}(3)^{2}+{ }^{14} \mathrm{C}_{12}(2)^{2}(3)^{12}$.
5. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of $(x+a)^{n}$ then prove that
(i) $\mathbf{P}^{2}-\mathbf{Q}^{2}=\left(\mathbf{x}^{2}-\mathbf{a}^{2}\right)^{\mathrm{n}}$
(ii) $4 P Q=(x+a)^{2 n}-(x-a)^{2 n}$

Sol. $(x+a)^{n}={ }^{n} C_{0} x^{n}+{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots+{ }^{n} C_{n-1} x^{n-1}+{ }^{n} C_{n} a^{n}$
$=\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{4} x^{n-4} a^{4}+\ldots\right)+\left({ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+{ }^{n} C_{5} x^{n-5} a^{5}+\ldots\right)$
$=P+Q$
$(x-a)^{n}={ }^{n} C_{0} x^{n}-{ }^{n} C_{1} x^{n-1} a+{ }^{n} C_{2} x^{n-2} a^{2}-{ }^{n} C_{3} x^{n-3} a^{3}+\ldots+{ }^{n} C_{n}(-1)^{n} a^{n}$
$=\left({ }^{n} C_{0} x^{n}+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{4} x^{n-4} a^{4}+\ldots\right)-\left({ }^{n} C_{2} x^{n-1} a+{ }^{n} C_{3} x^{n-3} a^{3}+{ }^{n} C_{5} x^{n-5} a^{5}+\ldots\right)$
$=\mathrm{P}-\mathrm{Q}$
i) $\mathrm{P}^{2}-\mathrm{Q}^{2}=(\mathrm{P}+\mathrm{Q})(\mathrm{P}-\mathrm{Q})$

$$
\begin{aligned}
& =(x+a)^{n}(x-a)^{n} \\
& =[(x+a)(x-a)]^{n}=\left(x^{2}-a^{2}\right)^{n}
\end{aligned}
$$

ii) $4 P Q=(P+Q)^{2}-(P-Q)^{2}$

$$
\begin{aligned}
& =\left[(x+a)^{n}\right]^{2}-\left[(x-a)^{n}\right]^{2} \\
& =(x+a)^{2 n}-(x-a)^{2 n}
\end{aligned}
$$

6. If the coefficients of 4 consecutive terms in the expansion of $(1+x)^{n}$ are $a_{1}, a_{2}, a_{3}, a_{4}$ respectively, then show that

$$
\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{2 a_{2}}{a_{2}+a_{3}}
$$

Sol.Given $a_{1}, a_{2}, a_{3}, a_{4}$ are the coefficients of 4 consecutive terms in $(1+x)^{n}$ respectively.
Let $\mathrm{a}_{1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}, \mathrm{a}_{2}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}, \mathrm{a}_{3}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}, \mathrm{a}_{4}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}$
L.H.S: $\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{a_{1}}{a_{1}\left(1+\frac{a_{2}}{a_{1}}\right)}+\frac{a_{3}}{a_{3}\left(1+\frac{a_{4}}{a_{3}}\right)}$

$$
\begin{aligned}
& =\frac{1}{1+\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}}+\frac{1}{1+\frac{{ }^{n} C_{r+2}}{{ }^{n} C_{r+1}}}=\frac{1}{1+\frac{n-r+1}{r}}+\frac{1}{1+\frac{n-r-1}{r+2}} \\
& =\frac{r}{n+1}+\frac{r+2}{r+2+n-r-1}=\frac{r+r+2}{n+1}=\frac{2(r+1)}{n+1}
\end{aligned}
$$

R.H.S: $\frac{2 a_{2}}{a_{2}+a_{3}}=\frac{2 a_{2}}{a_{2}\left(1+\frac{a_{3}}{a_{2}}\right)}$
$\frac{2}{1+\frac{{ }^{n} C_{r+1}}{{ }^{n} C_{r}}}=\frac{2}{1+\frac{n-r}{r+1}}=\frac{2(r+1)}{n+1}=$ L.H.S
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{1}+\mathrm{a}_{2}}+\frac{\mathrm{a}_{3}}{\mathrm{a}_{3}+\mathrm{a}_{4}}=\frac{2 \mathrm{a}_{2}}{\mathrm{a}_{2}+\mathrm{a}_{3}}$
7. Prove that $\left({ }^{2 n} C_{0}\right)^{2}-\left({ }^{2 n} C_{1}\right)^{2}+\left({ }^{2 n} C_{2}\right)^{2}-\left({ }^{2 n} C_{3}\right)^{2}+\ldots+\left({ }^{2 n} C_{2 n}\right)^{2}=(-1)^{n}{ }^{2 n} C_{n}$

Sol. $(x+1)^{2 n}={ }^{2 n} C_{0} x^{2 n}+{ }^{2 n} C_{1} x^{2 n-1}+{ }^{2 n} C_{2} x^{2 n-2}+\ldots+{ }^{2 n} C_{2 n}$

$$
(x-1)^{2 n}={ }^{2 n} C_{0}-{ }^{2 n} C_{1} x+{ }^{2 n} C_{2} x^{2}+\ldots+{ }^{2 n} C_{2 n} x^{2 n}
$$

Multiplying eq. (1) and (2), we get

$$
\begin{aligned}
& \left({ }^{2 n} \mathrm{C}_{0} \mathrm{x}^{2 \mathrm{n}}+{ }^{2 \mathrm{n}} \mathrm{C}_{1} \mathrm{x}^{2 \mathrm{n}-1}+{ }^{2 \mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2 \mathrm{n}-2}+\ldots+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}}\right) \\
& \left({ }^{2 \mathrm{n}} \mathrm{C}_{0}-{ }^{2 \mathrm{n}} \mathrm{C}_{1} \mathrm{x}+{ }^{2 \mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{2}+\ldots+{ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}} \mathrm{x}^{2 \mathrm{n}}\right) \\
& =(\mathrm{x}+1)^{2 \mathrm{n}}(1-\mathrm{x})^{2 \mathrm{n}}=[(1+\mathrm{x})(1-\mathrm{x})]^{2 \mathrm{n}} \\
& =\left(1-\mathrm{x}^{2}\right)^{2 \mathrm{n}}=\sum_{\mathrm{r}=0}^{2 \mathrm{n}}{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}\left(-x^{2}\right)^{\mathrm{r}}
\end{aligned}
$$

Equating the coefficients of $x^{2 n}$
$\left({ }^{2 n} C_{0}\right)^{2}-\left({ }^{2 n} C_{1}\right)^{2}+\left({ }^{2 n} C_{2}\right)^{2}-\left({ }^{2 n} C_{3}\right)^{2}+\ldots+\left({ }^{2 n} C_{2 n}\right)^{2}=(-1)^{n}{ }^{2 n} C_{n}$
8. Prove that $\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)\left(C_{2}+C_{3}\right) \ldots\left(C_{n-1}+C_{n}\right)=\frac{(n+1)^{n}}{n!} \cdot C_{0} \cdot C_{1} \cdot C_{2} \cdot \ldots C_{n}$

Sol. $\quad\left(\mathrm{C}_{0}+\mathrm{C}_{1}\right)\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)\left(\mathrm{C}_{2}+\mathrm{C}_{3}\right) \ldots\left(\mathrm{C}_{\mathrm{n}-1}+\mathrm{C}_{\mathrm{n}}\right)=$

$$
\begin{aligned}
& =C_{0}\left(1+\frac{C_{1}}{C_{0}}\right) \cdot C_{1}\left(1+\frac{C_{2}}{C_{1}}\right) \ldots C_{n-1}\left(1+\frac{C_{n}}{C_{n-1}}\right) \\
& =\left(1+\frac{{ }^{n} C_{1}}{{ }^{n} C_{0}}\right)\left(1+\frac{{ }^{n} C_{2}}{{ }^{n} C_{1}}\right) \ldots . . .\left(1+\frac{{ }^{n} C_{n}}{{ }^{n} C_{n-1}}\right) C_{0} C_{1} C_{2} \ldots C_{n-1} \\
& =\left(1+\frac{n}{1}\right)\left(1+\frac{n-1}{2}\right) \ldots\left(1+\frac{1}{n}\right) C_{n} \cdot C_{1} \cdot C_{2} \cdot \ldots C_{n-1}\left[C_{0}=C_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1+n}{1}\right)\left(\frac{1+n}{2}\right) \ldots \ldots\left(\frac{1+n}{n}\right) C_{1} \cdot C_{2} \cdot \ldots C_{n-1} \cdot C_{n} \\
& =\frac{(1+n)^{n}}{n!} C_{1} C_{2} \ldots C_{n} \\
& \therefore\left(C_{0}+C_{1}\right)\left(C_{1}+C_{2}\right)\left(C_{2}+C_{3}\right) \ldots\left(C_{n-1}+C_{n}\right)=\frac{(n+1)^{n}}{n!} \cdot C_{0} \cdot C_{1} \cdot C_{2} \cdot \ldots C_{n}
\end{aligned}
$$

