SYSTEM OF CIRCLES

Theorem:

If d is the distance between the centers of two intersecting circles with radii r_{1}, r_{2} and θ is the angle between the circles then $\cos \theta=\frac{d^{2}-r_{1}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}$.

Proof:

Let C_{1}, C_{2} be the centre s of the two circles $S=0, S^{\prime}=0$ with radii r_{1}, r_{2} respectively. Thus $\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{d}$. Let P be a point of intersection of the two circles. Let PB, PA be the tangents of the circles $S=0, S^{\prime}=0$ respectively at P.

Now $\mathrm{PC}_{1}=\mathrm{r}_{1}, \mathrm{PC}_{2}=\mathrm{r}_{2}, \angle \mathrm{APB}=\theta$
Since PB is a tangent to the circle $\mathrm{S}=0, \angle \mathrm{C}_{1} \mathrm{~PB}=\pi / 2$
Since PA is a tangent to the circle $\quad \mathrm{S}^{\prime}=0, \angle \mathrm{C}_{2} \mathrm{PA}=\pi / 2$
Now $\angle \mathrm{C}_{1} \mathrm{PC}_{2}=\angle \mathrm{C}_{1} \mathrm{~PB}+\angle \mathrm{C}_{2} \mathrm{PA}-\angle \mathrm{APB}=\pi / 2+\pi / 2-\theta=\pi-\theta$
From $\Delta \mathrm{C}_{1} \mathrm{PC}_{2}$, by cosine rule,
$C_{1}^{2} C_{2}^{2}=P C_{1}^{2}+P C_{2}^{2}-2 P_{1} \cdot P C_{2} \cos \angle C_{1} P C_{2} \Rightarrow d^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos (\pi-\theta) \Rightarrow d^{2}=r_{1}^{2}+r_{2}^{2}+2 r_{1} r_{2} \cos \theta$

$$
\Rightarrow 2 \mathrm{r}_{1} \mathrm{r}_{2} \cos \theta=\mathrm{d}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2} \Rightarrow \cos \theta=\frac{\mathrm{d}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}}{2 \mathrm{r}_{1} \mathrm{r}_{2}}
$$

Corollary:

If θ is the angle between the circles $x^{2}+y^{2}+2 g x+2 f y+c=0, \quad x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ then $\cos \theta=\frac{\mathrm{c}+\mathrm{c}^{\prime}-2\left(\mathrm{gg}^{\prime}+\mathrm{ff}^{\prime}\right)}{2 \sqrt{\mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{c}} \sqrt{\mathrm{g}^{\prime 2}+\mathrm{f}^{\prime 2}-\mathrm{c}^{\prime}}}$.

Proof:

Let C_{1}, C_{2} be the centre s and r_{1}, r_{2} be the radii of the circles $S=0, S^{\prime}=0$ respectively and $C_{1} C_{2}=d$.
$\therefore \mathrm{C}_{1}=(-\mathrm{g},-\mathrm{f}), \mathrm{C}_{2}=\left(-\mathrm{g}^{\prime},-\mathrm{f}^{\prime}\right)$,

$$
r_{1}=\sqrt{g^{2}+f^{2}-c}, r_{2}=\sqrt{g^{\prime 2}+f^{\prime 2}-c^{\prime}}
$$

Now $\cos \theta=\frac{d^{2}-r_{1}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}=\frac{\left(g-g^{\prime}\right)^{2}+\left(f-f^{\prime}\right)^{2}-\left(g^{2}+f^{2}-c\right)-\left(g^{\prime 2}+f^{\prime 2}-c^{\prime}\right)}{2 \sqrt{g^{2}+f^{2}-c} \sqrt{g^{\prime 2}+f^{\prime 2}-c^{\prime}}}$

$$
\begin{aligned}
& =\frac{g^{2}+g^{\prime 2}-2 g g^{\prime}+f^{2}+f^{\prime 2}-2 f f^{\prime}-g^{2}-f^{2}+c-g^{\prime 2}-f^{\prime 2}+c^{\prime}}{2 \sqrt{g^{2}+f^{2}-c} \sqrt{g^{\prime 2}+f^{\prime 2}-c^{\prime}}} \\
& =\frac{\mathrm{c}+\mathrm{c}^{\prime}-2\left(\mathrm{gg}^{\prime}+\mathrm{ff}^{\prime}\right)}{2 \sqrt{\mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{c}} \sqrt{\mathrm{~g}^{\prime 2}+\mathrm{f}^{\prime 2}-\mathrm{c}^{\prime}}}
\end{aligned}
$$

Note: Let d be the distance between the centers of two intersecting circles with radii r_{1}, r_{2}. The two circles cut orthogonally if $\mathrm{d}^{2}=\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}$.

Note: The condition that the two circles
$S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0, S^{\prime} \equiv x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ may cut each other orthogonally is $2 \mathrm{gg}^{\prime}+\mathbf{2 f f ^ { \prime }}=\mathbf{c}+\mathrm{c}^{\prime}$.

Proof: Let C_{1}, C_{2} be the centers and r_{1}, r_{2} be the radii of the circles $S=0, S^{\prime}=0$ respectively.
$\therefore \quad C_{1}=(-g,-f), C_{2}=\left(-g^{\prime},-f^{\prime}\right)$

$$
\mathrm{r}_{1}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}, \mathrm{r}_{2}=\sqrt{\mathrm{g}^{\prime 2}+\mathrm{f}^{\prime 2}-\mathrm{c}^{\prime}}
$$

Let P be point of intersection of the circles.
The two circles cut orthogonally at P
$\Leftrightarrow \angle \mathrm{C}_{1} \mathrm{PC}_{2}=90^{\circ}$.

$$
\begin{aligned}
& \Rightarrow C_{1} C_{2}^{2}=C_{1} P^{2}+C_{2} P^{2} \Leftrightarrow\left(g-g^{\prime}\right)^{2}+\left(f-f^{\prime}\right)^{2}=r_{1}^{2}+r_{2}^{2} \\
& \Leftrightarrow g^{2}+g^{\prime 2}-2 g g^{\prime}+f^{2}+f^{\prime 2}-2{f f^{\prime}}^{\prime}=g^{2}+f^{2}-c+g^{\prime 2}+f^{\prime 2}+c^{\prime} \\
& \Leftrightarrow-\left(2 g g^{\prime}+2{f f^{\prime}}^{\prime}\right)=-\left(c+c^{\prime}\right) \Rightarrow 2 g g^{\prime}+2 f^{\prime}=c+c^{\prime}
\end{aligned}
$$

Note:

1. The equation of the common chord of the intersecting circles $s=0$ and $s^{1}=0$ is $s-s^{1}=0$.
2. The equation of the common tangent of the touching circles $s=0$ and $s^{1}=0$ is $s-s^{1}=0$
3. If the circle $s=0$ and the line $\mathrm{L}=0$ are intersecting then the equation of the circle passing through the points of intersection of $s=0$ and $L=0$ is $S+\lambda L=0$.
4. The equation of the circle passing through the point of intersection of $S=0$ and $S^{1}=0$ is $S+\lambda S^{1}=0$.

Theorem: The equation of the radical axis of the circles $S=0, S^{\prime}=0$ is $S-S^{\prime}=0$.
Theorem: The radical axis of two circles is perpendicular to their line of centers.

