CIRCLES PART - III

Theorem:

If a line passing through a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ intersects the circle $\mathrm{S}=0$ at the points A and B then $\mathrm{PA} . \mathrm{PB}=\left|\mathrm{S}_{11}\right|$.

Corollary:

If the two lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ meet the coordinate axes in four distinct points then those points are concyclic $\Leftrightarrow a_{1} a_{2}=b_{1} b_{2}$.

Corollary:

If the lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ meet the coordinate axes in four distinct concyclic points then the equation of the circle passing through these concyclic points is $\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x\right.$ $\left.+b_{2} y+c_{2}\right)-\left(a_{1} b_{2}+a_{2} b_{1}\right) x y=0$.

Theorem:

Two tangents can be drawn to a circle from an external point.

Note:

If $\mathrm{m}_{1}, \mathrm{~m}_{2}$ are the slopes of tangents drawn to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$ from an external point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ then $\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{2 \mathrm{x}_{1} \mathrm{y}_{1}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}, \mathrm{~m}_{1} \mathrm{~m}_{2}=\frac{\mathrm{y}_{1}^{2}-\mathrm{a}^{2}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}$.

Theorem:

If θ is the angle between the tangents through a point P to the circle $S=0$ then $\tan \frac{\theta}{2}=\frac{r}{\sqrt{S_{11}}}$ where r is the radius of the circle.

Proof:

Let the two tangents from P to the circle $S=0$ touch the circle at Q, R and θ be the angle between these two tangents. Let C be the centre of the circle. Now $\mathrm{QC}=\mathrm{r}, \mathrm{PQ}=\sqrt{\mathrm{S}_{11}}$ and $\Delta \mathrm{PQC}$ is a right angled triangle at Q .

$$
\therefore \tan \frac{\theta}{2}=\frac{\mathrm{QC}}{\mathrm{PQ}}=\frac{\mathrm{r}}{\sqrt{\mathrm{~S}_{11}}}
$$

Theorem: The equation to the chord of contact of $P\left(x_{1}, y_{1}\right)$ with respect to the circle $S=0$ is $S_{1}=0$.
Theorem: The equation of the polar of the point $\mathrm{P}\left(\mathrm{x}_{1}, y_{1}\right)$ with respect to the circle $\mathrm{S}=0$ is $\mathrm{S}_{1}=0$.
Theorem: The pole of the line $1 x+m y+n=0(n \neq 0)$ with respect to $x^{2}+y^{2}=a^{2} i s\left(-\frac{l a^{2}}{n},-\frac{m a^{2}}{n}\right)$.

Proof:

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the pole of $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$.
The polar of P with respect to the circle is:

$$
\begin{equation*}
\mathrm{xx}_{1}+\mathrm{yy}_{1}-\mathrm{a}^{2}=0 \tag{2}
\end{equation*}
$$

Now (1) and (2) represent the same line
$\therefore \frac{\mathrm{x}_{1}}{\ell}=\frac{\mathrm{y}_{1}}{\mathrm{~m}}=\frac{-\mathrm{a}^{2}}{\mathrm{n}} \Rightarrow \mathrm{x}_{1}=\frac{-\mathrm{la}^{2}}{\mathrm{n}}, \mathrm{y}=\frac{-\mathrm{ma}^{2}}{\mathrm{n}}$
\therefore Pole $\mathrm{P}=\left(-\frac{\mathrm{la}^{2}}{\mathrm{n}},-\frac{\mathrm{ma}^{2}}{\mathrm{n}}\right)$
Theorem: If the pole of the line $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ with respect to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $\left(x_{1}, y_{1}\right)$ then $\frac{x_{1}+g}{\ell}=\frac{y_{1}+f}{m}=\frac{r^{2}}{\lg +m f-n}$ where r is the radius of the circle.

Proof:

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the pole of the line $\mathrm{l} \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
The polar of P with respect to $S=0$ is $S_{1}=0$

$$
\begin{align*}
& x_{1}+y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\
\Rightarrow & \left(x_{1}+g\right) x+\left(y_{1}+f\right) y+g x_{1}+f y_{1}+c=0 \tag{2}
\end{align*}
$$

Now (1) and (2) represent the same line.
$\therefore \frac{\mathrm{x}_{1}+\mathrm{g}}{\ell}=\frac{\mathrm{y}_{1}+\mathrm{f}}{\mathrm{m}}=\frac{\mathrm{gx}_{1}+\mathrm{gy}_{1}+\mathrm{c}}{\mathrm{n}}=\mathrm{k}($ say $)$
$\frac{\mathrm{x}_{1}+\mathrm{g}}{\ell}=\mathrm{k} \Rightarrow \mathrm{x}_{1}+\mathrm{g}=\ell \mathrm{k} \Rightarrow \mathrm{x}_{1}=\ell \mathrm{k}-\mathrm{g}$
$\frac{\mathrm{y}_{1}+\mathrm{f}}{\mathrm{m}}=\mathrm{k} \Rightarrow \mathrm{y}_{1}+\mathrm{f}=\mathrm{mk} \Rightarrow \mathrm{y}_{1}=\mathrm{mk}-\mathrm{f}$
$\frac{\mathrm{gx}_{1}+\mathrm{gy}_{1}+\mathrm{c}}{\mathrm{n}}=\mathrm{k} \Rightarrow \mathrm{gx}_{1}+\mathrm{gy}_{1}+\mathrm{c}=\mathrm{nk}$
$\Rightarrow \mathrm{g}(\mathrm{lk}-\mathrm{g})+\mathrm{f}(\mathrm{mk}-\mathrm{f})+\mathrm{c}=\mathrm{nk}$
$\Rightarrow \mathrm{k}(\lg +\mathrm{mf}-\mathrm{n})=\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}=\mathrm{r}^{2}$ Where r is the radius of the circle $\Rightarrow \mathrm{k}=\frac{\mathrm{r}^{2}}{\lg +\mathrm{mf}-\mathrm{n}}$.

$$
\therefore \frac{\mathrm{x}_{1}+\mathrm{g}}{\ell}=\frac{\mathrm{y}_{1}+\mathrm{f}}{\mathrm{~m}}=\frac{\mathrm{r}^{2}}{\lg +\mathrm{mf}-\mathrm{n}} .
$$

Theorem: The lines $1_{1} x+m_{1} y+n_{1}=0$ and $l_{2} x+m_{2} y+n_{2}=0$ are conjugate with respect to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0 \operatorname{iffr}^{2}\left(l_{1} l_{2}+m_{1} m_{2}\right)=\left(l_{1} g+m_{1} f-n_{1}\right)\left(l_{2} g+m_{2} f-n_{2}\right)$.

Theorem: The condition for the lines $1_{1} x+m_{1} y+n_{1}=0$ and $1_{2} x+m_{2} y+n_{2}=0$ to be conjugate with respect to the circle $x^{2}+y^{2}=a^{2}$ is $a^{2}\left(l_{1} l_{2}+m_{1} m_{2}\right)=n_{1} n_{2}$.

Theorem: The equation of the chord of the circle $\mathrm{S}=0$ having $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ as its midpoint is $\mathrm{S}_{1}=\mathrm{S}_{11}$.
Theorem: The length of the chord of the circle $\mathrm{S}=0$ having $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ as its midpoint is $2 \sqrt{\left|\mathrm{~S}_{11}\right|}$.
Theorem: The equation to the pair of tangents to the circle
$S=0$ from $P\left(x_{1}, y_{1}\right)$ is $S_{1}^{2}=S_{11} S$.

Proof:

Let the tangents from P to the circle $S=0$ touch the circle at A and B.

Equation of $A B$ is $S_{1}=0$.
i.e., $x_{1} x+y_{1} y+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0=====(i)$

Let $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ be any point on these tangents. Now locus of Q will be the equation of the pair of tangents drawn from P.

The line segment $P Q$ is divided by the line $A B$ in the ratio $-S_{11}: S_{22}$
$\Rightarrow \frac{P B}{Q B}=\left|\frac{S_{11}}{S_{22}}\right|$

BUT $P B=\sqrt{S_{11}}, Q B=\sqrt{S_{22}} \Rightarrow \frac{P B}{Q B}=\frac{\sqrt{S_{11}}}{\sqrt{S_{22}}}---$ (iii)
From ii) and iii) $\Rightarrow \frac{s_{11}^{2}}{s_{22}^{2}}=\frac{S_{11}}{S_{22}}$
$\Rightarrow S_{11} S_{22}=S_{12}^{2}$
Hence locus of $Q\left(x_{2,} y_{2}\right)$ is $S_{11} S=S_{1}^{2}$
Touching Circles: Two circles $S=0$ and $S^{\prime}=0$ are said to touch each other if they have a unique point P in common. The common point P is called point of contact of the circles $S=0$ and $S^{\prime}=0$.