9. Find the term independent of x in $(1+3 x)^{n}\left(1+\frac{1}{3 x}\right)^{n}$.

Sol. $(1+3 x)^{n}\left(1+\frac{1}{3 x}\right)^{n}=(1+3 x)^{n}\left(\frac{3 x+1}{3 x}\right)^{n}$

$$
=\left(\frac{1}{3 \mathrm{x}}\right)^{\mathrm{n}}(1+3 \mathrm{x})^{2 \mathrm{n}}=\frac{1}{3^{\mathrm{n}} \cdot \mathrm{x}^{\mathrm{n}}} \sum_{\mathrm{r}=0}^{2 \mathrm{n}}\left({ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}\right)(3 \mathrm{x})^{\mathrm{r}}
$$

The term independent of x in

$$
(1+3 x)^{n}\left(1+\frac{1}{3 x}\right)^{n} \text { is } \frac{1}{3^{n}}\left({ }^{2 n} C_{n}\right) 3^{n}={ }^{2 n} C_{n}
$$

10. If $\left(1+3 x-2 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{20} x^{20}$ then prove that
i) $a_{0}+a_{1}+a_{2}+\ldots+a_{20}=2^{10}$
ii) $\mathrm{a}_{0}-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3}+\ldots+\mathrm{a}_{20}=4^{10}$

Sol. $\left(1+3 x-2 x^{2}\right)^{10}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{20} x^{20}$
i) Put $x=1$

$$
\begin{aligned}
& (1+3-2)^{10}=\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{20} \\
& \therefore \mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2}+\ldots+\mathrm{a}_{20}=2^{10}
\end{aligned}
$$

ii) Put $x=-1$
$(1-3-2)^{10}=a_{0}-a_{1}+a_{2}+\ldots+a_{20}$
$\therefore \mathrm{a}_{0}-\mathrm{a}_{1}+\mathrm{a}_{2}-\mathrm{a}_{3}+\ldots+\mathrm{a}_{20}=(-4)^{10}=4^{10}$
11. If \mathbf{R}, \mathbf{n} are positive integers, \boldsymbol{n} is odd, $\boldsymbol{0}<\mathbf{F}<\mathbf{1}$ and if $(5 \sqrt{5}+11)^{\mathrm{n}}=\mathrm{R}+\mathrm{F}$, then prove that
i) R is an even integer and
ii) $(R+F) F=4^{n}$.

Sol.i) Since R, n are positive integers, $0<\mathrm{F}<1$ and $(5 \sqrt{5}+11)^{\mathrm{n}}=\mathrm{R}+\mathrm{F}$
Let $(5 \sqrt{5}-11)^{\mathrm{n}}=\mathrm{f}$
Now, $11<5 \sqrt{5}<12 \Rightarrow 0<5 \sqrt{5}-11<1$
$\Rightarrow 0<(5 \sqrt{5}-11)^{\mathrm{n}}<1 \Rightarrow 0<\mathrm{f}<1 \Rightarrow 0>-\mathrm{f}>-1 \therefore-1<-\mathrm{f}<0$
$\mathrm{R}+\mathrm{F}-\mathrm{f}=(5 \sqrt{5}+11)^{\mathrm{n}}-(5 \sqrt{5}-11)^{\mathrm{n}}$
$=\left[\begin{array}{c}{ }^{\mathrm{n}} \mathrm{C}_{0}(5 \sqrt{5})^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1}(5 \sqrt{5})^{\mathrm{n}-1}(11)+ \\ { }^{\mathrm{n}} \mathrm{C}_{2}(5 \sqrt{5})^{\mathrm{n}-2}(11)^{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(11)^{\mathrm{n}}\end{array}\right]-\left[\begin{array}{c}{ }^{\mathrm{n}} \mathrm{C}_{0}(5 \sqrt{5})^{\mathrm{n}}-{ }^{\mathrm{n}} \mathrm{C}_{1}(5 \sqrt{5})^{\mathrm{n}-1}(11)+ \\ { }^{\mathrm{n}} \mathrm{C}_{2}(5 \sqrt{5})^{\mathrm{n}-2}(11)^{2}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(-11)^{\mathrm{n}}\end{array}\right]$
$=2\left[{ }^{\mathrm{n}} \mathrm{C}_{1}(5 \sqrt{5})^{\mathrm{n}-1}(11)+{ }^{\mathrm{n}} \mathrm{C}_{3}(5 \sqrt{5})^{\mathrm{n}-3}(11)^{2}+\ldots\right]$
$=2 \mathrm{k}$ where k is an integer.
$\therefore \mathrm{R}+\mathrm{F}-\mathrm{f}$ is an even integer.
$\Rightarrow \mathrm{F}-\mathrm{f}$ is an integer since R is an integer.
But $0<\mathrm{F}<1$ and $-1<-\mathrm{f}<0 \Rightarrow-1<\mathrm{F}-\mathrm{f}<1$
$\therefore \mathrm{F}-\mathrm{f}=0 \Rightarrow \mathrm{~F}=\mathrm{f}$
$\therefore \mathrm{R}$ is an even integer.
ii) $(R+F) F=(R+F) f, \quad \because F=f$
$=(5 \sqrt{5}+11)^{\mathrm{n}}(5 \sqrt{5}-11)^{\mathrm{n}}$
$=[(5 \sqrt{5}+11)(5 \sqrt{5}-11)]^{\mathrm{n}}=(125-121)^{\mathrm{n}}=4^{\mathrm{n}}$
$\therefore(\mathrm{R}+\mathrm{F}) \mathrm{F}=4^{\mathrm{n}}$.
12. If I , \mathbf{n} are positive integers, $\mathbf{0}<\mathbf{f}<\mathbf{1}$ and if $(7+4 \sqrt{3})^{\mathrm{n}}=\mathrm{I}+\mathrm{f}$, then show that
(i) I is an odd integer and (ii) $(I+f)(I-f)=1$.

Sol.Given I, n are positive integers and

$$
(7+4 \sqrt{3})^{\mathrm{n}}=\mathrm{I}+\mathrm{f}, 0<\mathrm{f}<1
$$

Let $7-4 \sqrt{3}=F$
Now $6<4 \sqrt{3}<7 \Rightarrow-6>-4 \sqrt{3}>-7$
$\Rightarrow 1>7-4 \sqrt{3}>0 \Rightarrow 0<(7-4 \sqrt{3})^{\mathrm{n}}<1$
$\therefore 0<\mathrm{F}<1$
$1+\mathrm{f}+\mathrm{F}=(7+4 \sqrt{3})^{\mathrm{n}}(7-4 \sqrt{3})^{\mathrm{n}}$
$=\left[\begin{array}{r}{ }^{\mathrm{n}} \mathrm{C}_{0} 7^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} 7^{\mathrm{n}-1}(4 \sqrt{3})+{ }^{\mathrm{n}} \mathrm{C}_{2} 7^{\mathrm{n}-2}(4 \sqrt{3})^{2} \\ +\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(4 \sqrt{3})^{\mathrm{n}}\end{array}\right]$
$=\left[\begin{array}{r}{ }^{\mathrm{n}} \mathrm{C}_{0} 7^{\mathrm{n}}-{ }^{\mathrm{n}} \mathrm{C}_{1} 7^{\mathrm{n}-1}(4 \sqrt{3})+{ }^{\mathrm{n}} \mathrm{C}_{2} 7^{\mathrm{n}-2}(4 \sqrt{3})^{2} \\ +\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}(-4 \sqrt{3})^{\mathrm{n}}\end{array}\right]$
$=2\left[{ }^{\mathrm{n}} \mathrm{C}_{0} 7^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{2} 7^{\mathrm{n}-2}(4 \sqrt{3})^{2} \ldots \ldots ..\right]$
$=2 \mathrm{k}$ where k is an integer.
$\therefore 1+\mathrm{f}+\mathrm{F}$ is an even integer.
$\Rightarrow f+F$ is an integer since I is an integer.
But $0<\mathrm{f}<1$ and $0<\mathrm{F}<1 \Rightarrow \mathrm{f}+\mathrm{F}<2$
$\therefore \mathrm{f}+\mathrm{F}=1$
$\Rightarrow \mathrm{I}+1$ is an even integer.
$\therefore \mathrm{I}$ is an odd integer.

$$
\begin{aligned}
(I+ & f)(I-f)=(I+f) F, \text { by }(1) \\
& =(7+4 \sqrt{3})^{n}(7-4 \sqrt{3})^{n} \\
& =[(7+4 \sqrt{3})(7-4 \sqrt{3})]^{n}=(49-48)^{n}=1
\end{aligned}
$$

13. If n is a positive integer, prove that $\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)^{2}=\frac{(n)(n+1)^{2}(n+2)}{12}$.