Proof:

Let $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0, S^{\prime} \equiv x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ be the given circles.

The equation of the radical axis is $S-S^{\prime}=0$

$$
\begin{aligned}
\Rightarrow & 2\left(\mathrm{~g}-\mathrm{g}^{\prime}\right) \mathrm{x}+2\left(\mathrm{f}-\mathrm{f}^{\prime}\right) \mathrm{y}+\left(\mathrm{c}-\mathrm{c}^{\prime}\right)=0 \\
\Rightarrow & a_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0 \text { where } \\
& a_{1}=2\left(\mathrm{~g}-\mathrm{g}^{\prime}\right), \mathrm{b}_{1}=2\left(\mathrm{f}-\mathrm{f}^{\prime}\right), c_{1}=\mathrm{c}-\mathrm{c}^{\prime}
\end{aligned}
$$

The centers of the circles are $(-\mathrm{g},-\mathrm{f}),\left(-\mathrm{g}^{\prime},-\mathrm{f}^{\prime}\right)$

The equation to the line of centers is:

$$
\begin{aligned}
& (\mathrm{x}+\mathrm{g})\left(\mathrm{f}-\mathrm{f}^{\prime}\right)=(\mathrm{y}+\mathrm{f})\left(\mathrm{g}-\mathrm{g}^{\prime}\right) \\
& \Rightarrow\left(\mathrm{f}-\mathrm{f}^{\prime}\right) \mathrm{x}-\left(\mathrm{g}-\mathrm{g}^{\prime}\right) \mathrm{y}-\mathrm{gf}^{\prime}+\mathrm{fg}^{\prime}=0 \\
& \Rightarrow \mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0 \text { where }
\end{aligned}
$$

$$
\mathrm{a}_{2}=\mathrm{f}-\mathrm{f}^{\prime}, \mathrm{b}_{2}=-\left(\mathrm{g}-\mathrm{g}^{\prime}\right), \mathrm{c}_{2}=\mathrm{fg}^{\prime}-\mathrm{gf}^{\prime}
$$

Now $a_{1} a_{2}+b_{1} b_{2}=2\left(g-g^{\prime}\right)\left(f-\mathrm{f}^{\prime}\right)-2\left(f-\mathrm{f}^{\prime}\right)\left(\mathrm{g}-\mathrm{g}^{\prime}\right)=0$.

Very Short Answer Questions

1. Find ' k ' if the following pair of circles are orthogonal.

i) $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{by}-\mathrm{k}=0, \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+8=0$

Sol. Given circles are $x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0$
From above equations $\mathrm{g}_{1}=0 ; \mathrm{f}_{1}=\mathrm{b} ; \mathrm{c}_{1}=-\mathrm{k}$

$$
\mathrm{g}_{2}=\mathrm{a} ; \quad \mathrm{f}_{1}=0 ; \mathrm{c}_{1}=8
$$

Since the circles are orthogonal,

$$
2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2}
$$

$$
2(0)(a)+2(b)(0)=-k+8
$$

$$
0=-\mathrm{k}+8
$$

$$
\mathrm{K}=8
$$

ii) $x^{2}+y^{2}+6 x-8 y+12=0$;

$$
x^{2}+y^{2}-4 x+6 y+k=0
$$

Ans. $k=-24$

2 Find the angle between the circles given by the equations
i) $x^{2}+y^{2}-12 x-6 y+41=0 ; \quad x^{2}+y^{2}-4 x+6 y-59=0$

Sol. $x^{2}+y^{2}-12 x-6 y+41=0$
Centre $C_{1}=(6,3)$ radius $r_{1}=\{36+9-41\}^{1 / 2}=2$
$x^{2}+y^{2}-4 x+6 y-59=0$, then centre $C_{2}=(-2,-3)$
Radius $r_{2}=\{4+9-59\}^{1 / 2}=\{72\}^{1 / 2}=6 \sqrt{2}$
$C_{1} C_{2}=d=\sqrt{(6+2)^{2}+(3+3)^{2}}=\sqrt{64+36}=10$

Let θ be the angle between the circles, then $\quad \cos \theta=\frac{d^{2}-r_{2}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}=\frac{100-4-72}{2 \times 2 \sqrt{72}}=\frac{24}{4 \times 6 \sqrt{2}}=\frac{1}{\sqrt{2}}$ $\theta=45^{\circ}$
ii) $x^{2}+y^{2}+6 x-10 y-135=0 ; \quad x^{2}+y^{2}-4 x+14 y-116=0$.

Ans. $\theta=\frac{2 \pi}{3}$
3. Show that the angle between the circles $x^{2}+y^{2}=a^{3}$ and $x^{2}+y^{2}=a x$ is $\frac{3 \pi}{2}$

Sol. Equations of the circles are

$$
\begin{aligned}
& \mathrm{S}=\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{a}^{2}=0, \\
& \mathrm{~S}^{1}=\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{ax}-\mathrm{ay}=0 \\
& \mathrm{C}_{1}(0,0), \mathrm{C}_{2}\left(\frac{a}{2}, \frac{a}{2}\right) \\
& \therefore \mathrm{C}_{1} \mathrm{C}_{2}^{2}=\left(0-\frac{a}{2}\right)^{2}+\left(0-\frac{a}{2}\right)^{2} \\
& \frac{\mathrm{a}^{2}}{4}+\frac{\mathrm{a}^{2}}{4}=\frac{\mathrm{a}^{2}}{2}=\mathrm{d}^{2} \\
& \mathrm{r}_{1}=\mathrm{a}, \quad \mathrm{r}_{2}=\sqrt{\frac{a^{2}}{4}+\frac{a^{2}}{4}}=\sqrt{\frac{a^{2}}{4}}=\frac{a}{\sqrt{2}}
\end{aligned}
$$

$\cos \theta-\frac{d^{2}-r_{2}^{2}-r_{2}^{2}}{2 r_{2} r_{2}}=\frac{\frac{a^{2}}{2}-a^{2}-\frac{a^{2}}{2}}{2 a \frac{a^{2}}{\sqrt{2}}}=\frac{-a^{2}}{\sqrt{2} a^{2}}=\frac{-1}{\sqrt{2}}=\cos \frac{3 \pi}{4} \quad$ Therefore, $\theta=\frac{3 \pi}{4}$
4. Show that circles given by the following equations intersect each other orthogonally.
i). $x^{2}+y^{2}+6 x-8 y+12=0 ; x^{2}+y^{2}-4 x+6 y+k=0$

Sol. Given circles are
$x^{2}+y^{2}+6 x-8 y+12=0 ; \quad x^{2}+y^{2}-4 x+6 y+k=0$ from above circles,
$\mathrm{g}=-1, \mathrm{f}=-1, \mathrm{c}=-7, \quad \mathrm{~g}^{1}=\frac{-4}{3}, \mathrm{f}^{1}=\frac{29}{6} ; \mathrm{c}^{1}=0$. Therefore, $\mathrm{c}+\mathrm{c}^{1}=-7+0$
$2 \mathrm{gg}^{1}+2 \mathrm{ff}^{1}=-2(-1)\left(\frac{-4}{3}\right)+2(-1) \frac{29}{6}=\frac{8}{3}-\frac{29}{3}=\frac{-21}{3}=-7$
Therefore, $2 \mathrm{gg}^{1}+2 \mathrm{ff}^{1}=\mathrm{c}+\mathrm{c}^{1}$
Hence the given circles cut each other orthogonally.
Hence both the circles cut orthogonally.
ii) $x^{2}+y^{2}+21 x+4=0 ; x^{2}+y^{2}+2 m y-g=0$