Circle - Circle Properties: Let $S=0, S^{\prime}=0$ be two circle with centres C_{1}, C_{2} and radii r_{1}, r_{2} respectively.

(1)

(3)

(4)

(5)

1) If $\mathrm{C}_{1} \mathrm{C}_{2}>\mathrm{r}_{1}+\mathrm{r}_{2}$ then each circle lies completely outside the other circle.
2) If $C_{1} C_{2}=r_{1}+r_{2}$ then the two circles touch each other externally. The point of contact divides $\mathrm{C}_{1} \mathrm{C}_{2}$ in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}$ internally.
3) If $\left|r_{1}-r_{2}\right|<C_{1} C_{2}<r_{1}+r_{2}$ then the two circles intersect at two points P and Q. The chord $\overleftrightarrow{P Q}$ is called common chord of the circles.
4) If $C_{1} C_{2}=\left|r_{1}-r_{2}\right|$ then the two circles touch each other internally. The point of contact divides $\mathrm{C}_{1} \mathrm{C}_{2}$ in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}$ externally.
5) If $\mathrm{C}_{1} \mathrm{C}_{2}<\left|\mathrm{r}_{1}-\mathrm{r}_{2}\right|$ then one circle lies completely inside the other circle.

Common Tangents:

A line $L=0$ is said to be a common tangent to the circle $S=0, S^{\prime}=0$ if $L=0$ touches both the circles.

Definition:

A common tangent $L=0$ of the circles $S=0, S^{\prime}=0$ is said to be a direct common tangent of the circles if the two circles $S=0, S^{\prime}=0$ lie on the same side of $L=0$.

Definition:

A common tangent $L=0$ of the circles $S=0, S^{\prime}=0$ is said to be a transverse common tangent of the circles if the two circles $S=0, S^{\prime}=0$ lie on the opposite (either) sides of $L=0$.

Centres of Similitude:

Let $S=0, S^{\prime}=0$ be two circles. (i) The point of intersection of direct common tangents of $S=0, S^{\prime}$ $=0$ is called external centre of similitude. (ii) The point of intersection of transverse common tangents of $S=0, S^{\prime}=0$ is called internal centre of similitude.

Theorem:

Let $S=0, S^{\prime}=0$ be two circles with centres C_{1}, C_{2} and radii r_{1}, r_{2} respectively. If A_{1} and A_{2} are respectively the internal and external centres of similitude circles $S=0, S^{\prime}=0$ then
(i) A_{1} divides $C_{1} C_{2}$ in the ratio $r_{1}: r_{2}$ internally.
(ii) A_{2} divides $\mathrm{C}_{1} \mathrm{C}_{2}$ in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}$ internally.

Very Short Answer Questions

1) Find the condition that the tangents Drawn from (0,0) to $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ be perpendicular to each other.

Sol. Let θ be the angle between the pair of
Tangents then $\tan \frac{e}{2}=\frac{r}{\sqrt{s_{s 2}}}$
given $\theta=\frac{\pi}{2}$, radius $\mathrm{r}=\sqrt{g^{2}+f^{2}-c}$

$$
\begin{aligned}
& \mathrm{S}_{11}=x \frac{2}{1}+y \frac{2}{1}+2 g x_{1}+2 f y_{1}+c=0+\mathrm{c}=\mathrm{c} \\
& \tan 45^{0}=\frac{\sqrt{g^{2}+f^{2}-c}}{\sqrt{x \frac{2}{1}+y \frac{2}{1}+2 g x_{1}+2 f y_{1}+c}} \\
& \Rightarrow 1=\frac{\sqrt{g^{2}+f^{2}-c}}{\sqrt{0+0+0+0+c}} \\
& \Rightarrow \mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{c}=\mathrm{c}
\end{aligned}
$$

$\Rightarrow \mathrm{g}^{2}+\mathrm{f}^{2}=2 \mathrm{c}$
This is the required condition

2) Find the chord of contact of $(0,5)$ with respect to the circle

Sol .Equation of the circle is

$$
S=x^{2}+y^{2}-5 x+4 y-2=0
$$

Equation of the chord of contact is $S_{1}=0$

$$
\begin{aligned}
& \Rightarrow x \cdot 0+y \cdot 5-\frac{5}{2}(x+0)+2(y+5)-2=0 \\
& \Rightarrow 10 y-5 x+4 y+20-4=0 \\
& \Rightarrow-5 x+14 y+16=0 \\
& \Rightarrow 5 x-14 y-16=0
\end{aligned}
$$

3) Find the polar of $(1,2)$ with respect to $x^{2}+y^{2}=7$.

Sol. point $(1,2)$ and circle is $S=x^{2}+y^{2}=7$
Polar of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with respect to $\mathrm{s}=0$ is $\mathrm{S}_{1}=0$
$\Rightarrow \mathrm{x}+2 \mathrm{y}-7=0$ is the polar equation.
4) Find the polar of $(3,-1)$ with respect to $2 x^{2}+2 y^{2}=11$.

Sol. Equation of circle is $2 x^{2}+2 y^{2}=11$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=\frac{11}{2}$. Point is $(3,-1)$
Equation of polar is $S_{1}=0$

$$
\begin{aligned}
& \Rightarrow x_{1}+y_{1}=a^{2} \\
& \Rightarrow x(3)+(-1) y=\frac{11}{2} \\
& \Rightarrow 6 x-2 y-11=0
\end{aligned}
$$

5) Find the polar of $(1,-2)$ with respect to $x^{2}+y^{2}-10 x-10 y+25=0$

Sol .Equation of the circle is

$$
\begin{aligned}
& x^{2}+y^{2}-10 x-10 y+25=0 \\
& \text { Polar of } P(1,-2) \text { is } S_{1}=0 \\
& \Rightarrow x .1+y(-2)-5(x+1)-5(y-2)+25=0 \\
& \Rightarrow x-2 y-5 x-5-5 y+10+25=0 \\
& \Rightarrow-4 x-7 y+30=0 \\
& \Rightarrow 4 x+7 y-30=0
\end{aligned}
$$

6) Find the pole of $a x+b y+c=0(c \neq 0)$ With respect to $x^{2}+y^{2}=r^{2}$.

Sol. Let ($\mathrm{x}_{1}, \mathrm{y}_{1}$) be pole. Then the polar equation is $\mathrm{S}_{1}=0$.

$$
\begin{equation*}
\Rightarrow x_{1}+y y_{1}-r^{2}=0 \tag{i}
\end{equation*}
$$

But polar is $a x+b y+c=0$ \qquad
(i) and (ii) both are same lines

$$
\begin{aligned}
& \Rightarrow \frac{x_{1}}{a}=\frac{y_{1}}{b}=\frac{-r^{2}}{c} \Rightarrow x_{1}=-\frac{-a}{c} r^{2}, y_{1}=\frac{-b r^{2}}{c} \\
& \therefore \text { pole }\left(\frac{-a r^{2}}{c}, \frac{-b r^{2}}{c}\right)
\end{aligned}
$$

7) Find the pole of $3 x+4 y-45=0$ with Respect to $x^{2}+y^{2}-6 x-8 y+5=0$.