Sol. $\sum_{r=1}^{n} r^{3}\left(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}\right)^{2}=\sum_{r=1}^{n} r^{3}\left(\frac{n-r+1}{r}\right)^{2}$

$$
\begin{aligned}
& =\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}(\mathrm{n}-\mathrm{r}+1)^{2}=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}\left[(\mathrm{n}+1)^{2}-2(\mathrm{n}+1) \mathrm{r}+\mathrm{r}^{2}\right] \\
& =(\mathrm{n}+1)^{2} \Sigma \mathrm{r}-2(\mathrm{n}+1) \Sigma \mathrm{r}^{2}+\Sigma \mathrm{r}^{3} \\
& =(\mathrm{n}+1)^{2} \frac{(\mathrm{n})(\mathrm{n}+1)}{2}
\end{aligned}
$$

$$
-2(\mathrm{n}+1) \frac{(\mathrm{n})(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}
$$

$$
\begin{aligned}
& =\frac{(n+1)^{2}}{2}\left[n(n+1)-\frac{2 n(2 n+1)}{3}+\frac{n^{2}}{2}\right] \\
& =\frac{(n+1)^{2}}{2}\left[\frac{6 n^{2}+6 n-8 n^{2}-4 n+3 n^{2}}{6}\right] \\
& =\frac{(n+1)^{2}}{2}\left[\frac{n^{2}+2 n}{6}\right]=\frac{n(n+1)^{2}(n+2)}{12}
\end{aligned}
$$

14. If $x=\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{3 \cdot 6 \cdot 9 \cdot 12}+\ldots$ then prove that $9 x^{2}+\mathbf{2 4 x}=\mathbf{1 1}$.

Sol. Given $x=\frac{1 \cdot 3}{3 \cdot 6}+\frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{3 \cdot 6 \cdot 9 \cdot 12}+\ldots$

$$
\begin{aligned}
& =\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{3}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{3}\right)^{2}+\ldots \\
& =1+\frac{1}{1} \cdot \frac{1}{3}+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{3}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{3}\right)^{2}+\ldots-\left[1+\frac{1}{3}\right]
\end{aligned}
$$

Here $\mathrm{p}=1, \mathrm{q}=2, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{3} \Rightarrow \mathrm{x}=\frac{2}{3}$

$$
\begin{aligned}
& =(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}-\frac{4}{3}=\left(1-\frac{2}{3}\right)^{-1 / 2}-\frac{4}{3} \\
& =\left(\frac{1}{3}\right)^{-1 / 2}-\frac{4}{3}=\sqrt{3}-\frac{4}{3} \\
& \Rightarrow 3 x+4=3 \sqrt{3}
\end{aligned}
$$

Squaring on both sides

$$
\begin{aligned}
& (3 x+4)^{2}=(3 \sqrt{3})^{2} \Rightarrow 9 x^{2}+24 x+16=27 \\
& \Rightarrow 9 x^{2}+24 x=11
\end{aligned}
$$

15. (i) Find the coefficient of x^{5} in $\frac{(1-3 x)^{2}}{(3-x)^{3 / 2}}$.

Sol. $\frac{(1-3 x)^{2}}{(3-x)^{3 / 2}}=\frac{(1-3 x)^{2}}{\left[3\left(1-\frac{x}{3}\right)\right]^{3 / 2}}=\frac{(1-3 x)^{2}}{3^{3 / 2}\left(1-\frac{x}{3}\right)^{3 / 2}}$
$=\frac{1}{3^{3 / 2}}(1-3 \mathrm{x})^{2}\left(1-\frac{\mathrm{x}}{3}\right)^{-3 / 2}$
$\left.=\frac{1}{\sqrt{27}}\left[\left(1-6 x+9 x^{2}\right)\left\{1+\frac{3}{2}\left(\frac{x}{3}\right)+\frac{\frac{3}{2} \cdot \frac{5}{2}}{1 \cdot 2}\left(\frac{x}{3}\right)^{2}+\frac{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2}}{1 \cdot 2 \cdot 3}\left(\frac{x}{3}\right)^{3}+\frac{\frac{3}{2} \cdot \frac{5}{2} \cdot \frac{7}{2} \cdot \frac{9}{2}}{1 \cdot 2 \cdot 3 \cdot 4}\left(\frac{x}{3}\right)^{4}+\ldots \ldots\right\}\right]\right]$
$=\frac{1}{\sqrt{27}}\left[\left(1-6 x+9 x^{2}\right)\left(1+\frac{x}{2}+\frac{5}{24} x^{2}+\frac{35 x^{3}}{16 \times 27}+\frac{35}{8 \times 16 \times 9} x^{4} \frac{77}{8 \times 32 \times 27} x^{5}+\ldots\right)\right]$
\therefore The coefficient of x^{5} in $\frac{(1-3 \mathrm{x})^{2}}{(3-\mathrm{x})^{3 / 2}}$ is

$$
\begin{aligned}
& =\frac{1}{\sqrt{27}}\left[\frac{77}{8 \times 32 \times 27}-\frac{6(35)}{8 \times 16 \times 9}+\frac{9(35)}{16 \times 27}\right] \\
& =\frac{1}{\sqrt{27}}\left[\frac{77-1260+5040}{8 \times 32 \times 27}\right]=\frac{3857}{\sqrt{27} \times 8 \times 32 \times 27}
\end{aligned}
$$

ii) Find the coefficient of x^{8} in $\frac{(1+x)^{2}}{\left(1-\frac{2}{3} x\right)^{3}}$.

Sol. $\frac{(1+x)^{2}}{\left(1-\frac{2}{3} x\right)^{3}}=(1+x)^{2}\left(1-\frac{2}{3} x\right)^{-3}$
$=\left(1+2 x+x^{2}\right)\left[1+3\left(\frac{2 x}{3}\right)+\frac{(3)(4)}{1 \cdot 2}\left(\frac{2 x}{3}\right)^{2}+\frac{3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{2 x}{3}\right)^{3}+\frac{3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4}\left(\frac{2 x}{3}\right)^{4}+\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}\left(\frac{2 x}{3}\right)^{5}\right.$
$+\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}\left(\frac{2 x}{3}\right)^{6}+\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}\left(\frac{2 x}{3}\right)^{7}+\frac{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}\left(\frac{2 x}{3}\right)^{8}+\ldots$
\therefore Coefficient of x^{8} in $\frac{(1+\mathrm{x})^{2}}{\left(1-\frac{2}{3} \mathrm{x}\right)^{3}}$ is
$=45\left(\frac{2}{3}\right)^{8}+2 \times 36\left(\frac{2}{3}\right)^{7}+28\left(\frac{2}{3}\right)^{6}$
$=\left(\frac{2}{3}\right)^{6}\left[45 \times \frac{4}{9}+72 \times \frac{2}{3}+28\right]$
$=\left(\frac{2}{3}\right)^{6}(20+48+28)=\frac{96 \times 2^{6}}{3^{6}}=\frac{2048}{243}$
iii) Find the coefficient of x^{7} in $\frac{(2+3 x)^{3}}{(1-3 x)^{4}}$.

$$
\text { Sol. } \begin{aligned}
& \frac{(2+3 x)^{3}}{(1-3 x)^{4}}=(2+3 x)^{3}(1-3 x)^{-4} \\
& =\left(8+36 x+54 x^{2}+27 x^{3}\right) \\
& {\left[1+{ }^{4} \mathrm{C}_{1}(3 x)+{ }^{5} \mathrm{C}_{2}(3 x)^{2}+{ }^{6} \mathrm{C}_{3}(3 \mathrm{x})^{3}+{ }^{7} \mathrm{C}_{4}(3 \mathrm{x})^{4}+{ }^{8} \mathrm{C}_{5}(3 \mathrm{x})^{5}+{ }^{9} \mathrm{C}_{6}(3 \mathrm{x})^{6}+\ldots\right] }
\end{aligned}
$$

\therefore Coefficient of x^{7} in $\frac{(2+3 x)^{3}}{(1-3 x)^{4}}$ is
$=8 \cdot\left({ }^{10} \mathrm{C}_{7} \cdot 3^{7}\right)+36 \cdot\left({ }^{9} \mathrm{C}_{6}(3)^{6}\right)+54\left({ }^{8} \mathrm{C}_{5}\left(3^{5}\right)\right)+27\left({ }^{7} \mathrm{C}_{4}\left(3^{4}\right)\right)$

$$
=8\left({ }^{10} \mathrm{C}_{3} 3^{7}\right)+36\left({ }^{9} \mathrm{C}_{3} 3^{6}\right)+54\left({ }^{8} \mathrm{C}_{3} 3^{5}\right)+27\left({ }^{7} \mathrm{C}_{3} 3^{4}\right)
$$

16. Find the coefficient of x^{3} in the expansion of $\frac{(1-5 x)^{3}\left(1+3 x^{2}\right)^{3 / 2}}{(3+4 x)^{1 / 3}}$.