Sol. Given circles $x^{2}+y^{2}+21 x+4=0 ; x^{2}+y^{2}+2 m y-g=0$ from these equations, $\mathrm{g}_{1}=-l ; \mathrm{f}_{1}=0, \mathrm{c}_{1}=\mathrm{g}, \mathrm{g}_{2}=0, \mathrm{f}_{2}=\mathrm{m}, \mathrm{c}_{2}=-\mathrm{g}$

Now $2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2}$
$2(-l)(0)+2(0)(\mathrm{m})=\mathrm{g}-\mathrm{g}$
$0=0 \quad \therefore$ Two circles are orthogonal.
5. Find the equation of the radical axis of the following circles.
i) $x^{2}+y^{2}-3 x-4 y+5=0,3\left(x^{2}+y^{2}\right)-7 x+8 y+11=0$

Sol.let $S \equiv x^{2}+y^{2}-3 x-4 y+5=0$

$$
S^{\prime}=x^{2}+y^{2}-\frac{7}{3} x+\frac{8}{3} y+\frac{11}{3}=0
$$

Radical axis is $S-S^{\prime}=0$

$$
\begin{aligned}
& \left(x^{2}+y^{2}-3 x-4 y+5\right)-\left(x^{2}+y^{2}-\frac{7}{3} x+\frac{8}{3} y+\frac{11}{3}\right)=0 \\
& -\frac{2}{3} x-\frac{20}{3} y+\frac{4}{3}=0 \Rightarrow x+10 y-2=0
\end{aligned}
$$

ii) $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}+4 \mathrm{y}+1=0, \mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}+\mathrm{y}=0$. Ans. $2 \mathrm{x}-3 \mathrm{y}+1=0$
iii) $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}+6 \mathrm{y}-7=0,4\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)+8 \mathrm{x}+12 \mathrm{y}-9=0$. Ans. $8 \mathrm{x}+12 \mathrm{y}-19=0$
iv) $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-1=0, \mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-6 \mathrm{y}+5=0 \quad$ Ans. $\mathrm{x}+\mathrm{y}-3=0$
6. Find the equation of the common chord of the following pair of circles.
i) $x^{2}+y^{2}-4 x-4 y+3=0, x^{2}+y^{2}-5 x-6 y+4=0$

Sol. $S=x^{2}+y^{2}-4 x-4 y+3=0$

$$
S^{1}=x^{2}+y^{2}-5 x-6 y+4=0
$$

Common chord is $\mathrm{S}-\mathrm{S}^{\prime}=0$

$$
\begin{aligned}
& \left(x^{2}+y^{2}-4 x-4 y+3\right)-\left(x^{2}+y^{2}-5 x-6 y+4\right)=0 \\
& x+2 y-1=0
\end{aligned}
$$

Short Answer Questions

1 Find the equation of the circle which passes through the origin and intersects the circles given by the following equations orthogonally.
i) $x^{2}+y^{2}-4 x+6 y+10=0, x^{2}+y^{2}+12 y+6=0$

Sol. Let equation of the circle be

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y+c=0 \tag{1}
\end{equation*}
$$

Above circle is passing through $(0,0)$
$0+0+0+0+c=0 \therefore c=0$.
Circle (1) is orthogonal to
$x^{2}+y^{2}-4 x+67+10=0$ then
$2 \mathrm{gg}^{1}+2 \mathrm{ff}^{1}=\mathrm{c}+\mathrm{c}^{1}$
$2 \mathrm{~g}(-2)+2 \mathrm{f}(3)=0+10$
$-4 g+6 f=10$
Circle (1) is orthogonal to
$x^{2}+y^{2}+12 y+6=0$
$\therefore 2 \mathrm{~g}(0)+2 \mathrm{f}(6)=6+0$
$12 f=6----(3) \Rightarrow f=\frac{1}{2}$
From (2) and (3),

$$
\begin{aligned}
& -4 g+6 \quad \frac{1}{2}=10 \\
& -4 g=10-3 \Rightarrow g=-\frac{7}{4}
\end{aligned}
$$

\therefore Equation of circle is

$$
x^{2}+y^{2}-\frac{7}{2} x+y=0 \Rightarrow 2 x^{2}+2 y^{2}-7 x+2 y=0
$$

2. Find the equation of the circle which passes through the point $(0,-3)$ and intersects the circles given by the equations $x^{2}+y^{2}-6 x+3 y+5=0, x^{2+}+y^{2}-x-7 y=0$ orthogonally.
Sol. Let circle be

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

(1) is orthogonal to $x^{2}+y^{2}-6 x+3 y+5=0$

$$
\begin{align*}
& \therefore 2 g(-3)+2 f\left(\frac{+3}{2}\right)=c+5 \\
& -6 g+3 f=c+5-------- \tag{2}
\end{align*}
$$

(1) is orthogonal to $x^{2}+y^{2}-x-7 y=0$

$$
\begin{align*}
& \therefore 2 \mathrm{~g}\left(\frac{+1}{2}\right)+2 \mathrm{f}\left(\frac{+7}{2}\right)=\mathrm{c} \\
&-\mathrm{g}-7 \mathrm{f}=\mathrm{c} \tag{3}
\end{align*}
$$

Given (1) is passing through $(0,-3)$

$$
0+9-6 f+c=0
$$

(3) - (2)
$5 \mathrm{~g}-10 \mathrm{f}=-5 \Rightarrow \mathrm{~g}-2 \mathrm{f}=-1$
(iii) + (iv)
$9-\mathrm{g}-13 \mathrm{f}=0 \Rightarrow \mathrm{~g}+13 \mathrm{f}=9$

$$
g-2 f=-1
$$

$$
15 f=10
$$

$$
\mathrm{f}=\frac{2}{3} \Rightarrow \mathrm{~g}=2 \cdot \frac{2}{3}-1 \Rightarrow \mathrm{~g}=+\frac{1}{3}
$$

$$
\Rightarrow 9-6 \cdot \frac{2}{3}+\mathrm{c}=0 \Rightarrow \mathrm{c}=-5
$$

Therefore, equations of the circles are

$$
x^{2}+y^{2}+\frac{4}{3} y+\frac{4}{3} x-5=0
$$

(Or) $3 x^{2}+3 y^{2}+2 x+4 y-15=0$
(3) Find the equation of the circle passing through the origin, having its centre on the line $x+y=4$ and intersecting the circle $x^{2}+y^{2}-4 x+2 y+4=0$ orthogonally?
Sol. Let $S=x^{2}+y^{2}+2 g x+2 f y+c=0$
$S=0$ is passing through $(0,0)$

$$
\begin{aligned}
\Rightarrow & 0+0+2 \mathrm{~g} \cdot 0+2 \mathrm{f} \cdot 0+\mathrm{c}=0 \Rightarrow \mathrm{c}=0 \\
& \mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}=0
\end{aligned}
$$