Sol. Let ($\mathrm{x}_{1}, \mathrm{y}_{1}$) be pole.
Equation of polar is $S_{1}=0$

$$
\begin{align*}
& x_{1}+y_{1}-3\left(x+x_{1}\right)-4\left(y+y_{1}\right)+5=0 \\
& x\left(x_{1}-3\right)+y\left(y_{1}-4\right)-3 x_{1}-4 y_{1}+5=0 \tag{i}
\end{align*}
$$

But equation of the polar is $3 x+4 y-45=0-$ (ii)
Comparing (i) and (ii) we get
$\frac{x_{1}-3}{3}=\frac{y_{1}-4}{4}=\frac{-3 x_{1}-4 y_{1}+5}{-45}=k$
$\frac{x_{1}-3}{3}=\frac{y_{1}-4}{4}$
$4 x_{1}-72=3 y-12$
$\mathrm{Y}_{1}=\frac{4}{3} \mathrm{x}_{1}$
$\frac{x_{1}-3}{3}=\frac{-3 x_{1}-\frac{16}{3} x_{1}+5}{-45}=\frac{-9 x_{1}-16 x_{1}+15}{3(-45)}$
$x_{1}-3=\frac{-25 x_{1}+15}{-45} 20 \mathrm{x}_{1}=120 \Rightarrow \mathrm{x}_{1}=6$
$\mathrm{Y}=\frac{4}{3} \mathrm{x}_{1}=\frac{4}{3} \cdot 6=8$
Pole is $(6,8)$.
8) Find the pole of $x-2 y+22=0$ with respect to $x^{2}+y^{2}-5 x+8 y+6=0$
\therefore Pole is (2, -3)
9) Show that the points $(-6,1),(2,3)$ are Conjugate points with respect to the circle

$$
x^{2}+y^{2}-2 x+2 y+1=0
$$

Sol. Polar of $(2,3)$ w.r.t $S=x^{2}+\mathbf{y}^{2}-\mathbf{2 x}+\mathbf{2 y}+\mathbf{1}=\mathbf{0}$ is $S_{1}=0$

$$
\begin{align*}
& \Rightarrow 2 x+3 y-1(x+2)+1(y+3)+1=0 \\
& \Rightarrow x+4 y+2=0 \ldots \ldots \ldots \ldots . .(1) \tag{1}
\end{align*}
$$

Substituting $(-6,1)$ in (i), then
$(-6)+4(1)+2=0$
The point $(-6,1)$ is a point on the polar of 2,3).
$\therefore(-6,1)$ and $(2,3)$ are conjugate with respect to circle.

II Method:

$S=x^{2}+y^{2}-2 x+2 y+1=0$
Points are $(-6,1),(2,3)$
Now $S_{12}=-6.2+1.3-(-6+2)+(1+3)+1$
$=-12+3+4+4+1=0$.
Therefore given points are conjugate points.
10. Find the value of k if $k x+3 y-1=0,2 x+y+5=0$ are conjugate lines with respect to the circle $x^{2}+y^{2}-2 x-4 y-4=0$

Sol.

Given $S=x^{2}+y^{2}-2 x-4 y-4=0$
Lines are $k x+3 y-1=0$ and $2 x+y+5=0$
Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the pole
Then polar is $S_{1}=0$.

$$
\begin{aligned}
& \Rightarrow \mathrm{x} 2+\mathrm{y}^{2}-2 \mathrm{x}-4 \mathrm{y}-4=0 \mathrm{be} \\
& \Rightarrow \mathrm{xx}_{1}+\mathrm{yy}_{1}-1\left(\mathrm{x}+\mathrm{x}_{1}\right)-2\left(\mathrm{y}+\mathrm{y}_{1}\right)-4=0 \\
& \Rightarrow \mathrm{x}\left(\mathrm{x}_{1}-1\right)+\mathrm{y}\left(\mathrm{y}_{1}-2\right)-\mathrm{x}_{1}-2 \mathrm{y}_{1}-4=0-(\mathrm{i})
\end{aligned}
$$

Comparing (i) with $2 x+y+5=0$

$$
\begin{align*}
& \frac{x_{1}-1}{2}=\frac{y_{1}-2}{1}=-\frac{x_{1}-2 y_{1}-4}{5} \\
& \frac{x_{1}-1}{2}=\frac{2(y-2)}{2}=\frac{-x-2 y_{1}-4}{5}=\frac{x_{1}-1+2 y_{1}-4-x_{1}-2 y_{1}-4}{2+2+5} \\
& =\frac{-9}{9}=-1 \\
& \mathrm{X}_{1}=-1, \mathrm{y}_{1}=1 \Rightarrow \text { Pole }(-1,1) \\
& \mathrm{kx}+\mathrm{By}-1=0 \text { is polar so it should satisfy } \tag{-1,1}\\
& (-1,1) \\
& \mathrm{K}(-1)+3(1)-1=0 \\
& -\mathrm{k}+2=0 \\
& \mathrm{~K}=2
\end{align*}
$$

11) Find the value of k if $x+y-5=0$, $2 x+k y-8=0$ are conjugate with respect To the circle $x^{2}+y^{2}-2 x-2 y-1=0$ $\mathrm{k}=2$
12) Find the value of k if the points $(4,2)$ and $(k,-3)$ are conjugate points with respect to the circle $x^{2}+y^{2}-5 x+8 y+6=0$
Sol. Equation of the circle is $x^{2}+y^{2}-5 x+8 y+6=0$
Let $P(4,2)$ and $Q(k,-3)$
Polar of $P(4,2)$ is $S_{1}=0$
$\Rightarrow \mathrm{x} .4+\mathrm{y} .2 \frac{\mathrm{~s}}{2}(\mathrm{x}+4)+4(\mathrm{y}+2)+6=0$
$\Rightarrow 8 \mathrm{x}+4 \mathrm{y}-5 \mathrm{x}-20+8 \mathrm{y}+16+12=0$
$\Rightarrow 3 \mathrm{x}+12 \mathrm{y}+8=0$
$\mathrm{P}(4,2), \mathrm{Q}(\mathrm{k},-3)$ are conjugate point
Polar of P Passes through Q
$\therefore 3 \mathrm{k}-36+8=0$
$3 \mathrm{k}=28 \Rightarrow \mathrm{k}=\frac{2 \mathrm{e}}{3}$
13. Discuss the relative position of the following pair of circles.
i) $x^{2}+y^{2}-4 x-6 y-12=0$
$x^{2}+y^{2}+6 x+18 y+26=0$
Sol. Centers of the circles are A $(2,3), \mathrm{B}(-3,-9)$
Radii are $\mathrm{r}_{1}=\sqrt{4+9+\mathbf{1 2}}=5$
$r_{2}=\sqrt{9+81-26}=8$
$\mathrm{AB}=\sqrt{(2+3)^{2}+(3+9)^{2}}$
$=\sqrt{25+144}=13=r_{1}+r_{2}$
\therefore The circle touches externally.
ii) $\quad x^{2}+y^{2}+6 x+6 y+14=0$,

$$
x^{2}+y^{2}-2 x-4 y-4=0
$$

Sol. Centres are $\mathrm{A}(-3,-3), \mathrm{B}(1,2)$
$r_{1}=\sqrt{9+9-14}=2$,
$\mathrm{r}_{2}=\sqrt{1+4+4}=3$
$\mathrm{AB}=\sqrt{(-3-1)^{2}+(-3-2)^{2}}$
$=\sqrt{16+25}=\sqrt{41}>\mathrm{r}_{1}+\mathrm{r}_{2}$
\therefore Each circle lies on exterior of the other circle.
iii) $(x-2)^{2}+(y+1)^{2}=9,(x+1)^{2}+(y-3)^{2}=4$

Sol. Centers are $\mathrm{A}(2-1) . \mathrm{B}(-1,3)$

$$
\begin{gathered}
\mathrm{r}_{1}=\sqrt{4+1+4}=3, \mathrm{r}_{2}=\sqrt{1+9-6}=2 \\
\mathrm{AB}=\sqrt{(2+1)^{2}+(-1-3)^{2}}=\sqrt{9+16} \\
=5=\mathrm{r}_{1}+\mathrm{r}_{2}
\end{gathered}
$$

\therefore The circles touch each other externally.
iv) $x^{2}+y^{2}-2 x+4 y-4=0$,

$$
x^{2}+y^{2}+4 x-6 y-3=0
$$

Sol. Center are $\mathrm{A}(1,-2), \mathrm{B}(-2,3)$

$$
\begin{aligned}
& \mathrm{r}_{1}=\sqrt{1+4+4}=3, \mathrm{r}_{2}=\sqrt{4+9+3}=4 \\
& \mathrm{AB}=\sqrt{(1+2)^{2}+(-2-3)^{2}} \\
& =\sqrt{9+25}=\sqrt{34}<\mathrm{r}_{1}+\mathrm{r}_{2}
\end{aligned}
$$

$$
\mathrm{r}_{1}-\mathrm{r}_{2}<A B<\mathrm{r}_{2}+\mathrm{r}_{1}
$$

\therefore The circles intersect each other.
2) Find the number of possible common Tangents that exist for the following pairs of circles.
i) $S=x^{2}+y^{2}+6 x+6 y+14=0, S^{\prime}=x^{2}+y^{2}-2 x-4 y-4=0$

Sol.
$S=x^{2}+y^{2}+6 x+6 y+14=0$

$$
\mathrm{C}_{1}(-3,-3) \mathrm{r}_{1}=\sqrt{9+9-14}=2
$$

$$
S^{\prime}=x^{2}+y^{2}-2 x-4 y-4=0
$$

$\mathrm{C}_{2}=(1,2), \mathrm{r}_{2}=\sqrt{1+4+4}=0$

$\mathrm{C}_{1} \cdot \mathrm{C}_{2}=\sqrt{(-3-1)^{2}+(-3-2)^{2}}$
$=\sqrt{16+25}=\sqrt{41}>r_{1}+r_{2}$
Each circle lies exterior of the other. Therefore No. of common tangents $=4$
ii) $x^{2}+y^{2}-4 x-2 y+1=0 ; x^{2}+y^{2}-6 x-4 y+4=0$.