Sol. $\frac{(1-5 x)^{3}\left(1+3 x^{2}\right)^{3 / 2}}{(3+4 x)^{1 / 3}}=\frac{(1-5 x)^{3}\left(1+3 x^{2}\right)^{3 / 2}}{\left[3\left(1+\frac{4}{3}\right)\right]^{1 / 3}}$

$$
\begin{aligned}
& =\frac{1}{3^{1 / 3}}(1-5 \mathrm{x})^{3}\left(1+3 \mathrm{x}^{2}\right)^{3 / 2}\left(1+\frac{4}{3}\right)^{-1 / 3} \\
& =\frac{1}{3^{1 / 3}}\left[1-15 \mathrm{x}+75 \mathrm{x}^{2}-125 \mathrm{x}^{3}\right] \\
& {\left[1+\frac{3}{2}\left(3 x^{2}\right)+\frac{\left(\frac{3}{2}\right)\left(\frac{3}{2}-1\right)}{1 \cdot 2}\left(3 x^{2}\right)^{2}+\ldots\right]} \\
& {\left[1+\left(\frac{-1}{3}\right) \frac{4 x}{3}+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)}{1 \cdot 2}\left(\frac{4 x}{3}\right)^{2}+\frac{\left(\frac{-1}{3}\right)\left(\frac{-1}{3}-1\right)\left(\frac{-1}{3}-2\right)}{1 \cdot 2 \cdot 3}\left(\frac{4 x}{3}\right)^{3}+\ldots\right]} \\
& =\frac{1}{3^{1 / 3}}\left(1-15 x+75 x^{2}-125 x^{3}\right)\left(1+\frac{9}{2} x^{2}+\ldots\right) \\
& \left(1-\frac{4 x}{9}+\frac{32}{81} x^{2}-\frac{896}{2187} x^{3}+\ldots\right) \\
& =\frac{1}{3^{1 / 3}}\left[1-15 x+75 x^{2}-125 x^{3}+\frac{9}{2} x^{2}-\frac{135}{2} x^{3}+\ldots\right] \\
& {\left[1-\frac{4 x}{9}+\frac{32}{81} x^{2}-\frac{896}{2187} x^{3}+\ldots\right]} \\
& =\frac{1}{3^{1 / 3}}\left[1-15 x+\frac{159}{2} x^{2}-\frac{385}{2} x^{3}+\ldots\right] \\
& {\left[1-\frac{4 \mathrm{x}}{9}+\frac{32}{81} \mathrm{x}^{2}-\frac{896}{2187} \mathrm{x}^{3}+\ldots\right]}
\end{aligned}
$$

\therefore Coefficient of x^{3} in $\frac{(1-5 \mathrm{x})^{3}\left(1+3 \mathrm{x}^{2}\right)^{3 / 2}}{(3+4 \mathrm{x})^{1 / 3}}$ is $=\frac{1}{3^{1 / 3}}\left[-\frac{385}{2}-\frac{159}{2} \times \frac{4}{9}-15 \times \frac{32}{81}-\frac{896}{2187}\right]$

$$
\begin{aligned}
& =\frac{1}{3^{1 / 3}}\left[-\frac{385}{2}-\left\{\frac{77274+12960+896}{2187}\right\}\right] \\
& =\frac{1}{3^{1 / 3}}\left[\frac{-841995-182260}{4374}\right]=-\frac{1024255}{\sqrt[3]{3}(4274)}
\end{aligned}
$$

17. If $x=\frac{5}{(2!) \cdot 3}+\frac{5 \cdot 7}{(3!) \cdot 3^{2}}+\frac{5 \cdot 7 \cdot 9}{(4!) 3^{3}}+\ldots$, then find the value of $x^{2}+4 x$.

Sol. $x=\frac{5}{(2!) \cdot 3}+\frac{5 \cdot 7}{(3!) \cdot 3^{2}}+\frac{5 \cdot 7 \cdot 9}{(4!) 3^{3}}+\ldots$
$=\frac{3 \cdot 5}{2!3^{2}}+\frac{3 \cdot 5 \cdot 7}{3!3^{3}}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{4!3^{4}}+\ldots$
$=\frac{3 \cdot 5}{2!}\left(\frac{1}{3}\right)^{2}+\frac{3 \cdot 5 \cdot 7}{3!}\left(\frac{1}{3}\right)^{3}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{4!}\left(\frac{1}{3}\right)^{4} \ldots .=1+\frac{3}{1}\left(\frac{1}{3}\right)+x$
$=1+\frac{3}{1}\left(\frac{1}{3}\right)+\frac{3 \cdot 5}{2!}\left(\frac{1}{3}\right)^{2}+\frac{3 \cdot 5 \cdot 7}{3!}\left(\frac{1}{3}\right)^{3}+\ldots$
$\Rightarrow 2+\mathrm{x}=1+\frac{3}{1}\left(\frac{1}{3}\right)+\frac{3 \cdot 5}{2!}\left(\frac{1}{3}\right)^{2}+\ldots$
Comparing $\mathrm{x}+2$ with $(1-\mathrm{y})^{-\mathrm{p} / \mathrm{q}}$
$=1+\frac{p}{1}\left(\frac{y}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{y}{q}\right)^{2}+\ldots$
Here $\mathrm{p}=3, \mathrm{q}=2, \frac{\mathrm{y}}{\mathrm{q}}=\frac{1}{3} \Rightarrow \mathrm{y}=\frac{\mathrm{q}}{3}=\frac{2}{3}$
$\therefore \mathrm{x}+2=(1-\mathrm{y})^{-\mathrm{p} / \mathrm{q}}=\left(1-\frac{2}{3}\right)^{-3 / 2}=\left(\frac{1}{3}\right)^{-3 / 2}=(3)^{3 / 2}=\sqrt{27}$ Squaring on both sides

$$
x^{2}+4 x+4=27 \quad \Rightarrow x^{2}+4 x=23
$$

18. Find the sum of the infinite series $\frac{7}{5}\left(1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots\right)$.

Sol. $1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots$
$=1+\frac{1}{1!}\left(\frac{1}{100}\right)+\frac{1 \cdot 3}{2!}\left(\frac{1}{100}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{3!}\left(\frac{1}{100}\right)^{3}+\ldots$
Comparing with $(1-x)^{-p / q}$
$=1+\frac{p}{1!}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2!}\left(\frac{x}{q}\right)^{2} p=1, p+q=3, q=2$
$\frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{100} \Rightarrow \mathrm{x}=\frac{\mathrm{q}}{100}=\frac{2}{100}=0.02$
$\therefore 1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \cdot \frac{1}{10^{4}}+\ldots=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}$
$=(1-0.02)^{-1 / 2}=(0.98)^{-1 / 2}=\left(\frac{49}{50}\right)^{-1 / 2}=\left(\frac{50}{49}\right)^{1 / 2}=\frac{5 \sqrt{2}}{7}$
$\therefore \frac{7}{5}\left[1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots\right]$
$=\frac{7}{5} \frac{5 \sqrt{2}}{7}=\sqrt{2}$

19. Show that

$$
\begin{aligned}
& 1+\frac{x}{2}+\frac{x(x-1)}{2 \cdot 4}+\frac{x(x-1)(x-2)}{2 \cdot 4 \cdot 6}+\ldots \\
& =1+\frac{x}{3}+\frac{x(x+1)}{3 \cdot 6}+\frac{x(x+1)(x+2)}{3 \cdot 6 \cdot 9}+\ldots
\end{aligned}
$$

Sol.L.H.S. $=1+\frac{x}{2}+\frac{x(x-1)}{2 \cdot 4}+\frac{x(x-1)(x-2)}{2 \cdot 4 \cdot 6}+\ldots$

Comparing with
$=1+x\left(\frac{1}{2}\right) \frac{(x)(x-1)}{1 \cdot 2}\left(\frac{1}{2}\right)^{2}+\frac{x(x-1)(x-2)}{1 \cdot 2 \cdot 3}\left(\frac{1}{2}\right)^{3}+\ldots(1+x)^{n}=1+{ }^{n} C_{1} \cdot x+{ }^{n} C_{2} x^{2}+\ldots \ldots$.

$$
=1+\frac{\mathrm{n}}{1!} \cdot x+\frac{\mathrm{n}(\mathrm{n}-1)}{1 \cdot 2} \mathrm{x}^{2}+\ldots
$$

Here $\mathrm{x}=\frac{1}{2}, \mathrm{n}=\mathrm{x}=\left(1+\frac{1}{2}\right)^{\mathrm{x}}=\left(\frac{3}{2}\right)^{\mathrm{x}}$
R.H.S. $=1+\frac{x}{3}+\frac{x(x+1)}{3 \cdot 6}+\frac{x(x+1)(x+2)}{3 \cdot 6 \cdot 9}+\ldots$
$=1+\frac{x}{1}\left(\frac{x}{3}\right)+\frac{(x)(x+1)}{1 \cdot 2}\left(\frac{1}{3}\right)^{2}+\frac{(x)(x+1)(x+2)}{1 \cdot 2 \cdot 3}\left(\frac{1}{3}\right)^{3}+\ldots$
Comparing with $(1-x)^{-n}$

$$
=1+\mathrm{n}(\mathrm{x})+\frac{\mathrm{n}(\mathrm{n}+1)}{1 \cdot 2} \mathrm{x}^{2}+\ldots \ldots
$$

We get $\mathrm{x}=\frac{1}{3}, \mathrm{n}=\mathrm{x}$

$$
=\left(1-\frac{1}{3}\right)^{-\mathrm{x}}=\left(\frac{2}{3}\right)^{-\mathrm{x}}=\left(\frac{3}{2}\right)^{\mathrm{x}}
$$

\therefore L.H.S. $=$ R.H.S.
20. Suppose that n is a natural number and I, F are respectively the integral part and fractional part of $(7+4 \sqrt{3})^{\mathrm{n}}$, then show that
(i) I is an odd integer,
(ii) $(\mathbf{I}+\mathbf{F})(\mathbf{I}-\mathbf{F})=\mathbf{1}$.

Sol. Given that $(7+4 \sqrt{3})^{\mathrm{n}}=\mathrm{I}+\mathrm{F}$ where I is an integer and $0<\mathrm{F}<1$.