Centre ($-\mathrm{g},-\mathrm{f}$) is on $\mathrm{x}+\mathrm{y}=4$
$\mathrm{s}-\mathrm{g}-\mathrm{f}=4$ \qquad
$S=0$ is orthogonal to

$$
\begin{align*}
& x^{2}+y^{2}-4 x+2 y+4=0 \\
\Rightarrow & -4 g+2 f=4+0 \\
\Rightarrow & f-2 g=2 \quad-----(2) \tag{2}
\end{align*}
$$

Solving (1) and (2) we get
$-3 \mathrm{~g}=6 \Rightarrow \mathrm{~g}=-2$
$\mathrm{f}=-2$
Equation of circle is $x^{2}+y^{2}-4 x-4 y=0$
4. Find the equation of the circle which passes through the points $(2,0),(0,2)$ and orthogonal to the circle $2 x^{2}+2 y^{2}+5 x-6 y+4=0$
Sol. Let $S=x^{2}+y^{2}+2 g x+2 f y+c=0$
$S=0$ is passing through $(2,0),(0,2)$,

$$
\begin{equation*}
\Rightarrow 4+0+4 g+c=0 \tag{1}
\end{equation*}
$$

And $\quad 0+4+4 f+c=0$
(1) $-(2) \Rightarrow \mathrm{f}-\mathrm{g}=0 \Rightarrow g=f$
$S=0$ is orthogonal to $x^{2}+y^{2}+\frac{5}{2} x-\frac{6}{2} y+2=0$
$=2 g\left(\frac{5}{4}\right)+2 f\left(-\frac{3}{2}\right)=2+c$

$$
\begin{aligned}
& \frac{5}{2} \mathrm{~g}-3 \mathrm{f}=2+\mathrm{c} \\
& \text { But } \mathrm{g}=\mathrm{f} \Rightarrow \frac{5}{2} \mathrm{~g}-3 \mathrm{~g}=2+\mathrm{c} \\
& \Rightarrow-\mathrm{g}=4+2 \mathrm{c}
\end{aligned}
$$

Putting value of g in equation (1)
$-16-8 \mathrm{c}+\mathrm{c}=-4 \Rightarrow \mathrm{c}=-\frac{12}{7}$
$\Rightarrow-\mathrm{g} 4-\frac{24}{7}=+\frac{4}{7}$
Equation of the circle is

$$
\begin{aligned}
& x^{2}+y^{2}-\frac{8 x}{7}+\frac{8 y}{7}+\frac{12}{7}=0 \\
& \Rightarrow 7\left(x^{2}+y^{2}\right)-8 x-8 y-12=0
\end{aligned}
$$

(5) Find the equation of the circle which cuts orthogonally the circle $x^{2}+y^{2}-4 x+2 y-7=0$ and having centre at $(2,3)$
Sol. Given circle is

$$
x^{2}+y^{2}-4 x+2 y-7=0
$$

Let the required circle be
$S=x^{2}+y^{2}+2 g x+2 f y+c=0$
Centre $(-\mathrm{g},-\mathrm{f})=(2,3)$ given

$$
\mathrm{g}=-2, \mathrm{f}=-3
$$

Circles (1) and $S=0$ are cutting each other orthogonally.

$$
\begin{aligned}
\Rightarrow & 2 \mathrm{gg}^{1}+2 \mathrm{ff}^{1}=\mathrm{c}+\mathrm{c}^{1} \\
& 2(-2)(-2)+2(-3)(1)=-7+\mathrm{c} \\
\Rightarrow & 8-6=-7+\mathrm{c} \Rightarrow+2=-7+\mathrm{c} \\
& \mathrm{c}=7+2=9 \Rightarrow \mathrm{c}=9
\end{aligned}
$$

Hence the required circle is,

$$
x^{2}+y^{2}-4 x-6 y+9=0
$$

6. Find the equation of the common tangent of the following circles at their point of contact.
i) $x^{2}+y^{2}+10 x-2 y+22=0, x^{2}+y^{2}+2 x-8 y+8=0$.

Sol. $\quad S=x^{2}+y^{2}+10 x-2 y+22=0$
Centre $A=(-5,1)$, radius $r_{1}=2$
$S^{\prime}=x^{2}+y^{2}+2 x-8 y+8=0$.
Centre B $=(-1,4)$ radius $r_{2}=3$
$\mathrm{AB}=\sqrt{16+9}=5$

Therefore $A B=5=3+2=r_{1}+r_{2}$.
Given circles touch each other externally.
When circles touch each other, their common tangent is $S-S^{\prime}=0$

$$
\begin{aligned}
\therefore & \left(x^{2}+y^{2}+10 x-2 y+22\right)-\left(x^{2}+y^{2}+2 x-8 y+8\right)=0 \\
& 8 x+6 y+14=0 \text { (or) } 4 x+3 y+7=0
\end{aligned}
$$

ii) $x^{2}+y^{2}-8 y-4=0, x^{2}+y^{2}-2 x-4 y=0$.

Ans. $x-2 y-2=0$
7. Show that the circles $x^{2}+y^{2}-8 x-2 y+8=0$ and $x^{2}+y^{2}-2 x+6 y+6=0$ touch each other and find the point of contact?

Sol.S $=x^{2}+y^{2}-8 x-2 y+8=0$
$\mathrm{C}_{1}=(4,1) ; \mathrm{r}_{1}=\sqrt{16+1-8}=3$
$S^{1}=x^{2}+y^{2}-2 x+6 y+6=0$
$\mathrm{C}_{2}=(1,-3), \mathrm{r}_{2}=\sqrt{1+9-6}=2$
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{(4-1)^{2}+(1+3)^{2}}=5$
$\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{C}_{1}+\mathrm{C}_{2}$ they touch each other externally

The point of contact divides the centre of circles in the ratio r_{1} : r_{2} internally.
Point of contact is
$=\left(\frac{3(1)+2(4)}{3+2}, \quad \frac{3(-3)+2(1)}{3+2}\right)=(11 / 5,-7 / 5)$
\therefore Point of contact is $\left(\frac{11}{5}, \frac{-7}{5}\right)$.
8. If the two circles $x^{2}+y^{2}+2 g x+2 f y=0$ and $x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$ touch each other then show that $\mathrm{f}^{\prime} \mathrm{g}=\mathrm{fg}^{\prime}$.