Sol. $\mathrm{C}_{1}(2,1) \mathrm{C}_{2}=(3,2)$
$\mathrm{r}_{1}=\sqrt{4+1-1} \mathrm{r}_{2}=\sqrt{9+4-4}$

$$
=2 \quad=3
$$

$\begin{array}{ll}\mathrm{c}_{1} & \mathrm{c}_{2}\end{array}$
$\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{(2-3)^{2}+(1-2)^{2}}=\sqrt{2}$
$\mathrm{C}_{1} \mathrm{C}_{2}<\mathrm{r}_{1}+\mathrm{r}_{2}$ intersect each other
2 tangents (direct)
iii) $x^{2}+y^{2}-4 x+2 y-4=0 ; x^{2}+y^{2}+2 x-6 y+6=0$.

Sol. $\mathrm{C}_{1}(2,-1)$
$\mathrm{C}_{2}=(-1,3)$
$\mathrm{r}_{1}=\sqrt{4+1+4} \mathrm{r}_{1} \quad \mathrm{r}_{2}=\sqrt{1+9-6}=2$

$$
=3
$$

$$
\mathrm{C}_{1}+\mathrm{C}_{2}=\sqrt{(2+1)^{2}+(-1-3)^{2}}
$$

$$
=\sqrt{9+16}=5
$$

$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$ touch each other externally;
No. of common tangent $\mathrm{s}=3$.
iv) $x^{2}+y^{2}=4 ; x^{2}+y^{2}-6 x+8 y+16=0$

Sol. $\mathrm{C}_{1}(0,0) \quad \mathrm{C}_{2}=(3,4)$
$r_{1}=2 \quad r_{2}=\sqrt{9+16-16}=3$
$\mathrm{C}_{1}+\mathrm{C}_{2}=\sqrt{(0-3)^{2}+(0-4)^{2}}=5$
$r_{1}+r_{2}=C_{1}+C_{2}$
$\mathrm{C}_{1} \mathrm{C}_{2}=\mathrm{r}_{1}+\mathrm{r}_{2}$ touch each other externally.
No. of common tangent $\mathrm{s}=3$.

$$
\text { V) } \quad \begin{array}{r}
x^{2}+y^{2}+4 x-6 y-3=0 \\
x^{2}+y^{2}+4 x-2 y+4=0
\end{array}
$$

Sol. $\quad C_{1}(-2,3) \quad \mathrm{C}_{2}=(-2,1)$

$$
\begin{aligned}
& \mathrm{r}_{1}=\sqrt{4+9+3}=4 \\
& \mathrm{r}_{2} \sqrt{4+1-4}=1 \\
& \mathrm{C}_{1} \cdot \mathrm{C}_{2}=\sqrt{(-2+2)^{2}+(3-1)^{2}}=2
\end{aligned}
$$

$$
\Rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}<\mathrm{r}_{1}-\mathrm{r}_{2}
$$

One circle is inside the other.
\therefore No common tangent $=0$.
14) Find the internal centre of similitude for the circle $x^{2}+y^{2}-6 x-2 y+7=0$ and

$$
x^{2}+y^{2}-2 x-6 y+9=0
$$

Sol. $S=x^{2}+y^{2}-6 x-2 y+7=0$
$\mathrm{C}_{1}=(-3,1), \mathrm{r}_{1}=\sqrt{9+1-1}=3$
$S^{\prime}=x^{2}+y^{2}-2 x-6 y+9=0$
$C_{2}=(1,3), \mathrm{r}_{2}=\sqrt{1+9-9}=1$

The internal centre of similitude I divides the line of centres $C_{1} C_{2}$ internally in the ratio $r_{1}: r_{2}=3: 1$ Co-ordinates of I are $\left(\frac{1(-3)+8.1}{3+1}, \frac{1.1+8.3}{3+1}\right)$

$$
=\left(\frac{-3+3}{4}, \frac{1+9}{4}\right)=\left(0, \frac{5}{2}\right)
$$

15) Find the external centre of similitude of the circles $x^{2}+y^{2}-2 x-6 y+9=0$ and $x^{2}+y^{2}=4$

Sol. $S=x^{2}+y^{2}-2 x-6 y+9=0$ Centre $C_{1}(1,3), r_{1}=\sqrt{1+9-9}=1$ and $S^{\prime}=x^{2}+y^{2}=4$ centreC $C_{2}(0,0), r_{2}=2$

The external centre of 14 similitude divides the line of centres $\mathrm{C}_{1} \mathrm{C}_{2}$ externally in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}=1: 2$

Co-ordinates of E are $\left(\frac{2.1-10}{2-1}, \frac{2.3-10}{2-1}\right)$
$=\left(\frac{2}{1}, \frac{6}{1}\right)=(2,6)$

Short Answer Questions

1) Find the angle between the tangents drawn from (3,2) to the circle

$$
x^{2}+y^{2}-6 x+4 y-2=0
$$

Sol. Equation of the circle is

$$
\begin{aligned}
& S \equiv x^{2}+y^{2}-6 x+4 y-2=0 \\
& r=\sqrt{9+4+2}=\sqrt{15}
\end{aligned}
$$

Point $\mathrm{P}(3,2)$

$$
\Rightarrow S_{11}=9+4-18+8-2=1
$$

Let 2θ be the angle between the tangents. Then

$$
\tan \theta=\frac{r}{\sqrt{32}}=\frac{\sqrt{15}}{1}=\sqrt{15}
$$

$\Rightarrow \operatorname{Cos} 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-15}{1+16}=-\frac{7}{8}$
Angle between the tangent at $P=\cos ^{-1}\left(\frac{7}{6}\right)$
2. Find the locus of P where the tangents drawn from to $x^{2}+y^{2}=a^{2}$ include an angle $\boldsymbol{\alpha}$ Sol. Equation of the circle is $S=x^{2}+y^{2}=a^{2}$

$$
\text { Radius }=\mathrm{a}
$$

Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be any point $. \Rightarrow S_{11}=x_{1}^{2}+y_{1}^{2}-a^{2}$
Let $2 \theta(=\alpha)$ be the angle between the tangents. Then

$$
\begin{aligned}
& \Rightarrow \tan \theta=\frac{r}{\sqrt{s_{11}}}=\frac{a}{\sqrt{x_{1}{ }^{2}+y_{1}{ }^{2}-a^{2}}} \\
& \Rightarrow \cos 2 \theta=\frac{1-\frac{a}{\sqrt{x_{1}^{2}+y_{1}^{2}-a^{2}}}}{1+\frac{a}{\sqrt{x_{1}^{2}+y_{1}^{2}-a^{2}}}} \\
& \Rightarrow \cos \alpha=\frac{x_{1}^{2}+y_{1}^{2}-2 a^{2}}{x_{1}^{2}+y_{1}^{2}} \\
& \Rightarrow\left(x_{1}^{2}+y_{1}^{2}\right) \cos \alpha=x_{1}^{2}+y_{1}^{2}-2 a^{2} \text { Locus of }\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { is } \\
& \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \operatorname{Cos} \alpha=\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{a}^{2} \\
& 2 \mathrm{a}^{2}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\left(1-\cos ^{2} \alpha\right) \\
& 2 \mathrm{a}^{2} \quad=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\left(2 \sin ^{2} \alpha / 2\right) \\
& \mathrm{x}^{2}+\mathrm{y}^{2}=\frac{a^{2}}{z x^{2} \frac{2}{2}}=\mathrm{a}^{2} \operatorname{cose} \mathrm{c}^{2} \frac{z}{2}
\end{aligned}
$$