Write $\mathrm{f}=(7-4 \sqrt{3})^{\mathrm{n}}$

Now $\quad 36<48<49$

$$
6<\sqrt{48}<7
$$

i.e. $\quad-7<-\sqrt{48}<-6$
i.e. $\quad 0<7-4 \sqrt{3}<1$
i.e. $\quad 0<(7-4 \sqrt{3})^{\mathrm{n}}<1$
$\therefore 0<\mathrm{f}<1$

Now I $+\mathrm{F}+\mathrm{f}=(7+4 \sqrt{3})^{\mathrm{n}}+(7-4 \sqrt{3})^{\mathrm{n}}=$
$=\left({ }^{\mathrm{n}} \mathrm{C}_{0} \cdot 7^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1}(7)^{\mathrm{n}-1}(4 \sqrt{3})+{ }^{\mathrm{n}} \mathrm{C}_{2}(7)^{\mathrm{n}-2}(4 \sqrt{3})^{2}+\ldots\right)+\left({ }^{\mathrm{n}} \mathrm{C}_{0} \cdot 7^{\mathrm{n}}-{ }^{\mathrm{n}} \mathrm{C}_{1}(7)^{\mathrm{n}-1}(4 \sqrt{3})+{ }^{\mathrm{n}} \mathrm{C}_{2}(7)^{\mathrm{n}-2}(4 \sqrt{3})^{2}-\ldots\right)$
$=2\left[7^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{2} 7^{\mathrm{n}-2}(4 \sqrt{3})^{2}+{ }^{\mathrm{n}} \mathrm{C}_{4} 7^{\mathrm{n}-4}(4 \sqrt{3})^{4}+\ldots\right]$
$=2 \mathrm{k}$, where k is a positive integer

Thus $\mathrm{I}+\mathrm{F}+\mathrm{f}$ is an even integer.
Since I is an integer, we get that $\mathrm{F}+\mathrm{f}$ is an integer. Also since $0<\mathrm{F}<1$ and $0<\mathrm{f}<1$
$\Rightarrow 0<\mathrm{F}+\mathrm{f}<2$
$\because \mathrm{F}+\mathrm{f}$ is an integer
We get $F+f=1$
(i.e.) $I-F=f$
(i) From (1) I + F $+f=2 k$
$\Rightarrow \mathrm{f}=2 \mathrm{k}-1$, an odd integer.
(ii) $(\mathrm{I}+\mathrm{F})(\mathrm{I}-\mathrm{F})=(\mathrm{I}+\mathrm{F}) \mathrm{f}$

$$
(7+4 \sqrt{3})^{\mathrm{n}}(7-4 \sqrt{3})^{\mathrm{n}}=(49-49)^{\mathrm{n}}=1
$$

21. Find the coefficient of x^{6} in $\left(3+2 x+x^{2}\right)^{6}$.

Sol. $\left.\left(3+2 x+x^{2}\right)=\left[(3+2 x)+x^{2}\right)\right]^{6}$

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{0}(3+2 \mathrm{x})^{6}+{ }^{6} \mathrm{C}_{1}(3+2 \mathrm{x})^{5}\left(\mathrm{x}^{2}\right)+{ }^{6} \mathrm{C}_{2}(3+2 \mathrm{x})^{4}\left(\mathrm{x}^{2}\right)^{2}+{ }^{6} \mathrm{C}_{3}(3+2 \mathrm{x})^{3}\left(\mathrm{x}^{2}\right)^{3}+\ldots \\
& =(3+2 \mathrm{x})^{6}+6(3+2 \mathrm{x})^{5}\left(\mathrm{x}^{2}\right)+15 \mathrm{x}^{4}(3+2 \mathrm{x})^{4} \mathrm{x}^{4}+20 \mathrm{x}^{6}(3+2 \mathrm{x})^{3}+\ldots \\
& =\left[\sum_{\mathrm{r}=0}^{6}{ }^{6} \mathrm{C}_{\mathrm{r}} \cdot 3^{6-\mathrm{r}}(2 \mathrm{x})^{\mathrm{r}}\right]+6 \mathrm{x}^{2}\left[\sum_{\mathrm{r}=0}^{5}{ }^{5} \mathrm{C}_{\mathrm{r}} \cdot 3^{5-\mathrm{r}}(2 \mathrm{x})^{\mathrm{r}}\right]+15 \mathrm{x}^{4}\left[\sum_{\mathrm{r}=0}^{4}{ }^{4} \mathrm{C}_{\mathrm{r}} \cdot 3^{4-\mathrm{r}}(2 \mathrm{x})^{\mathrm{r}}\right]+20 \mathrm{x}^{6}\left[\sum_{\mathrm{r}=0}^{3}{ }^{3} \mathrm{C}_{\mathrm{r}} \cdot 3^{3-\mathrm{r}}(2 \mathrm{x})^{\mathrm{r}}\right]+\ldots
\end{aligned}
$$

\therefore The coefficient of x^{6} in $\left(3+2 \mathrm{x}+\mathrm{x}^{2}\right)^{6}$ is

$$
\begin{aligned}
& ={ }^{6} \mathrm{C}_{6} \cdot 3^{0} \cdot 2^{6}+6\left({ }^{5} \mathrm{C}_{4} \cdot 3^{1} \cdot 2^{4}\right)+15\left({ }^{4} \mathrm{C}_{2} \cdot 3^{2} \cdot 2^{2}\right)+20\left({ }^{3} \mathrm{C}_{0} \cdot 3^{3} \cdot 2^{0}\right) \\
& =64+1440+3240+540=5284
\end{aligned}
$$

22. If \boldsymbol{n} is a positive integer, then prove that $C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots+\frac{C_{n}}{n+1}=\frac{2^{n+1}-1}{n+1}$.

Sol.Write $\mathrm{S}=\mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}+\ldots+\frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{n}+1}$ then

$$
\begin{aligned}
& \mathrm{S}={ }^{\mathrm{n}} \mathrm{C}_{0}+\frac{1}{2} \cdot{ }^{\mathrm{n}} \mathrm{C}_{1}+\frac{1}{3} \cdot{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots+\frac{1}{\mathrm{n}+1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \\
& \therefore(\mathrm{n}+1) \mathrm{S}=\frac{\mathrm{n}+1}{1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{0}+\frac{\mathrm{n}+1}{2} \cdot{ }^{\mathrm{n}} C_{1}+\frac{\mathrm{n}+1}{3} \cdot{ }^{n} C_{2}+\ldots+\frac{\mathrm{n}+1}{\mathrm{n}+1} \cdot{ }^{n} C_{n}
\end{aligned}
$$

$$
\text { Hence } S=\frac{2^{n+1}-1}{n+1}
$$

$$
\therefore(\mathrm{n}+1) \mathrm{S}={ }^{(\mathrm{n}+1)} \mathrm{C}_{1}+{ }^{(\mathrm{n}+1)} \mathrm{C}_{2}+{ }^{(\mathrm{n}+1)} \mathrm{C}_{3}+\ldots+{ }^{(\mathrm{n}+1)} \mathrm{C}_{\mathrm{n}+1}
$$

$$
\left(\text { since } \frac{\mathrm{n}+1}{\mathrm{r}+1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}\right)
$$

$$
=2^{n+1}-1
$$

$\therefore \mathrm{C}_{0}+\frac{\mathrm{C}_{1}}{2}+\frac{\mathrm{C}_{2}}{3}+\ldots+\frac{\mathrm{C}_{n}}{\mathrm{n}+1}=\frac{2^{\mathrm{n}+1}-1}{\mathrm{n}+1}$
23. If \mathbf{n} is a positive integer and \mathbf{x} is any non-zero real number, then prove that

$$
\begin{gathered}
\mathrm{C}_{0}+\mathrm{C}_{1} \frac{\mathrm{x}}{2}+\mathrm{C}_{2} \cdot \frac{\mathrm{x}^{2}}{3}+\mathrm{C}_{3} \cdot \frac{\mathrm{x}^{3}}{4}+\ldots+\mathrm{C}_{\mathrm{n}} \cdot \frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}+1} \\
=\frac{(1+\mathrm{x})^{\mathrm{n}+1}-1}{(\mathrm{n}+1) \mathrm{x}}
\end{gathered}
$$

Sol. $\mathrm{C}_{0}+\mathrm{C}_{1} \frac{\mathrm{x}}{2}+\mathrm{C}_{2} \cdot \frac{\mathrm{x}^{2}}{3}+\mathrm{C}_{3} \cdot \frac{\mathrm{x}^{3}}{4}+\ldots+\mathrm{C}_{\mathrm{n}} \cdot \frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}+1}$

$$
\begin{aligned}
& ={ }^{n} C_{0}+\frac{1}{2}{ }^{n} C_{1} x+\frac{1}{3}{ }^{n} C_{2} x^{2}+\ldots+\frac{1}{n+1}{ }^{n} C_{n} x^{n} \\
& =1+\frac{n}{1!} \frac{x}{2}+\frac{n(n-1)}{2!} \frac{x^{2}}{3}+\ldots \ldots . \\
& =1+\frac{n}{2!} x^{1}+\frac{n(n-1)}{3!} x^{2}+\ldots \ldots \\
& =\frac{1}{(n+1) x}\left[\frac{(n+1) x^{1}}{1!}+\frac{(n+1) n}{2!} x^{2}+\frac{(n+1) n(n-1)}{3!} x^{3}+\ldots\right] \\
& =\frac{1}{(n+1) x}\left[{ }^{(n+1)} C_{1} x+{ }^{(n+1)} C_{2} x^{2}+{ }^{(n+1)} C_{3} x^{3}+\ldots\right] \\
& =\frac{1}{(n+1) x}\left[1+{ }^{n+1} C_{1} x+{ }^{n+1} C_{2} x^{2}+\ldots+{ }^{n+1} C_{n+1} x^{n+1}-1\right] \\
& =\frac{1}{(n+1) x}\left[(1+x)^{n+1}-1\right]
\end{aligned}
$$

$$
\mathrm{C}_{0}+\mathrm{C}_{1} \frac{\mathrm{x}}{2}+\mathrm{C}_{2} \cdot \frac{\mathrm{x}^{2}}{3}+\mathrm{C}_{3} \cdot \frac{\mathrm{x}^{3}}{4}+\ldots+\mathrm{C}_{\mathrm{n}} \cdot \frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}+1}=\frac{(1+\mathrm{x})^{\mathrm{n}+1}-1}{(\mathrm{n}+1) \mathrm{x}}
$$