Sol. $S=x^{2}+y^{2}+2 g x+2 f y=0$
Centre $\mathrm{C}_{1}=(-\mathrm{g},-\mathrm{f})$, radius $\mathrm{r}_{1}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}}$
$S^{1}=x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y=0$
$\mathrm{C}_{2}=\left(-\mathrm{g}^{\prime},-\mathrm{f}^{\prime}\right), \mathrm{r}_{2}=\sqrt{\mathrm{g}^{\prime 2}+\mathrm{f}^{\prime 2}}$
Given circles are touching circles,
$\therefore \mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\Rightarrow\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)^{2}=\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}$
$\left(g^{\prime}-g\right)^{2}+\left(f^{\prime}-f\right)^{2}=g^{2}+f^{2}+g^{\prime 2}+f^{\prime 2}+2 \sqrt{g^{2}+f^{2}} \sqrt{g^{\prime 2}+f^{\prime 2}}$
$-2\left(\mathrm{gg}^{\prime}+\mathrm{ff}^{\prime}\right)=2\left\{\mathrm{~g}^{2} \mathrm{~g}^{\prime 2}+\mathrm{f}^{2} \mathrm{f}^{\prime 2}+\mathrm{g}^{2} \mathrm{f}^{\prime 2}+\mathrm{f}^{2} \mathrm{~g}^{\prime 2}\right\}^{1 / 2}$
$\Rightarrow\left(\mathrm{gg}^{\prime}+\mathrm{ff}^{\prime}\right)^{2}=\mathrm{g}^{2} \mathrm{~g}^{\prime 2}+\mathrm{f}^{2} \mathrm{f}^{\prime 2}+\mathrm{g}^{2} \mathrm{f}^{\prime 2}+\mathrm{f}^{2} \mathrm{~g}^{\prime 2}$
$\mathrm{g}^{2} \mathrm{~g}^{\prime 2}+\mathrm{f}^{2} \mathrm{f}^{\prime 2}+2 \mathrm{gg}^{\prime} \mathrm{ff}^{\prime}=\mathrm{g}^{2} \mathrm{~g}^{\prime 2}+\mathrm{f}^{2} \mathrm{f}^{\prime 2}+\mathrm{g}^{2} \mathrm{f}^{\prime 2}+\mathrm{f}^{2} \mathrm{~g}^{\prime 2}$
$\Rightarrow 2 \mathrm{gg}^{\prime} \mathrm{ff}^{\prime}=\mathrm{g}^{2} \mathrm{f}^{\prime 2}+\mathrm{f}^{2} \mathrm{~g}^{\prime 2}$
$\Rightarrow \mathrm{g}^{2} \mathrm{f}^{\prime 2}+\mathrm{f}^{2} \mathrm{~g}^{\prime 2}-2 \mathrm{gg}^{\prime} \mathrm{ff}^{\prime}=0$
$\Rightarrow\left(\mathrm{gf}^{\prime}-\mathrm{fg}^{\prime}\right)^{2}=0 \Rightarrow \mathrm{gf}^{\prime}=\mathrm{fg}^{\prime}$

9. Find the radical centre of the following circles

i) $x^{2}+y^{2}-4 x-6 y+5=0, x^{2}+y^{2}-2 x-4 y-1=0, x^{2}+y^{2}-6 x-2 y=0$

Sol.Given circles

$$
\begin{aligned}
& S=x^{2}+y^{2}-4 x-6 y+5=0 \\
& S^{\prime}=x^{2}+y^{2}-2 x-4 y-1=0 \\
& S^{\prime \prime}=x^{2}+y^{2}-6 x-2 y=0
\end{aligned}
$$

Radical axis of $S=0$ And $S^{\prime}=0$ is $S-S^{\prime}=0$
$\Rightarrow-2 \mathrm{x}-2 \mathrm{y}+6=0$
$\Rightarrow \mathrm{x}+\mathrm{y}-3=0$
R.A. of $S^{\prime}=0$ and $S^{\prime \prime}=0$ is $S^{\prime}-S^{\prime \prime}=0$
$\Rightarrow 4 \mathrm{x}-2 \mathrm{y}-1=0$
Solving (1) and (2),

$$
x=7 / 6, y=\frac{11}{6}
$$

Radical centre is (7/6, 11/6).
ii) $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-7=0,2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+3 \mathrm{x}+5 \mathrm{y}-9=0, \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{y}=0$.

Ans. P (2, 1)

Long Answer Questions

1 Find the equation of the circle which intersects the circle

$x^{2}+y^{2}-6 x+4 y-3=0$ orthogonally and passes through the point $(3,0)$ and touches the Y -axis.

Sol. Let (h, k) be the centre of the circle.
Since the circle is touching the y axis, therefore radius is $|\mathrm{h}|$

Therefore equation of the circle is
$(x-h)^{2}+(y-k)^{2}=h^{2}$
$S=x^{2}-2 h x+y^{2}-2 k y+k^{2}=0$
$S=0$ is Passing through $(3,0)$,
$\Rightarrow 9-6 \mathrm{~h}+\mathrm{k}^{2}=0-$ (i)
$S=0$ is Orthogonal to $x^{2}+y^{2}-6 x+4 y-3=0$
$\Rightarrow 2(-\mathrm{h})(-3)+2(-\mathrm{k})(2)=-3+\mathrm{k}^{2}$
$\Rightarrow 6 \mathrm{~h}-4 \mathrm{k}=-3+\mathrm{k}^{2}$
$\Rightarrow 6 \mathrm{~h}-4 \mathrm{k}+3-\mathrm{k}^{2}=0----$
(1) $+(2) \Rightarrow 12-4 \mathrm{k}=0 \Rightarrow \mathrm{k}=3$

$$
\Rightarrow \mathrm{h}=3
$$

Equation of circle be

$$
y^{2}+x^{2}-6 x-6 y+9=0
$$

(2) Find the equation of the circle which cuts the circles $x^{2}+y^{2}-4 x-6 y+11=0$, $x^{2}+y^{2}-10 x-4 y+21=0$ orthogonally and has the diameter along the straight line $2 x+3 y=7$.
Sol. Let circle be $S=x^{2}+y^{2}+2 g x+2 f y+c=0$
$S=0$ is Orthogonal to $x^{2}+y^{2}-4 x-6 y+11=0, x^{2}+y^{2}-10 x-4 y+21=0$
$\Rightarrow \quad 2 \mathrm{~g}(-2)+2 \mathrm{f}(-3)=11+\mathrm{c}$
$\Rightarrow \quad 2 \mathrm{~g}(-5)+2 \mathrm{f}(-2)=21+\mathrm{c}$
(1) $-(2) \Rightarrow-6 \mathrm{~g}+2 \mathrm{f}=10$

Centre ($-\mathrm{g},-\mathrm{f}$) is on $2 \mathrm{x}+3 \mathrm{y}=7$,

$$
\begin{equation*}
\therefore-2 \mathrm{~g}-3 \mathrm{f}=7 \tag{4}
\end{equation*}
$$

Solving (3) and (4)
$\mathrm{f}=-1, \mathrm{~g}=-2$,
Sub. These values in (1), then $c=3$
Equation of circle $x^{2}+y^{2}-4 x-2 y+3=0$
3) If P, Q are conjugate points with respect to a circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ then prove that the circle $P Q$ as diameter cuts the circles $S=0$ orthogonally.
Sol. Equation of the circle is
$S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$
Let $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ be the conjugate
Points w.r.t. the circle $\mathrm{S}=0$.
Since $P=\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are conjugate points, $S_{12}=0$.
$\Rightarrow \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{g}\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\mathrm{f}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)+\mathrm{c}=0$
$\Rightarrow x_{1} x_{2}+y_{1} y_{2}+c=-g\left(x_{1}+x_{2}\right)-f\left(y_{1}+y_{2}\right)---(1)$
Equation of the circle on PQ as diameter is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$

$$
\Rightarrow S^{1}=x^{2}+y^{2}-\left(x_{1}+x_{2}\right) x-\left(y_{1}+y_{2}\right) y+\left(x_{1} x_{2}+y_{1} y_{2}\right)=0
$$