3. Find the locus of P where the tangents drawn from P to $x^{2}+y^{2}=a^{2}$.

Sol.

$$
S=x^{2}+y^{2}=a^{2}
$$

Radius $=\mathrm{a}$
Let $\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)$ be any point on the locus

$$
\Rightarrow S_{11}=x_{1}^{2}+y_{1}^{2}-a^{2}
$$

Let 2θ be the angle between the tangents. Then

$$
\Rightarrow \tan \theta=\frac{r}{\sqrt{s_{11}}}=\frac{a}{\sqrt{x_{1}^{2}+y_{1}^{2}-a^{2}}}
$$

Given $2 \theta=\frac{\pi}{2} \Rightarrow \tan \theta=\tan \frac{\pi}{4}=1$

$$
\therefore \frac{a}{\sqrt{x_{1}^{2}+y_{1}^{2}-a^{2}}}=1
$$

Squaring and cross - multiplying

$$
\begin{aligned}
& \mathrm{a}^{2}=x_{1}^{2}+y_{1}^{2}-a^{2} \\
& \Rightarrow x_{1}^{2}+y_{1}^{2}-a^{2}
\end{aligned}
$$

Locus of $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{a}^{2}$
4. Find the slope of the polar of $(1,3)$ with respect to the circle $x^{2}+y^{2}-4 x-4 y-4=0$. Also find the distance from the centre to it.

Sol. Equation of the circle is
$S=x^{2}+y^{2}-4 x-4 y-4=0$, center $C=(2,2)$.
Polar of $P(1,3)$ is $s_{1}=0$

$$
\begin{aligned}
& \Rightarrow x \cdot 1+y \cdot 3-2(x+1)-2(y+3)-4=0 \\
& \Rightarrow x+3 y-2 x-2-2 y-6-4=0 \\
& \Rightarrow-x+y-12=0
\end{aligned}
$$

Distance from the centre

$$
\begin{aligned}
C(2,2) & =\left|\frac{-2+2-12}{\sqrt{1+1}}\right| \\
& =\frac{12}{\sqrt{2}}=6=\sqrt{2}
\end{aligned}
$$

5.If $a x+b y+c=0$ is the polar of $(1,1)$ with respect to the circle $x^{2}+y^{2}-2 x+2 y+1=0$ and H.C.F. of a, b, c is equal to one then find $a^{2}+b^{2}+c^{2}$.

Sol. Equation of the circle is

$$
S=x^{2}+y^{2}-2 x+2 y+1=0
$$

Polar of $(1,1)$ w.r.to the circle is $S_{1}=0$.

$$
\begin{aligned}
& \Rightarrow x \cdot 1+y \cdot 1-|(x+1)+|(y+1)+1=0 \\
& \Rightarrow x+y-x-1+y+1+1=0 \\
& \Rightarrow 2 y+1=0
\end{aligned}
$$

Given equation of the line $a x+b y+c=0$
Comparing (1) and (2)
$\frac{a}{0}=\frac{b}{2}=\frac{c}{1}=k$, say
$\mathrm{a}=0, \mathrm{~b}=2 \mathrm{k}, \mathrm{c}=\mathrm{k}$
$\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=0+4 \mathrm{k}^{2}+\mathrm{k}^{2}=5 \mathrm{k}^{2}$
H.C.F of $(\mathrm{a}, \mathrm{b}, \mathrm{c})=1 \Rightarrow \mathrm{k}=1$
$a^{2}+b^{2}+c^{2}=5(1)^{2}=5$
6.i) Show that the circles $x^{2}+y^{2}-6 x-2 y+1=0 ; x^{2}+y^{2}+2 x-8 y+13=0$ Touch each other. Find the point of contact and the equation of the common tangent at their point of contact.

Sol. Equations of the circles are
$S \equiv x^{2}+y^{2}-6 x-2 y+1=0$
Centers $A(3,1)$, radius $r_{1}=\sqrt{9+1-1}=3$
$S^{\prime} \equiv x^{2}+y^{2}+2 x-8 y+13=0$
Centers $B(-1,4)$, radius $r_{2}=\sqrt{1+16-13}=2$
$\mathrm{AB}=\sqrt{(3+1)^{2}+(1-4)^{2}}=\sqrt{16+9}=\sqrt{25}=5$
$\mathrm{AB}=5=3+2=\mathrm{r}_{1}+\mathrm{r}_{2}$
\therefore The circles touch each other externally. The point of contact P divides AB internally in the ratio
$\mathrm{r}_{1}: \mathrm{r}_{2}=3: 2$
Co - ordinates of P are
$\left(\frac{3(-1)+2.3}{5}, \frac{3.4+2.1}{5}\right)$ i.e., $\left(\frac{3}{5}, \frac{14}{5}\right)$
Equation of the common tangent is
$S_{1}=0$
$\Rightarrow-8 \mathrm{x}+6 \mathrm{y}-12=0 \Rightarrow 4 \mathrm{x}-3 \mathrm{y}+6=0$
ii) Show that $x^{2}+y^{2}-6 x-9 y+13=0, x^{2}+y^{2}-2 x-16 y=0$ touch each other. Find the point of contact and the equation of common tangent at their point of contact.

Sol.

Equations of the circles are
$S_{1} \equiv x^{2}+y^{2}-6 x-9 y+13=0$
$S_{2} \equiv x^{2}+y^{2}-2 x-16 y=0$
Centres are $\mathrm{A}\left(3, \frac{9}{2}\right), \mathrm{B}(1,8)$
$r_{1}=\sqrt{9 \frac{81}{4}-13}=\frac{\sqrt{65}}{2}, r_{2}=\sqrt{1+64}=\sqrt{65}$
$\mathrm{AB}=(3-1)^{2}+\left(\frac{9}{2}-8\right)^{2}=\sqrt{4+\frac{49}{4}}=\frac{\sqrt{65}}{2}$
$\mathrm{AB}=\left|r_{1}-r_{2}\right|$
\therefore The circles touch each other internally. The point of contact ' P ' divides $A B$
Externally in the ratio $\mathrm{r}_{1}: \mathrm{r}_{2}=\frac{\sqrt{6 E}}{2}: \sqrt{65}=1: 2$
Co-ordinates of p are

$$
\left(\frac{1(1)-2(3)}{1-2}, \frac{1(8)-2\left(\frac{9}{2}\right)}{1-2}\right)=\left(\frac{-5}{-1}, \frac{-1}{-1}\right)=(5,1)
$$

$\mathrm{P}=(5,1)$
\therefore Equation of the common tangent is
$\mathrm{S}_{1}-\mathrm{S}_{2}=0$
$-4 x+7 y+13=0$
$4 x-7 y-13=0$
7. Find the equation of the circle which touches the circle $x^{2}+y^{2}-2 x-4 y-20=0$ externally at $(5,5)$ with radius 5 .
Sol. $\quad S=x^{2}+y^{2}-2 x-4 y-20=0$
Centre $\mathrm{C}=(1,2)$,
Radius $r=\sqrt{1+4+20}=5$
Let (h, k) be the centre of the second circle.
Since circles are touching externally at $(5,5)$ and they have equal radii, therefore
$(5,5)=\left(\frac{k+1}{2}, \frac{k+2}{2}\right)$ (midpoint)
$\frac{n+1}{2}=5, \frac{k+2}{2}=5$
$\mathrm{h}=9 \quad \mathrm{k}=8$
Centre is $(9,8)$
Equation of circle is

$$
\begin{aligned}
& (x-9)^{2}+(y-8)^{2}=25 \\
& x^{2}+y^{2}-18 x-16 y+120=0
\end{aligned}
$$

8.. Find the direct common tangents of the circles $x^{2}+y^{2}+22 x-4 y+100=0$:

$$
x^{2}+y^{2}-22 x+4 y+100=0
$$

Sol.