24. Prove that $C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\ldots+(-1)^{n} C_{n}^{2}=\left\{\begin{array}{cc}(-1)^{n / 2}{ }^{n} C_{n / 2}, & \text { if } n \text { is even } \\ 0 & \text {, if } n \text { is odd }\end{array}\right.$

Sol.Take $(1-\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}$

$$
\begin{equation*}
=\left(C_{0}-C_{1} x+C_{2} x^{2}-C_{3} x^{3}+\ldots+(-1)^{n} \cdot C_{n} x^{n}\right)\left(C_{0}+\frac{C_{1}}{x}+\frac{C_{2}}{x^{2}}+\ldots+\frac{C_{n}}{x^{n}}\right) \tag{1}
\end{equation*}
$$

The term independent of x in R.H.S. of (1) is $=C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\ldots+(-1)^{n} C_{n}^{2}$
Now we can find the term independent of in the L.H.S. of (1).
L.H.S. of $(1)=(1-x)^{n}\left(1+\frac{1}{x}\right)^{n}$

$$
\begin{align*}
& =(1-x)^{n}\left(\frac{1+x}{x}\right)^{n}=\frac{\left(1-x^{2}\right)^{n}}{x^{n}} \\
& =\sum_{r=0}^{n}{ }^{n} C_{r}\left(-x^{2}\right)^{r} \quad \ldots(2) \tag{2}
\end{align*}
$$

Suppose n is an even integer, say $\mathrm{n}=2 \mathrm{k}$.

Then from (2),
$(1-x)^{n}\left(1+\frac{1}{x}\right)^{n}=\frac{\sum_{r=0}^{n}{ }^{n} C_{r}\left(-x^{2}\right)^{r}}{x^{n}}$
$=\frac{\sum_{\mathrm{r}=0}^{2 \mathrm{k}}{ }^{2 \mathrm{k}} \mathrm{C}_{\mathrm{r}}\left(-\mathrm{x}^{2}\right)^{\mathrm{r}}}{\mathrm{x}^{2 \mathrm{k}}}=\sum_{\mathrm{r}=0}^{2 \mathrm{k}}{ }^{2 \mathrm{k}} \mathrm{C}_{\mathrm{r}}(-1)^{\mathrm{r}} \mathrm{x}^{2 \mathrm{r}-2 \mathrm{k}}$
To set term independent of x in (3), put

$$
2 \mathrm{r}-2 \mathrm{k}=0 \Rightarrow \mathrm{r}=\mathrm{k}
$$

Hence the term index. of x in
$(1-\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}$ is ${ }^{2 \mathrm{k}} \mathrm{C}_{\mathrm{k}}(-1)^{\mathrm{k}}={ }^{\mathrm{n}} \mathrm{C}_{(\mathrm{n} / 2)}(-1)^{\mathrm{n} / 2}$
When n is odd:
Observe that the expansion in the numerator of (2) contains only even powers of x.
\therefore If n is odd, then there is no constant term in (2) (i.e.) the term independent of x in $(1-\mathrm{x})^{\mathrm{n}}\left(1+\frac{1}{\mathrm{x}}\right)^{\mathrm{n}}$ is zero.
\therefore From (1), we get

$$
C_{0}^{2}-C_{1}^{2}+C_{2}^{2}-C_{3}^{2}+\ldots+(-1)^{n} C_{n}^{2}=\left\{\begin{array}{cc}
(-1)^{\mathrm{n} / 2}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n} / 2}, & \text { if } \mathrm{n} \text { is even } \\
0 & , \text { if } \mathrm{n} \text { is odd }
\end{array}\right.
$$

25. Find the coefficient of $x^{\mathbf{1 2}}$ in $\frac{1+3 x}{(1-4 x)^{4}}$.

Sol. $\frac{1+3 x}{(1-4 x)^{4}}=(1+3 x)(1-4 x)^{-4}=(1+3 x)\left[\sum_{r=0}^{\infty}{ }^{(n+r-1)} C_{r} \cdot X^{r}\right]$

Here $X=4 x, n=4$

$$
\begin{aligned}
& =(1+3 x)\left[\sum_{r=0}^{\infty}{ }^{(4+r-1)} C_{r} \cdot(4 x)^{r}\right] \\
& =(1+3 x)\left[\sum_{r=0}^{\infty}{ }^{(r+3)} C_{r} \cdot(4)^{r}(x)^{r}\right]
\end{aligned}
$$

\therefore The coefficient of x^{12} in $\frac{1+3 \mathrm{x}}{(1-4 \mathrm{x})^{4}}$ is

$$
\begin{aligned}
& =(1) \cdot{ }^{(12+3)} \mathrm{C}_{12} \cdot 4^{12}+3 \cdot{ }^{(11+3)} \mathrm{C}_{3} \cdot 4^{11} \\
& ={ }^{15} \mathrm{C}_{3} \cdot 4^{12}+3 \cdot{ }^{14} \mathrm{C}_{3} \cdot 4^{11} \\
& =455 \times 4^{12}+(1092) 4^{11}=728 \times 4^{12}
\end{aligned}
$$

26. Find coefficient of x^{6} in the expansion of $(1-3 x)^{-2 / 5}$.

Sol.General term of $(1-x)^{-p / q}$ is

$$
T_{r+1}=\frac{(p)(p+q)(p+2 q)+\ldots+[p+(r-1) q]}{(r)!}\left(\frac{x}{q}\right)^{r}
$$

Here $X=3 x, p=2, q=5, r=6, \frac{X}{q}=\frac{3 x}{5}$

$$
\begin{aligned}
& \mathrm{T}_{6+1}=\frac{(2)(2+5)(2+2.5) \ldots[2+(6-1) 5]}{6!}\left(\frac{3 \mathrm{x}}{5}\right)^{6} \\
& \mathrm{~T}_{7}=\frac{(2)(7)(12) \ldots(27)}{6!}\left(\frac{3 \mathrm{x}}{5}\right)^{6}
\end{aligned}
$$

\therefore Coefficient of x^{6} in $(1-3 \mathrm{x})^{-2 / 5}$ is $=\frac{(2)(7)(12) \ldots(27)}{6!}\left(\frac{3}{5}\right)^{6}$
27. Find the sum of the infinite series $1+\frac{2}{3} \cdot \frac{1}{2}+\frac{2 \cdot 5}{3 \cdot 6}\left(\frac{1}{2}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9}\left(\frac{1}{2}\right)^{3}+\ldots \infty$

Sol.Let $S=1+\frac{2}{3} \cdot \frac{1}{2}+\frac{2 \cdot 5}{3 \cdot 6}\left(\frac{1}{2}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9}\left(\frac{1}{2}\right)^{3}+\ldots$

$$
\begin{aligned}
& =1+\frac{2}{1} \cdot \frac{1}{6}+\frac{2 \cdot 5}{1 \cdot 2}\left(\frac{1}{6}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 2 \cdot 3}\left(\frac{1}{6}\right)^{3}+\ldots \\
& \because 1+\frac{p}{1!}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots=(1-x)^{-p / q}
\end{aligned}
$$

Here $\mathrm{p}=2, \mathrm{q}=3, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{6} \Rightarrow \mathrm{x}=\frac{3}{6}=\frac{1}{2}$

$$
=(1-x)^{-p / q}=\left(1-\frac{1}{2}\right)^{-2 / 3}=2^{2 / 3}=\sqrt[3]{4}
$$

28. Find the sum of the series $\frac{3 \cdot 5}{5 \cdot 10}+\frac{3 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{5 \cdot 10 \cdot 15 \cdot 20}+\ldots \infty$