Given $S=0$ and $S^{1}=0$ are orthogonal,
$2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}$

$$
\begin{aligned}
& =2 g\left[-\left(\frac{x_{2}+x_{2}}{2}\right)\right]+2 f\left[-\left(\frac{x_{1}+y_{2}}{2}\right)\right] \\
& =-g\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}+\mathrm{c}
\end{aligned}
$$

And $C+c^{1}=x_{1} x_{2}+y_{1} y_{2}+c$
$\therefore 2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{C}+\mathrm{c}^{1}$
Hence circles are orthogonal to each other.
4) If the equation of two circles whose radii are a, a^{1} be $S=0, S^{1}=0$, then show that the circles $\frac{s}{a} \pm \frac{5!}{a t}=0$ will interest orthogonally.
5) Find the equation of the circle which intersects each of the following circles orthogonally

$$
x^{2}+y^{2}+2 x+4 y+1=0 ; x^{2}+y^{2}-2 x+6 y-3=0 ; \quad 2 x^{2}+2 y^{2}+6 x+8 y-3=0
$$

Sol. Let equation of circle be

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

This circle is orthogonal to

$$
\begin{equation*}
x^{2}+y^{2}+2 x+4 y+1=0 ; x^{2}+y^{2}-2 x+6 y-3=0 ; x^{2}+y^{2}+3 x+4 y-3 / 2=0 \tag{i}
\end{equation*}
$$

$2 \mathrm{~g}(1)+2 \mathrm{f}(2)=\mathrm{c}+1$
$2 \mathrm{~g}\left(\frac{3}{2}\right)+2 \mathrm{f}(2)=\mathrm{c}-\frac{3}{2}$
$2 g(-1)+2 f(3)=c-3$
(iii) - (i)
$-5 \mathrm{~g}+2 \mathrm{f}=\frac{-3}{2}($ or $)-10 \mathrm{~g}+4 \mathrm{f}=-3-$ (iv)
(iii) - (i)
$-4 g+2 f=-4$
$\mathrm{F}-2 \mathrm{~g}=-2$
Solving (iv) and (v) we get
$\mathrm{F}=-7, \mathrm{~g}=-5 / 2, \mathrm{c}=-34$
\therefore Equation of circle be

$$
x^{2}+y^{2}-5 x-14 y-34=0
$$

ii) $x^{2}+y^{2}+4 x+2 y+1=0$;

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}+8 x+6 y-3=0 \\
& x^{2}+y^{2}+6 x-2 y-3=0
\end{aligned}
$$

Ans. $x^{2}+y^{2}-5 y-14 x-34=0$
6) If the Straight line $2 x+3 y=1$ intersects the circle $x^{2}+y^{2}=4$ at the points A and B. Find the equation of the circle having $A B$ as diameter.
Sol. Circle is $S=x^{2}+y^{2}=4$
Equation of the line is $L=2 x+3 y=1$ Equation of circle passing through $S=0$ and $L=0$ is

$$
\begin{aligned}
& \mathrm{S}+\lambda \mathrm{L}=0 \\
& \Rightarrow\left(\mathrm{x}^{2}+\mathrm{y}^{2}-4\right)+\lambda(2 \mathrm{x}+3 \mathrm{y}-1)=0 \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2 \lambda x+3 \lambda \mathrm{y}-4-\lambda=0 \\
& \Rightarrow \text { Center } \quad\left(-\lambda, \frac{-3 \lambda}{2}\right)
\end{aligned}
$$

Centre lies on $2 \mathrm{x}+3 \mathrm{y}-1=0$

$$
\begin{aligned}
& \Rightarrow 2(-\lambda)+3 \frac{-8 \lambda}{2}-1=0 \\
& \Rightarrow \lambda=\frac{-2}{13}
\end{aligned}
$$

\therefore Equation of circle be

$$
\begin{aligned}
& 13\left(x^{2}+y^{2}\right)-4 x 13-2(2 x+3 y-1)=0 \\
& 13\left(x^{2}+y^{2}\right)-4 x-6 y-50=0
\end{aligned}
$$

7) If $x+y=3$ is the equation of the chord $A B$ of the circle $x^{2}+y^{2}-2 x+4 y-8=0$, Find the equation of the circle having $A B$ as diameter.
Ans. $x^{2}+y^{2}-6 x+4=0$
8) Find the equation of the circle passing through the intersection of the circles $\mathbf{x}^{\mathbf{2}}+\mathrm{y}^{\mathbf{2}}=\mathbf{2 a x}$ and $\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}=\mathbf{2}$ by and having its center on the line $\frac{x}{a}-\frac{y}{b}=2$.
Sol. $S=x^{2}+y^{2}=2 a x$
$S 1=x^{2}+y^{2}=2 b y$
Equation of circle passes through the point of intersected of $S=0$ and $S^{1}=0$ can be
Written as $S+\lambda S^{1}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{ax}+\lambda\left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{by}\right)=0 \\
& \Rightarrow \mathrm{x}^{2}(1+\lambda)+\mathrm{y}^{2}(1+\lambda)+\mathrm{x}(-2 \mathrm{a})-(2 \mathrm{~b} \lambda) y=0 \\
& \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-\frac{2 \mathrm{a} \cdot x}{1+\lambda}-\frac{2 b \lambda \lambda y}{1+\lambda}=0
\end{aligned}
$$

Centre $\mathrm{C}=\left[\frac{+a}{1+\lambda}, \frac{+b a}{1+\lambda}\right]$

Centre is a point on $\frac{x}{a}-\frac{y}{b}=2$
$\Rightarrow \frac{+a}{a(1+\lambda)}-\frac{b \lambda}{(1+\lambda) b}=2 \Rightarrow 1-\lambda=2(1+\lambda)$
$\Rightarrow \lambda=-1 / 3$
Equation of circle be
$3 x^{2}+3 y^{2}-6 a x-x^{2}-y^{2}+2 b y=0$
$\Rightarrow 2 x^{2}+2 y^{2}-6 a x+2 b y=0$
$\Rightarrow x^{2}+y^{2}-3 a x+b y=0$.
9. Show that the common chord of the circles
$x^{2}+y^{2}-6 x-4 y+9=0$ and $x^{2}+y^{2}-8 x-6 y+23=0$ is the diameter of the second circle also and find its length.
Sol. $S=x^{2}+y^{2}-6 x-4 y+9=0, S^{\prime}=x^{2}+y^{2}-8 x-6 y+23=0$
Common chord is $S-S "=0$
$\Rightarrow\left(x^{2}+y^{2}-6 x-4 y+9\right)-\left(x^{2}+y^{2}-8 x-6 y+23\right)=0$
$\Rightarrow 2 \mathrm{x}+2 \mathrm{y}-14=0$
$\Rightarrow \mathrm{x}+\mathrm{y}-7=0 \ldots$
Centre of circle $(4,3)$
Substituting $(4,3)$ in $x+y-7=0$,
We get $4+3-7=0 \Rightarrow 0=0$.
(i) is a diameter of $S^{\prime}=0$.