$x^{2}+y^{2}+22 x-4 y+100=0$
centreC $C_{1}=(-11,2)$,
Radius $\mathrm{r}_{1}=\sqrt{121+4+100}=15$
$x^{2}+y^{2}-22 x+4 y+100=0$
centre $\mathrm{C}_{2}(11,-2)$
Radius $\mathrm{r}_{2}=\sqrt{121+41-100}=5$
External centre of similitude is $\left(\frac{33+11}{3-1}, \frac{-6-2}{3-1}\right)=(22,-4)$
Let m be the slope of the tangent.
Equation of the tangent is

$$
y+4=m(x-22) \Rightarrow m x-y-(4+22)=0
$$

This is a tangent to $x^{2}+y^{2}-22 x+4 y+100=0$
\Rightarrow Radius $=$ perpendicular from centre to this line.
$\Rightarrow 5=\left|\frac{11 m+2-4-22 m}{\sqrt{1+m^{2}}}\right|$
$\Rightarrow 25\left(1+m^{2}\right)=121 m^{2}+4+44 m$
$\Rightarrow 96 m^{2}+44 m-21=0$
$\Rightarrow 96 m^{2}+72 m-28 m-21=0$
$\Rightarrow(4 m+3)(24 m-7)=0$
$\Rightarrow m=\frac{-3}{4}, \frac{7}{24}$
Equations of the tangents are
$y+4=\frac{-3}{4}(x-22)$ and $y+4=\frac{7}{24}(x-22)$
$\Rightarrow 3 x+4 y-50=0$ and $7 \mathrm{x}-24 \mathrm{y}-250=0$
9. Find the transverse common tangents of $x^{2}+y^{2}-4 x-10 y+28=0 ; x^{2}+y^{2}+4 x-6 y+4=0$.

Sol. $x^{2}+y^{2}-4 x-10 y+28=0$

$$
\begin{aligned}
& \mathrm{C}_{1}=(2,5), \mathrm{r}_{1}=\sqrt{4+25-28}=1 \\
& \mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{4} \mathbf{x}-\mathbf{6} \mathbf{y}+\mathbf{4}=\mathbf{0} \\
& \mathrm{C}_{2}=(-2,3), \mathrm{r}_{2}=\sqrt{4+9-4}=3
\end{aligned}
$$

$$
\mathrm{C}_{1} \mathrm{C}_{2}=\sqrt{(2+2)^{2}+(5-3)^{2}}
$$

$$
=\sqrt{16+4}=\sqrt{20}
$$

$$
\mathrm{C}_{1} \mathrm{C}_{2}>\mathrm{r}_{1}+\mathrm{r}_{2}
$$

'I' divides $\mathrm{C}_{1} \mathrm{C}_{2}$ in the ratio 1:3

$$
\begin{aligned}
& I=\left[\frac{1(-2)+3.2}{1+3}, \frac{1.3+3.5}{1+3}\right] \\
& =\left[\frac{3}{4}, \frac{9}{2}\right]=\left[1, \frac{9}{2}\right]
\end{aligned}
$$

Let m be the slope of the tangent.
Equation of the tangent is

$$
\begin{aligned}
& y-\frac{9}{2}=m(x-1) \\
& \Rightarrow 2 m x-2 y+9-2 m=0
\end{aligned}
$$

This line is tangent to $\mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{4 x}-\mathbf{1 0} \mathbf{y}+\mathbf{2 8}=\mathbf{0}$
Radius $=$ perpendicular distance.

$$
\begin{aligned}
& \Rightarrow 1=\left|\frac{4 m-10+9-2 m}{\sqrt{4 m^{2}+4}}\right| \\
& \Rightarrow 1=\frac{2 m-1}{\sqrt{4 m^{2}+4}} \\
& \Rightarrow 4 m=-3
\end{aligned}
$$

Since m^{2} term is eliminated, the slope of the other line is not defined.(i.e., ∞)
Equation of the tangent with slope $-3 / 4$ is

$$
\begin{aligned}
& y-\frac{9}{2}=\frac{-3}{4}(x-1) \\
& \Rightarrow 3 x 4 y-21=0 .
\end{aligned}
$$

Equation of the tangent having slope ∞ and passing through $\left[1, \frac{9}{2}\right]$ is

$$
x=1
$$

10. Find the pair of tangents drawn from $(4,10)$ to the circle $x^{2}+y^{2}=25$

Sol. Equation of the pair of tangents from $(4,10)$ to $S=0$ is $S_{1}{ }^{2}=S . S_{11}$

$$
\begin{aligned}
& \Rightarrow\left(\mathbf{x}^{2}+\mathbf{y}^{2}-25\right)(16+100-25)=(4 x+10 y-25) \\
& \Rightarrow 75 x^{2}-9 y^{2}-80 x y 250 y+200 x-2900=0
\end{aligned}
$$

Long Answer Questions

1) Find the coordinates of the point of intersection of tangents at the points where $x+4 y-14=0$ meets the circle $x^{2}+y^{2}-2 x+3 y-5=0$.
Sol. Equation of the given circle is

$$
S=x^{2}+y^{2}-2 x+3 y-5=0
$$

Equation of the line is $\mathbf{x + 4 y - 1 4 = 0} \mathbf{- - -}$ (i)
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point of intersection the tangents.
Equation (1) is chord contact of P with respect to $S=0$.
Equation of chord of contact is $S_{1}=0$

R
$\Rightarrow \mathrm{xx}_{1}+\mathrm{yy}_{1}-1\left(\mathrm{x}+\mathrm{x}_{1}\right)+\frac{3}{2}\left(\mathrm{y}+\mathrm{y}_{1}\right)-5=0$
$\Rightarrow 2 \mathrm{xx}_{1}+2 \mathrm{yy}_{1}-2 \mathrm{x}-\mathrm{x}_{1}+\frac{3}{2}\left(\mathrm{y}+\mathrm{y}_{1}\right)-5=0$
$\Rightarrow 2\left(\mathrm{x}_{1}-1\right) \mathrm{x}+\left(2 \mathrm{x}_{1}+3\right) \mathrm{y}$
$\Rightarrow 2 \mathrm{x}_{1}-3 \mathrm{y}_{1}+10=0$
Comparing (1) and (2)
$\frac{2\left(x_{1}-1\right)}{1}=\frac{2 y_{1}+3}{4}=\frac{2 x_{1}-3 y_{1}+10}{14}$
$2\left(x_{1}-1\right)=\frac{2 y_{1}+3}{4}$
$\frac{2\left(x_{1}-1\right)}{1}=\frac{2 y_{1}+3}{4}=\frac{2 x_{1}-3 y_{1}+10}{14}$
$2\left(x_{1}-1\right)=\frac{2 y_{1}+3}{4}$
$8 \mathrm{x}_{1}-8=2 \mathrm{y}_{1}+3$
$8 \mathrm{x}_{1}-2 \mathrm{y}_{1}=11 \quad-(1)$
$2\left(\mathrm{x}_{1}-1\right)=\frac{2 \mathrm{x}_{2}-3 y_{2}+10}{15}$
$28 \mathrm{x}_{1}-28=2 \mathrm{x}_{1}-3 \mathrm{y}_{1}+10$
$26 x_{1}+3 y_{1}=38$
$24 \mathrm{x}_{1}-6 \mathrm{y}_{1}=33$ (1) x3
$52 x_{1}+6 y_{1}=76(2) \mathrm{x} 2$
Adding 76 $x_{1}=109$
$\mathrm{X}_{1}=\frac{109}{76}$
From (3) $2 \mathrm{y}_{1}=8 \mathrm{x}_{1}-11=8 \times \frac{109}{76}-11$
$=-\frac{218-209}{15}=\frac{9}{15}$
$y_{1}=\frac{9}{38}$
$\therefore \mathrm{Co}$ - ordinates of p are $\left(\frac{109}{76}, \frac{9}{38}\right)$
2) If the polar of the points on the circle $x^{2}+y^{2}=a^{2}$ with respect to the circle $x^{2}+y^{2}=b^{2}$ touches the circle $x^{2}+y^{2}=c^{2}$.Then prove that a,b,c are in Geometrical Progression.