Sol.Let $S=\frac{3 \cdot 5}{5 \cdot 10}+\frac{3 \cdot 5 \cdot 7}{5 \cdot 10 \cdot 15}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{5 \cdot 10 \cdot 15 \cdot 20}+\ldots$

$$
\begin{aligned}
& \frac{3 \cdot 5}{1 \cdot 2}\left(\frac{1}{5}\right)^{2}+\frac{3 \cdot 5 \cdot 7}{1 \cdot 2 \cdot 3}\left(\frac{1}{5}\right)^{3}+\frac{3 \cdot 5 \cdot 7 \cdot 9}{1 \cdot 2 \cdot 3 \cdot 4}\left(\frac{1}{5}\right)^{4}+\ldots \\
& \text { Add } 1+3 \cdot \frac{1}{5} \text { on both sides } \\
& 1+\frac{3}{5}+S=1+\frac{3}{1}\left(\frac{1}{5}\right)+\frac{3 \cdot 5}{1 \cdot 2}\left(\frac{1}{5}\right)^{2}+\ldots \cdot \\
& =1+\frac{p}{1}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots . . \\
& \text { Here } p=3, q=2, \frac{x}{q}=\frac{1}{5} \Rightarrow x=\frac{2}{5} \\
& \quad=(1-x)^{-p / q} \\
& \quad=\left(1-\frac{2}{5}\right)^{-3 / 2}=\left(\frac{5}{3}\right)^{3 / 2}=\frac{5 \sqrt{5}}{3 \sqrt{3}}
\end{aligned}
$$

$$
\Rightarrow \frac{8}{5}+S=\frac{5 \sqrt{3}}{3 \sqrt{3}} \Rightarrow S=\frac{5 \sqrt{3}}{3 \sqrt{3}}-\frac{8}{5}
$$

29. If $x=\frac{1}{5}+\frac{1 \cdot 3}{5 \cdot 10}+\frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15}+\ldots \infty$, find $3 \mathbf{x}^{\mathbf{2}}+\mathbf{6 x}$.

Sol.Given that

$$
\begin{aligned}
& \mathrm{x}=\frac{1}{5}+\frac{1 \cdot 3}{5 \cdot 10}+\frac{1 \cdot 3 \cdot 5}{5 \cdot 10 \cdot 15}+\ldots \ldots \\
& =\frac{1}{5}+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{5}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{5}\right)^{3}+\ldots \ldots . \\
& \Rightarrow 1+\mathrm{x}=1+1 \cdot \frac{1}{5}+\frac{1 \cdot 3}{1 \cdot 2}\left(\frac{1}{5}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3}\left(\frac{1}{5}\right)^{3}+\ldots \\
& =1+\frac{\mathrm{p}}{1!} \frac{1}{5}+\frac{\mathrm{p}(\mathrm{p}+\mathrm{q})}{2!}\left(\frac{1}{5}\right)^{2}+\frac{\mathrm{p}(\mathrm{p}+\mathrm{q})(\mathrm{p}+2 \mathrm{q})}{3!}\left(\frac{1}{5}\right)^{3}=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}
\end{aligned}
$$

$$
\text { Here } \mathrm{p}=1, \mathrm{q}=2, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{5} \Rightarrow \mathrm{x}=\frac{2}{5}
$$

$$
=\left(1-\frac{2}{5}\right)^{-1 / 2}=\left(\frac{3}{5}\right)^{-1 / 2}=\sqrt{\frac{5}{3}}
$$

$$
\Rightarrow 1+\mathrm{x}=\sqrt{\frac{5}{3}} \Rightarrow 3(1+\mathrm{x})^{2}=5
$$

$$
\Rightarrow 3 x^{2}+6 x+3=5 \Rightarrow 3 x^{2}+6 x=2
$$

30. Find an approximate value of $\sqrt[6]{63}$ correct to 4 decimal places.

Sol. $\sqrt[6]{63}=(63)^{1 / 6}=(64-1)^{1 / 6}$
$=(64)^{1 / 6}\left(1-\frac{1}{64}\right)^{1 / 6}$
$=2\left[1-(0.5)^{6}\right]^{1 / 6}$
$=2\left[\mathrm{i}-\frac{\left(\frac{1}{6}\right)(0.5)^{6}}{1!}+\frac{\left(\frac{1}{6}\right)\left(\frac{1}{6}-1\right)}{2!}(0.5)^{12}+\ldots\right]$
$=2[1-0.0026041]=2[0.9973959]$
$=1.9947918=1.9948$ (correct to 4 decimals)
31. If $|x|$ is so small that x^{2} and higher powers of x may be neglected, then find an approximate values of $\frac{\left(1+\frac{3 x}{2}\right)^{-4}(8+9 x)^{1 / 3}}{(1+2 x)^{2}}$.

Sol. $\frac{\left(1+\frac{3 x}{2}\right)^{-4}(8+9 x)^{1 / 3}}{(1+2 x)^{2}}$
$=\left(1+\frac{3 x}{2}\right)^{-4}\left[8\left(1+\frac{9}{8} x\right)\right]^{1 / 3}(1+2 x)^{-2}$
$=\left(1+\frac{3 x}{2}\right)^{-4} \cdot 8^{1 / 3}\left(1+\frac{9}{8} x\right)^{1 / 3}(1+2 x)^{-2}$
$=2\left[1-\frac{4}{1}\left(\frac{3 x}{2}\right)\right]\left[1+\frac{1}{3}\left(\frac{9 x}{8}\right)\right][1+(-2)(2 x)]$
$\because \mathrm{x}^{2}$ and higher powers of x are neglecting
$=2(1-6 x)\left(1+\frac{3 x}{8}\right)(1-4 x)$
$=2\left(1-6 x+\frac{3 x}{8}\right)(1-4 x)$
($\because \mathrm{x}^{2}$ and higher powers of x are neglecting)
$=2\left(1-\frac{45}{8} x\right)(1-4 x)=2\left(1-4 x-\frac{45}{8} x\right)$
$\because \mathrm{x}^{2}$ and higher powers of x are neglecting
$=2\left(1-\frac{77}{8} x\right)$
$\therefore \frac{\left(1+\frac{3 x}{2}\right)^{-4}(8+9 x)^{1 / 3}}{(1+2 x)^{2}}=2\left(1-\frac{77}{8} x\right)$
32. If $|x|$ is so small that x^{4} and higher powers of x may be neglected, then find the approximate value of $\sqrt[4]{x^{2}+81}-\sqrt[4]{x^{2}+16}$.

Sol. $\sqrt[4]{\mathrm{x}^{2}+81}-\sqrt[4]{\mathrm{x}^{2}+16}$

$$
\begin{aligned}
& =\left(81+x^{2}\right)^{1 / 4}-\left(16+x^{2}\right)^{1 / 4} \\
& =\left(81+x^{2}\right)^{1 / 4}-\left(16+x^{2}\right)^{1 / 4} \\
& =\left[81\left(1+\frac{x^{2}}{81}\right)\right]^{1 / 4}-\left[16\left(1+\frac{x^{2}}{16}\right)\right]^{1 / 4} \\
& =3\left(1+\frac{x^{2}}{81}\right)^{1 / 5}-2\left(1+\frac{x^{2}}{16}\right)^{1 / 4} \\
& =3\left(1+\frac{1}{4} \cdot \frac{x^{2}}{81}\right)-2\left(1+\frac{1}{4} \cdot \frac{x^{2}}{16}\right) \\
& =3+\frac{3}{4} \cdot \frac{x^{2}}{81}-2-\frac{2}{4} \frac{x^{2}}{16}=1+\left(\frac{1}{108}-\frac{1}{32}\right) x^{2}
\end{aligned}
$$

$=1-\frac{19}{864} x^{2}$ (After neglecting x^{4} and higher powers of x)
$\therefore \sqrt[4]{\mathrm{x}^{2}+81}-\sqrt[4]{\mathrm{x}^{2}+16}=1-\frac{19}{864} \mathrm{x}^{2}$
33. Suppose that x and y are positive and x is very small when compared to y. Then find the approximate value of $\left(\frac{y}{y+x}\right)^{3 / 4}-\left(\frac{y}{y+x}\right)^{4 / 5}$.

Sol. $\left(\frac{y}{y+x}\right)^{3 / 4}-\left(\frac{y}{y+x}\right)^{4 / 5}$

$$
\begin{aligned}
& =\left(\frac{y}{y\left(1+\frac{x}{y}\right)}\right)^{3 / 4}-\left(\frac{y}{y\left(1+\frac{x}{y}\right)}\right)^{4 / 5} \\
& =\left(1+\frac{x}{y}\right)^{-3 / 4}-\left(1+\frac{x}{y}\right)^{-4 / 5} \\
& =\left\{1+\left(\frac{-3}{4}\right)\left(\frac{x}{y}\right)+\frac{\left(-\frac{3}{4}\right)\left(\frac{-3}{4}-1\right)}{1 \cdot 2}\left(\frac{x}{y}\right)^{2}+\ldots\right\}
\end{aligned}
$$

$$
-\left\{1+\left(\frac{-4}{5}\right)\left(\frac{x}{y}\right)+\frac{\left(\frac{-4}{5}\right)\left(\frac{-4}{5}-1\right)}{1 \cdot 2}\left(\frac{x}{y}\right)^{2}+\ldots\right\}
$$

(By neglecting $(x / y)^{3}$ and higher powers of x / y
$=\left[1-\frac{3}{4}\left(\frac{x}{y}\right)-\frac{21}{32}\left(\frac{x}{y}\right)^{2}\right]-\left[1-\frac{4}{5}\left(\frac{x}{y}\right)+\frac{18}{25}\left(\frac{x}{y}\right)^{2}\right]$
$=\left(\frac{4}{5}-\frac{3}{4}\right) \frac{x}{y}-\left(\frac{21}{32}+\frac{18}{25}\right)\left(\frac{x}{y}\right)^{2}$
$=\frac{1}{20}\left(\frac{x}{y}\right)-\frac{1101}{800}\left(\frac{x}{y}\right)^{2}$
34. Expand $5 \sqrt{5}$ in increasing power of $\frac{4}{5}$.