Radius is $\sqrt{4^{2}+3^{2}-23}=\sqrt{2} \Rightarrow$ diameter $=2 \sqrt{2}$
10. Find the equation and the length of the common chord of the following circles.
i) $x^{2}+y^{2}+2 x+2 y+1=0, x^{2}+y^{2}+4 x+3 y+2=0$

Sol. $S=x^{2}+y^{2}+2 x+2 y+1=0$,
$S^{\prime}=x^{2}+y^{2}+4 x+3 y+2=0$
Equation of common chord is
$S-S^{\prime}=0$
$\left(x^{2}+y^{2}+2 x+2 y+1\right)-\left(x^{2}+y^{2}+4 x+3 y+2\right)=0$
$-2 \mathrm{x}-\mathrm{y}-1=0 \Rightarrow 2 \mathrm{x}+\mathrm{y}+1=0$
Centre of $S=0$ is $(-1,-1)$
Radius $=\sqrt{1+1-1}=1$
Length of \perp from centre $(-1,-1)$ to the chord is
$\mathrm{d}=\left|\frac{2(-1)+(-1)+1}{\sqrt{2^{2}+1^{2}}}\right|=\frac{2}{\sqrt{5}}$

length of the chord $=2 \sqrt{\mathrm{r}^{2}-\mathrm{d}^{2}}=2 \sqrt{1-\frac{4}{5}}=\frac{2}{\sqrt{5}}$
ii) $x^{2}+y^{2}-5 x-6 y+4=0, x^{2}+y^{2}-2 x-2=0$

Ans. $2 \sqrt{\frac{14}{5}}$
11. Prove that the radical axis of the circles $x^{2}+y^{2}+2 g x+2 f y+c=0$ and
$x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0$ is the diameter of the later circle (or) former bisects the circumference of later) if $\mathbf{2} \mathbf{g}^{\prime}\left(\mathbf{g}-\mathbf{g}^{\prime}\right)+\mathbf{2 f} \mathbf{f}^{\prime}\left(\mathbf{f}-\mathbf{f}^{\prime}\right)=\mathbf{c}-\mathbf{c}^{\prime}$.

Sol. $S=x^{2}+y^{2}+2 g x+2 f y+c=0$

$$
S^{1}=x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}=0
$$

Radical axis is $S-S^{\prime}=0$

$$
\begin{align*}
& \left(x^{2}+y^{2}+2 g x+2 f y+c\right)-\left(x^{2}+y^{2}+2 g^{\prime} x+2 f^{\prime} y+c^{\prime}\right)=0 \\
& 2\left(g-g^{\prime}\right) x+2\left(f-f^{\prime}\right) y+c-c^{\prime}=0 \tag{i}
\end{align*}
$$

Centre of second circle is $\left(-g^{\prime},-f^{\prime}\right)$

Radius $=\sqrt{\mathrm{g}^{\prime 2}+\mathrm{f}^{\prime 2}-\mathrm{c}^{\prime}}$
Now ($-\mathrm{g}^{\prime},-\mathrm{f}^{\prime}$) should lie on (i)
$\therefore-2 g\left(g-g^{\prime}\right)-2 f^{\prime}\left(f-f^{\prime}\right)+c-c^{\prime}=0$
Or $\quad 2 g\left(g-g^{\prime}\right)+2 f^{\prime}\left(f-f^{\prime}\right)=c-c^{\prime}$
12. Show that the circles $x^{2}+y^{2}+2 a x+c=0$ and $x^{2}+y^{2}+2 b y+c=0$ touch each other if $1 / a^{2}+1 / b^{2}=1 / c$.
Sol. $S=x^{2}+y^{2}+2 a x+c=0$

$$
S^{1}=x^{2}+y^{2}+2 b y+c=0
$$

The centre of the circles $\mathrm{C}_{1}(-\mathrm{a}, 0)$ and $\mathrm{C}_{2}(0,-\mathrm{b})$ respectively.
Radius $\mathrm{r}_{1}=\sqrt{\mathrm{a}^{2}-\mathrm{c}}, \mathrm{r}_{2}=\sqrt{\mathrm{b}^{2}-\mathrm{c}}$
Given circles are touching circles,
$\Rightarrow \mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\Rightarrow\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)^{2}=\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)^{2}$
$\Rightarrow\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=\mathrm{a}^{2}-\mathrm{c}+\mathrm{b}^{2}-\mathrm{c}+2 \sqrt{\mathrm{a}^{2}-\mathrm{c}} \sqrt{\mathrm{b}^{2}-\mathrm{c}}$
$\Rightarrow \mathrm{c}=\sqrt{\mathrm{a}^{2}-\mathrm{c}} \sqrt{\mathrm{b}^{2}-\mathrm{c}}$
$\Rightarrow \mathrm{c}^{2}=\left(\mathrm{a}^{2}-\mathrm{c}\right)\left(\mathrm{b}^{2}-\mathrm{c}\right)$
$\Rightarrow c^{2}=-c\left(a^{2}+b^{2}\right)+a^{2} b^{2}+c^{2}$
$\Rightarrow \mathrm{c}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)=\mathrm{a}^{2} \mathrm{~b}^{2} \Rightarrow \frac{1}{\mathrm{c}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
13. Show that the circles $x^{2}+y^{2}-2 x=0$ and
$x^{2}+y^{2}+6 x-6 y+2=0$ touch each other. Find the coordinates of the point of contact. Is the contact external or internal?

Sol. $S=x^{2}+y^{2}-2 x=0$
Centre $C_{1}=(1,0)$, Radius $=r_{1}=\sqrt{1+0}=1$

$$
S^{\prime}=x^{2}+y^{2}+6 x-6 y+2=0
$$

Centre $C_{2}=(-3,3), \quad r_{2}=\sqrt{9+9-2}=4$
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{(1+3)^{2}+(0-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5 \mathrm{r}_{1}+\mathrm{r}_{2}=1+4=5$
As $\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$ the two circles touch each other externally, the point of contact P divides line of centres internally in the ratio
$\mathrm{r}_{1}: \mathrm{r}_{2}=1: 4$
Hence point of contact

$$
\mathrm{P}=\left(\frac{1(-3)+4(1)}{1+4}, \frac{1(3)+4(0)}{1+4}\right)=\left(\frac{1}{5}, \frac{3}{5}\right) .
$$

14. Find the equation of circle which cuts the following circles orthogonally.
i) $x^{2}+y^{2}+2 x+4 y+1=0,2 x^{2}+2 y^{2}+6 x+8 y-3=0, x^{2}+y^{2}-2 x+6 y-3=0$.

Sol.
$S \equiv x^{2}+y^{2}+2 x+4 y+1=0$
$S^{1} \equiv 2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+6 \mathrm{x}+8 \mathrm{y}-3=0$
$S^{11} \equiv x^{2}+y^{2}-2 x+6 y-3=0$
Radical axis of $S=0, S^{1}=0$ is $S-S^{1}=0$

$$
\begin{equation*}
-x+\frac{5}{2}=0 \Rightarrow x=\frac{5}{2} \tag{1}
\end{equation*}
$$

Radical axis of $S=0, S^{11}=0$ is $S-S^{11}=0$

$$
\begin{align*}
& 4 x-2 y+4=0 \Rightarrow 2 x-y+2=0 \\
& x=\frac{5}{2} \Rightarrow 5-y+2=0 \Rightarrow y=7---(2 \tag{2}
\end{align*}
$$

Solving (1) and (2),
Radical centre is $\mathrm{P}(5 / 2,7)$
$\mathrm{PT}=$ Length of the tangent from P to $\mathrm{S}=0$

$$
=\sqrt{\frac{25}{4}+49+5+28+1}=\sqrt{\frac{25}{4}+83}=\sqrt{\frac{25+332}{4}}=\frac{\sqrt{357}}{2}
$$