Sol. let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$

$$
\begin{equation*}
\Rightarrow x_{1}^{2}+y_{1}^{2}=a^{2} \tag{1}
\end{equation*}
$$

Polar of P w.r.to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{b}^{2}$ is
$\mathrm{xx}_{1}+\mathrm{yy}_{1}=\mathrm{b}^{2}$
This is a tangent to the circle $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{c}^{2}$
$\Rightarrow \frac{\left|0+0-b^{2}\right|}{\sqrt{x_{2}^{2}+y^{2}}}=c \Rightarrow \frac{b^{2}}{a}=c$
$\Rightarrow \mathrm{b}^{2}=\mathrm{ac}$
$\therefore \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in Geometric Progression
3) Tangents are drawn to the circle $x^{2}+y^{2}=16$ from the point $P(3,5)$. Find the area of the triangle formed by these tangents and the chord of contact of P.

Sol. Equation of the circle is $S=x^{2}+y^{2}=16$

Polar of $(3,5)$ is $3 x+5 y=16$
$\mathrm{PL}=$ length of the perpendicular from P to its polar
$=\frac{|9+2 \Sigma-16|}{\sqrt{9+25}}=\frac{16}{\sqrt{34}}$
Centre of the circle $=\mathrm{C}(0,0)$
$d=$ Length of the perpendicular from c to polar
$=\frac{|0+0-16|}{\sqrt{34}}=\frac{16}{\sqrt{34}}$
Length of the chord $=2 \sqrt{r^{2}-d^{2}}$
$=2 \sqrt{16-\frac{256}{34}}=2 \sqrt{\frac{544-256}{34}}$
$=2 \sqrt{\frac{288}{34}}=24 \sqrt{\frac{2}{34}}$
Area of $\Delta \mathrm{PQR}=\frac{1}{2}$ base. height
$=\frac{1}{2} \cdot 24 \sqrt{\frac{2}{34}} \cdot \frac{18}{\sqrt{34}}=\frac{216 \sqrt{2}}{34}$
$=\frac{100 \sqrt{2}}{17}$ Sq. units.
4) Find the locus of the point whose polars with respect to the circles $x^{2}+y^{2}-4 x-4 y-8=0$ and $x^{2}+y^{2}-2 x+6 y-2=0$ are mutually perpendicular.

Sol.
Equation of the circles is

$$
\begin{align*}
& S=x^{2}+y^{2}-4 x-4 y-8=0 \tag{1}\\
& S^{\prime}=x^{2}+y^{2}-2 x+6 y-2=0-(2)
\end{align*}
$$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any position in the locus.

Equation of the polar of p w.r.to circle (1) is

$$
\begin{align*}
& \mathrm{xx}_{1} \mathrm{yy}_{1}-2\left(\mathrm{x}+\mathrm{x}_{1}\right)-2\left(\mathrm{y}+\mathrm{y}_{1}\right)-8=0 \\
& \mathrm{x}\left(\mathrm{x}_{1}-2\right)+\mathrm{y}\left(\mathrm{y}_{1}-2\right)-\left(2 \mathrm{x}_{1}+2 \mathrm{y}_{1}+8\right)=0 \tag{3}
\end{align*}
$$

Polar of P w.r. to circle (2) is

$$
\begin{aligned}
& \mathrm{xx}_{1}+\mathrm{yy}_{1}-1\left(\mathrm{x}+\mathrm{x}_{1}\right)-3\left(\mathrm{y}+\mathrm{Y}_{1}\right)-2=0 \\
& \mathrm{x}_{1}+\mathrm{yy}_{1}-\mathrm{x}-\mathrm{x}_{1}+3 \mathrm{y}+3 \mathrm{y}_{1}-2=0 \\
& \mathrm{x}\left(\mathrm{x}_{1}-1\right)+\mathrm{y}\left(\mathrm{y}_{1}+3\right)-\left(\mathrm{x}_{1}+3 \mathrm{y}_{1}+2\right)=0
\end{aligned}
$$

(3) and (4) are perpendicular

$$
\begin{aligned}
& \Rightarrow \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}=0 \\
& \left(\mathrm{x}_{1}-2\right)\left(\mathrm{x}_{1}-1\right)+\left(\mathrm{y}_{1}-2\right)\left(\mathrm{y}_{1}+3\right)=0 \\
& \Rightarrow x_{1}^{2}+y_{1}^{2}-3 x_{1}+y_{1}-6=0
\end{aligned}
$$

Locus of $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{x}+\mathrm{y}-4=0$
5) Find the locus of the foot of the perpendicular drawn from the origin to any chord of the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ which subtends a right angle at the origin.

Sol.

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the foot of the perpendicular from the origin on the chord.
Slop a $O P=\frac{y_{1}}{x_{1}}$
\Rightarrow Slop of chord $=-\frac{x_{1}}{y_{1}}$
\Rightarrow Equation of the chord is $y-y_{1}=-\frac{x_{2}}{y_{1}} \quad\left(x-x_{1}\right)$

$$
\begin{align*}
& \Rightarrow \mathrm{yy}_{1}-y_{1}^{2}=-\mathrm{xx}_{1}+x_{1}^{2} \\
& \Rightarrow \mathrm{xx}_{1}+\mathrm{yy}_{1}=x_{1}^{2}+y_{1}^{2} \\
& \Rightarrow \frac{x x_{1}+y y_{1}}{x_{1}^{2}+y_{1}^{2}}=1--\cdots---- \tag{1}
\end{align*}
$$

Equation of the circle is $x^{2}+y^{2}+2 f y+c=0 \quad$ - (2) Hamogenising (2) with the help of (1). Then

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2}+(2 \mathrm{gx}+2 \mathrm{fy}) \frac{x x_{2}+y_{1}}{x_{1}^{2}+y_{1}^{2}}+\frac{\left(x x_{1}+y_{2} y^{2}\right.}{\left(x_{1}^{2}+y_{1}^{2}\right)^{2}}=0 \\
& \mathrm{x}^{2}\left[1+\frac{2 g x_{2}}{x_{1}^{2}+y_{1}^{2}}+\frac{c x_{1}^{2}}{\left(x_{1}^{2}+y_{1}^{2}\right)}\right]+\mathrm{y}^{2}\left[1+\frac{2 f y_{2}}{x_{1}^{2}+y_{1}^{2}}+\frac{c y_{1}^{2}}{\left(x_{1}^{2}+y_{1}^{2}\right)}\right]+(\ldots \ldots \ldots \ldots \ldots \ldots) \mathrm{xy}=0
\end{aligned}
$$

But above equation is representing a pair of perpendicular lines,
Co - eff. of $x^{2}+$ co-eff of $y^{2}=0$

$$
\begin{aligned}
& 1+\frac{2 g x_{2}}{x_{1}^{2}+y_{1}^{2}}+\frac{c x_{1}^{2}}{\left(x_{1}^{x}+y_{1}^{2}\right)^{2}}+1+\frac{2 f y_{8}}{x_{1}^{2}+y_{1}^{2}}+\frac{c y_{1}^{\pi}}{\left(x_{1}^{2}+y_{1}^{R}\right)^{2}}=0 \\
& 2+\frac{2 g x_{2}+2 f y_{1}}{x_{1}^{Z}+y_{1}^{Z}}+\frac{\left(x_{1}^{2}+y_{1}^{2}\right)}{\left(x_{1}^{2}+y_{2}^{n}\right)}=0 \\
& 2+\frac{2 g x_{2}+2 f y_{1}}{x_{1}^{2}+y_{1}^{2}}+\frac{c}{x_{1}^{2}+y_{1}^{2}}=0 \\
& 2\left(x_{1}^{2}+y_{1}^{2}\right)+2 g x_{1}+2 f y_{1}+\mathrm{c}=0 \\
& \text { Locus of } L\left(x_{1}, y_{1}\right) \text { is } \\
& 2\left(x^{2}+y^{2}\right)+2 g x+2 f y+c=0
\end{aligned}
$$

6) Find the equation of the circle which touches $x^{2}+y^{2}-4 x+6 y-12=0(-1,-1)$ internally with a radius of 2 .