Sol. $5 \sqrt{5}=5^{3 / 2}=\left(\frac{1}{5}\right)^{-3 / 2}$

$$
\begin{aligned}
& =\left(1-\frac{4}{5}\right)^{-3 / 2} \\
& =1+\frac{\left(\frac{3}{2}\right)}{1!}\left(\frac{4}{5}\right)+\frac{\frac{3}{2} \cdot \frac{5}{2}}{2!}\left(\frac{4}{5}\right)^{2}+\ldots+\frac{\frac{3}{2} \cdot \frac{5}{2} \ldots\left(\frac{3}{2}+\mathrm{r}-1\right)}{\mathrm{r}!}\left(\frac{4}{5}\right)^{\mathrm{r}}+\ldots \infty \\
& =1+\frac{3}{1!2} \frac{4}{5}+\frac{3 \cdot 5}{2!2^{2}}\left(\frac{4}{5}\right)^{2}+\ldots+\frac{3 \cdot 5 \ldots(2 \mathrm{r}-1)}{\mathrm{r}!2^{\mathrm{r}}}\left(\frac{4}{5}\right)^{\mathrm{r}}+\ldots
\end{aligned}
$$

35. Find the sum of the infinitive terms

$$
\frac{5}{6 \cdot 12}+\frac{5 \cdot 8}{6 \cdot 12 \cdot 18}+\frac{5 \cdot 8 \cdot 11}{6 \cdot 12 \cdot 18 \cdot 24}+\ldots \infty
$$

Sol.Let $S=\frac{5}{6 \cdot 12}+\frac{5 \cdot 8}{6 \cdot 12 \cdot 18}+\frac{5 \cdot 8 \cdot 11}{6 \cdot 12 \cdot 18 \cdot 24}+\ldots$

$$
\Rightarrow 2 S=\frac{2 \cdot 5}{1 \cdot 2}\left(\frac{1}{6}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 2 \cdot 3}\left(\frac{1}{6}\right)^{3}+\frac{2 \cdot 5 \cdot 8 \cdot 11}{1 \cdot 2 \cdot 3 \cdot 4}\left(\frac{1}{6}\right)^{4}+\ldots \ldots .
$$

$$
\Rightarrow 1+\frac{2}{1}\left(\frac{1}{6}\right)+2 S=1+\frac{2}{1}\left(\frac{1}{6}\right)+\frac{2 \cdot 5}{1 \cdot 2}\left(\frac{1}{6}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 2 \cdot 3}\left(\frac{1}{6}\right)^{3}+\ldots \ldots .
$$

$$
\Rightarrow \frac{4}{3}+2 S=1+\frac{2}{1}\left(\frac{1}{6}\right)+\frac{2 \cdot 5}{1 \cdot 2}\left(\frac{1}{6}\right)^{2}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 2 \cdot 3}\left(\frac{1}{6}\right)^{3}+\ldots \ldots .
$$

Comparing $\frac{4}{3}+2 \mathrm{~S}$ with $(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}$

$$
=1+\frac{p}{1}\left(\frac{x}{q}\right)+\frac{p(p+q)}{1 \cdot 2}\left(\frac{x}{q}\right)^{2}+\ldots
$$

Here $\mathrm{p}=2, \mathrm{q}=3, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{6} \Rightarrow \mathrm{x}=\frac{\mathrm{q}}{6}=\frac{3}{6}=\frac{1}{2}$
$\therefore \frac{4}{3}+2 \mathrm{~S}=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}=\left(1-\frac{1}{2}\right)^{-2 / 3}$
$=\left(\frac{1}{2}\right)^{-2 / 3}=(2)^{2 / 3}=\sqrt[3]{4}$
$\therefore 2 S=\sqrt[3]{4}-\frac{4}{3} \Rightarrow S=\frac{\sqrt[3]{4}}{2}-\frac{2}{3}=\frac{1}{\sqrt[3]{2}}-\frac{2}{3}$
$\therefore \frac{5}{6 \cdot 12}+\frac{5 \cdot 8}{6 \cdot 12 \cdot 18}+\frac{5 \cdot 8 \cdot 11}{6 \cdot 12 \cdot 18 \cdot 24}+\ldots=\frac{1}{\sqrt[3]{2}}-\frac{2}{3}$
36. If the coefficients of x^{9}, x^{10}, x^{11} in the expansion of $(1+x)^{n}$ are in A.P. then prove that $n^{2}-41 n+398=0$.

Sol: Coefficient of x^{r} in the expansion $(1-x)^{n}$ is ${ }^{n} C_{r}$.
Given coefficients of $\mathrm{x}^{9}, \mathrm{x}^{10}, \mathrm{x}^{11}$ in the expansion of $(1-\mathrm{x})^{\mathrm{n}}$ are in A.P., then $2\left({ }^{\mathrm{n}} \mathrm{C}_{10}\right)={ }^{\mathrm{n}} \mathrm{C}_{9}+{ }^{\mathrm{n}} \mathrm{C}_{11}$ $\Rightarrow 2 \frac{n!}{(n-10)!10!}=\frac{n!}{(n-9)!9!}+\frac{n!}{(n-11)!+11!}$
$\Rightarrow \frac{2}{10(\mathrm{n}-10)}=\frac{1}{(\mathrm{n}-9)(\mathrm{n}-10)}+\frac{1}{11 \times 10}$
$\Rightarrow \frac{2}{(\mathrm{n}-10) 10}=\frac{110+(\mathrm{n}-9)(\mathrm{n}-10)}{110(\mathrm{n}-9)(\mathrm{n}-10)}$
$\Rightarrow 22(\mathrm{n}-9)=110+\mathrm{n}^{2}-19 \mathrm{n}+90$
$\Rightarrow \mathrm{n}^{2}-41 \mathrm{n}+398=0$
37. Find the number of irrational terms in the expansion of $\left(5^{1 / 6}+2^{1 / 8}\right)^{100}$.

Sol: Number of terms in the expansion of $\left(5^{1 / 6}+2^{1 / 8}\right)^{100}$ are 101.
General term in the expansion of $(x+y)^{n}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}$.
\therefore General term in the expansion of $\left(5^{1 / 6}+2^{1 / 8}\right)^{100}$ is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}+1} & ={ }^{100} \mathrm{C}_{\mathrm{r}} \cdot\left(5^{1 / 6}\right)^{100-\mathrm{r}} \cdot\left(2^{1 / 8}\right)^{\mathrm{r}} \\
& ={ }^{100} \mathrm{C}_{\mathrm{r}} \cdot 5^{\frac{100-\mathrm{r}}{6}} \cdot 2^{\frac{\mathrm{r}}{8}}
\end{aligned}
$$

For $\mathrm{T}_{\mathrm{r}+1}$ to be a rational.
Clearly ' r ' is a multiple of 8 and $100-r$ is a multiple of 6 .
$\therefore \mathrm{r}=16,40,64,88$.
Number of rational terms are 4.
\therefore Number of irrational terms are $101-4=97$.
38. If $\mathrm{t}=\frac{4}{5}+\frac{4 \cdot 6}{5 \cdot 10}+\frac{4 \cdot 6.8}{5 \cdot 10.15}+\ldots \infty$, then prove than $9 \mathrm{t}=\mathbf{1 6}$.

Sol: Given
$\mathrm{t}=\frac{4}{5}+\frac{4.6}{5 \cdot 10}+\frac{4.6 .8}{5 \cdot 10.15}+\ldots \infty$
$\Rightarrow 1+\mathrm{t}=1+\frac{4}{5}+\frac{4.6}{5.10}+\frac{4.6 .8}{5 \cdot 10.15}+\ldots \infty$
$\Rightarrow 1+\mathrm{t}=1+\frac{4}{1!}\left(\frac{1}{5}\right)+\frac{4.6}{2!}\left(\frac{1}{5}\right)^{2}+\frac{4.6 \cdot 8}{3!}\left(\frac{1}{5}\right)^{3}+\ldots \infty$.
We know that

$$
\begin{aligned}
& 1+\frac{p}{1!}\left(\frac{x}{p}\right)+\frac{p(p+q)}{2!}\left(\frac{x}{p}\right)^{2}+ \\
& \quad \frac{p(p+q)(p+2 q)}{3!}\left(\frac{x}{p}\right)^{3}+\ldots \infty=(1-x)^{-p / q}
\end{aligned}
$$

Here $\mathrm{p}=4, \mathrm{p}+\mathrm{q}=6, \frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{5}$
$\Rightarrow \mathrm{q}=2 \Rightarrow \mathrm{x}=\frac{2}{5}$
$\therefore 1+\mathrm{t}=\left(1-\frac{2}{5}\right)^{\frac{-4}{2}}$
$\Rightarrow 1+\mathrm{t}=\left(\frac{3}{5}\right)^{-2}$
$\Rightarrow 1+\mathrm{t}=\left(\frac{5}{3}\right)^{2}=\frac{25}{9}$
$\Rightarrow 9 \mathrm{t}=16$.