Equation of the circles cutting the given circles orthogonally is

$$
\begin{aligned}
& \left(x-\frac{5}{2}\right)^{2}+(y-7)^{2}=\frac{357}{4} \\
& \Rightarrow x^{2}-5 x+\frac{25}{4}+y^{2}-14 y+49=\frac{357}{4} \\
& \Rightarrow x^{2}+y^{2}-5 x-14 y+\frac{25}{4}+49-\frac{357}{4}=0 \\
& \Rightarrow x^{2}+y^{2}-5 x-14 y+\frac{25+196-357}{4}=0 \\
& \Rightarrow x^{2}+y^{2}-5 x-14 y+\frac{136}{4}=0 \\
& \Rightarrow x^{2}+y^{2}-5 x-14 y-34=0
\end{aligned}
$$

ii) $x^{2}+y^{2}+2 x+17 y+4=0, x^{2}+y^{2}+7 x+6 y+11=0, x^{2}+y^{2}-x+22 y+3=0$

Ans. $x^{2}+y^{2}-6 x-4 y-44=0$
iii) $x^{2}+y^{2}+4 x+2 y+1=0,2\left(x^{2}+y^{2}\right)+8 x+6 y-3=0, x^{2}+y^{2}+6 x-2 y-3=0$.

Ans. $\mathrm{x}^{2}+\mathrm{y}^{2}-14 \mathrm{x}-5 \mathrm{y}-34=0$.
15. Show that the circles $S \equiv x^{2}+y^{2}-2 x-4 y-20=0$ and $S^{\prime} \equiv x^{2}+y^{2}+6 x+2 y-90=0$ touch each other internally. Find their point of contact and the equation of common tangent.

Sol.S $\equiv x^{2}+y^{2}-2 x-4 y-20=0 \ldots(1)$ and
$S^{\prime} \equiv x^{2}+y^{2}+6 x+2 y-90=0$
Let $\mathrm{C}_{1}, \mathrm{C}_{2}$ be the centres and $\mathrm{r}_{1}, \mathrm{r}_{2}$ be the radii of the given circles (1) and (2).
Then $\mathrm{C}_{1}=(1,2), \mathrm{C}_{2}=(-3,-1), \mathrm{r}_{1}=5, \mathrm{r}_{2}=10$
$\mathrm{C}_{1} \mathrm{C}_{2}=$ distance between the centers $=5$
$\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|=|5-10|=5=\mathrm{C}_{1} \mathrm{C}_{2}$
\therefore The given two circles touch internally. In this case, the common tangent is nothing but the radical axis. Therefore its equation is
$S-S^{\prime}=0$.
i.e. $4 x+3 y-35=0$

Now we find the point of contact. The point of contact divides $\overline{\mathrm{C}_{1} \mathrm{C}_{2}}$ in the ratio 5: 10
i.e. 1: 2 (Externally)
\therefore Point of contact $=\left(\frac{(1)(-3)-2(1)}{1-2}, \frac{(1)(-1)-2(2)}{1-2}\right)=(5,5)$

16. If the straight line represented by $x \cos \alpha+y \sin \alpha=p$

Intersect the circle $x^{2}+y^{2}=a^{2}$ at the points A and B then show that the equation of the circle with $\overline{\mathrm{AB}}$ as diameter is $\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathbf{a}^{2}\right)-2 \mathrm{p}(\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha-\mathrm{p})=0$.

Sol.The equation of the circle passing through the points A and B is:
$\left(x^{2}+y^{2}-a^{2}\right)-\lambda(x \cos \alpha+y \sin \alpha-p)=0$
The centre of this circle is:

$$
\left(-\frac{\lambda \cos \alpha}{2},-\frac{\lambda \sin \alpha}{2}\right)
$$

If the circle given by (3) has $\overline{\mathrm{AB}}$ as diameter then the centre of it must lie on (1)
$\therefore-\frac{\lambda \cos \alpha}{2}(\cos \alpha)-\frac{\lambda \sin \alpha}{2}(\sin \alpha)=\mathrm{p}$
i.e. $-\frac{\lambda}{2}\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=p$ i.e. $\lambda=-2 p$

Hence the equation of the required circle is
$\left(x^{2}+y^{2}-a^{2}\right)-2 p(x \cos \alpha+y \sin \alpha-p)=0$.

Some Important Problems for Practice

1. If the angle between the circles $x^{2}+y^{2}-12 x-6 y+41=0$ and $x^{2}+y^{2}+k x+6 y-59=0$ is 45°, find k .

Ans. ± 4
2. Find the equation of the circle which passes through $(1,1)$ and cuts orthogonally each of the circles. $x^{2}+y^{2}-8 x-2 y+16=0$ and $x^{2}+y^{2}-4 x-4 y-1=0$.

Ans. $3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-14 \mathrm{x}+23 \mathrm{y}-15=0$.
3. Find the equation of the circle which is orthogonal to each of the following three circles.

$$
x^{2}+y^{2}+2 x+17 y+4=0, x^{2}+y^{2}+7 x+6 y+11=0, x^{2}+y^{2}-x+22 y+3=0
$$

Ans. $x^{2}+y^{2}-6 x-4 y-44=0$.
4. Find the equation of the circle passing through the points of intersection of the circles.

$$
x^{2}+y^{2}-8 x-6 y+21=0, x^{2}+y^{2}-2 x-15=0 \text { and }(1,2)
$$

Ans. $3\left(x^{2}+y^{2}\right)-18 x-12 y+27=0$.
5. Let us find the equation the radical axis of $S \equiv x^{2}+y^{2}-5 x+6 y+12=0$ and

$$
S^{\prime}=x^{2}+y^{2}+6 x-4 y-14=0
$$

Ans. $11 \mathrm{x}-10 \mathrm{y}-26=0$.
6. Let us find the equation of the radical axis of $2 x^{2}+2 y^{2}+3 x+6 y-5=0$ and

$$
3 x^{2}+3 y^{2}-7 x+8 y-11=0
$$

Ans. $23 x+2 y+7=0$
7. Let us find the radical centre of the circles

$$
x^{2}+y^{2}-2 x+6 y=0, x^{2}+y^{2}-4 x-2 y+6=0 \text { and } x^{2}+y^{2}-12 x+2 y+3=0
$$

Ans. (0, 3/4)
8. Find the equation and length of the common chord of the two circles

$$
S \equiv x^{2}+y^{2}+3 x+5 y+4=0 \text { and } S^{\prime}=x^{2}+y^{2}+5 x+3 y+4=0 .
$$

Ans. 4 units
9. Find the equation of the circle whose diameter is the common chord of the circles $S \equiv x^{2}+y^{2}+2 x+3 y+1=0$ and $S^{\prime} \equiv x^{2}+y^{2}+4 x+3 y+2=0$.
Ans. $2\left(x^{2}+y^{2}\right)+2 x+6 y+1=0$
10. Find the equation of a circle which cuts each of the following circles orthogonally $x^{2}+y^{2}+3 x+2 y+1=0 ; x^{2}+y^{2}-x+6 y+5=0 ; x^{2}+y^{2}+5 x-8 y+15=0$.