Sol. $x^{2}+y^{2}-4 x+6 y-12=0$
$\mathrm{C}_{1=(2,-3),} \mathrm{r}_{1}=\sqrt{4+9+12}=5$

Radius of required circle is $r_{2}=2$

Let centre of the second circle be

$$
\mathrm{C}_{2}=(\mathrm{h}, \mathrm{k})
$$

Point of contact $(-1,1)$
Since the two circles touch internally, point of contact divides line of centres externally in the ratio 5:2

$$
\begin{aligned}
& -1=\frac{5 h-4}{3} \quad 1=\frac{8 k+5}{3} \\
& h=\frac{1}{3}, \quad \mathrm{k}=\frac{3}{3}
\end{aligned}
$$

Centre $=(1 / 5,3 / 5)$
Equation of a circle with centre $\left(\frac{1}{5}, \frac{-3}{5}\right)$ and radius 2 is given by

$$
\begin{aligned}
& \left(x-\frac{1}{5}\right)^{2}+\left(y+\frac{3}{5}\right)^{2}=4 \\
& S x^{2}+S y^{2}-2 x+6 y-18=0
\end{aligned}
$$

7) Find the pair of tangents drawn from $(1,3)$ to the circle $x^{2}+y^{2}-2 x+4 y-11=0$

Sol. $S=x^{2}+y^{2}-2 x+4 y-11=0$
Equation of pair of tangents from $(3,2)$ to $S=0$ is $S . S_{11}=S_{1}{ }^{2}$
$\left(x^{2}+y^{2}-2 x+4 y-11\right)(1+9-2+12-11)$
$=[x+3 y-1(x+1)+2(y+3)-11]^{2}$
$\left(x^{2}+y^{2}-2 x+4 y-11\right) 9=(5 y-6)^{2}$
$\left.9 x^{2}+9 y^{2}-18 x+36 y-99\right)$

$$
=25 y^{2}+36-60 y
$$

$9 x^{2}-16 y^{2}-18 x+96 y-135=0$
Let θ be the angle between the pair of tangents. Then

$$
\begin{aligned}
& \operatorname{Cos} \theta=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 k^{2}}}=\frac{|9-16|}{\sqrt{(25)^{2}}} \\
& =\frac{|-7|}{25}=\frac{7}{25} \\
& \Rightarrow \theta^{=} \cos ^{-1}\left(\frac{7}{25}\right)
\end{aligned}
$$

8) Find the pair of tangents from the origin to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ and hence deduce a condition for these tangents to be perpendicular.
Sol. $S=x^{2}+y^{2+} 2 g x+2 f y+c=0$
Equation of pair of tangents from $(0,0)$ to $S=0$ is $S . S_{11}=S_{1}{ }^{2}$

$$
\begin{aligned}
& \left(x^{2}+y^{2}+2 g x+2 f y+c\right)(c)=[g x+f y+c]^{2} \\
& \Rightarrow\left(\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}\right)(\mathrm{c})=\mathbf{g}^{2} \mathrm{x}^{2}+\mathrm{f}^{2} \mathrm{y}^{2}+2 \mathrm{gfxy}+2 \mathrm{gcx}+2 \mathrm{fyc}+\mathrm{c}^{2} \\
& \Rightarrow(\mathrm{gx}+\mathrm{fy})^{2}=\mathrm{c}\left(\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right.
\end{aligned}
$$

Above tangents are perpendicular, then coefficient of $x^{2}+$ coefficient of $y^{2}=0$

$$
\begin{aligned}
& \Rightarrow \mathbf{g}^{2}-\mathrm{c}+\mathrm{f}^{2}-\mathrm{c}=0 \\
& \Rightarrow \mathbf{g}^{2}+\mathrm{f}^{2}=2 \mathrm{c}
\end{aligned}
$$

6) From a point on the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$, two tangents are drawn to circles: $x^{2}+$ $\mathbf{y}^{2}+2 g x+2 f y+c \sin ^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha=0(0<\alpha<\pi / 2 \quad$ Prove that the angle between them is 2α.

Sol. let ($\mathrm{x}_{1}, \mathrm{y}_{1}$) be a point on the circle
$\mathbf{x}^{2}+\mathbf{y}^{2}+2 g x+2 f y+c=0 . \Rightarrow x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+\mathbf{c}=0$
Equation of the second circle is
$\mathrm{S}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c} \sin ^{2} \alpha \quad+\left(\mathrm{g}^{2}+\mathrm{f}^{2}\right) \cos ^{2} \alpha=0$
Equation of pair of tangents from $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ to $\mathrm{S}=0$ is $\mathrm{S} . \mathrm{S}_{11}=\mathrm{S}_{1}{ }^{2}$
$\left(x^{2}+y^{2}+2 g x+2 f y+c \sin ^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha\right)\left(x_{1}{ }^{2}+y_{1}{ }^{2}+2 g x_{1}+2 f y_{1}+\operatorname{csin}^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha\right)=$
$\left(x_{1}+y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+\operatorname{csin}^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha\right)^{2}$
$\Rightarrow\left(x^{2}+y^{2}+2 g x+2 f y+\operatorname{csin}^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha\right)\left(-c+\operatorname{csin}^{2} \alpha+\left(g^{2}+f^{2}\right) \cos ^{2} \alpha\right)=$
$\left(\mathrm{xx}_{1}+\mathrm{yy}_{1}+g\left(x+x_{1}\right)+\mathrm{f}\left(\mathrm{y}+\mathrm{y}_{1}\right)+\operatorname{csin}^{2} \alpha+\left(\mathrm{g}^{2}+\mathrm{f}^{2}\right) \cos ^{2} \alpha\right)^{2}$
$\left[\left(-\mathrm{c}+\mathrm{c} \sin ^{2} \alpha\right)+\left(\mathrm{g}^{2}+\mathrm{f}^{2}\right) \cos ^{2} \alpha\right] \mathrm{S}=\left(\mathrm{x}\left(\mathrm{x}_{1}+\mathrm{g}\right)+\mathrm{y}\left(\mathrm{y}_{1}+\mathrm{f}\right)+\mathrm{gx} \mathrm{x}_{1}+\mathrm{f} \mathrm{y}_{1}+\mathrm{c} \sin ^{2} \alpha+\left(\mathrm{g}^{2}+\mathrm{f}^{2}\right) \cos ^{2} \alpha^{2}\right.$
$\left[\cos ^{2} \alpha\left(\mathrm{~g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right)\right] \mathrm{S}=\left[\mathrm{x}\left(\mathrm{x}_{1}+\mathrm{g}\right)+\mathrm{y}\left(\mathrm{y}_{1}+\mathrm{f}\right)+\mathrm{gx}_{1}+\mathrm{fy}_{1}+\mathrm{c} \sin ^{2} \alpha+\left(\mathrm{g}^{2}+\mathrm{f}^{2}\right) \cos ^{2} \alpha^{2}\right.$
Let $\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}=\mathrm{r}^{2}$
$\left[\left(\cos ^{2} \alpha\right) r^{2}\right] S=\left[\left(\mathrm{x}\left(\mathrm{x}_{1}+\mathrm{g}\right)+\mathrm{y}\left(\mathrm{y}_{1}+\mathrm{f}\right)+\mathrm{gx}_{1}+\mathrm{f} \mathrm{y}_{1}+\mathrm{c}+\left(\cos ^{2} \alpha\right) \cdot \mathrm{r}^{2}\right)^{2}\right.$
Coefficient of x^{2} is $r^{2} \cos ^{2} \alpha-\left(x_{1}+g\right)^{2}$
Coefficient of y^{2} is $\mathrm{r}^{2} \cos ^{2} \alpha-\left(\mathrm{y}_{1}+\mathrm{f}\right)^{2}$
Coefficient of $x y$ is
$\mathrm{h}=\cos ^{2} \alpha \mathrm{r}^{2}-2\left(\mathrm{x}_{1}+\mathrm{g}\right)\left(\mathrm{y}_{1}+\mathrm{f}\right)^{2}$
Let θ be the angle between the tangents, then $\cos \theta=\frac{a+b}{\sqrt{(a-b)^{2}+4 h^{2}}}$
$=\frac{2 r^{2} \cos ^{2} \alpha-\left(x_{4}+g\right)^{2}-\left(y_{4}+f\right)^{2}}{\sqrt{\left[\left(y_{1}+f\right)^{2}-\left(\alpha_{1}+g\right)^{2}\right]^{2}+\left[4 \cdot \cos ^{2} \alpha r^{2}-\left(x_{2}-g\right)\left(y_{1}+f\right)\right.}}$
$=2 \mathrm{r}^{2} \cos ^{2} \alpha-\frac{r^{2}}{r^{2}} \frac{r^{2} \sin 2 \alpha}{r^{2}}$
$\operatorname{Cos} \theta=\cos 2 \alpha$
$\theta=2 \alpha$
Hence proved.

