CIRCLES PART - II

Theorem: The equation of the tangent to the circle $\mathrm{S}=0$ at $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{S}_{1}=0$.

Theorem: The equation of the normal to the circle $S \equiv x^{2}+y^{2}+2 g x+2 f y+c=0$ at $P\left(x_{1}, y_{1}\right)$ is $\left(y_{1}+f\right)\left(x-x_{1}\right)-\left(x_{1}+g\right)\left(y-y_{1}\right)=0$.

Corollary: The equation of the normal to the circle $x^{2}+y^{2}=a^{2}$ at $P\left(x_{1}, y_{1}\right)$ is $y_{1} x-x_{1} y=0$.

Theorem: The condition that the straight line $1 x+m y+n=0$ may touch the circle $x^{2}+y^{2}=a^{2}$ is $n^{2}=a^{2}\left(1^{2}+m^{2}\right)$ and the point of contact is $\left(\frac{-a^{2} 1}{n}, \frac{-a^{2} m}{n}\right)$.

Proof:

The given line is $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
The given circle is $x^{2}+y^{2}=r^{2} \ldots$ (2)
Centre $\mathrm{C}=(0,0)$, radius $=\mathrm{r}$
Line (1) is a tangent to the circle (2)
\Leftrightarrow The perpendicular distance from the centre C to the line (1) is equal to the radius r .
$\Leftrightarrow\left|\frac{0-\mathrm{n}}{\sqrt{\mathrm{l}^{2}+\mathrm{m}^{2}}}\right|=\mathrm{r}$
$\Leftrightarrow(\mathrm{n})^{2}=\mathrm{r}^{2}\left(\mathrm{l}^{2}+\mathrm{m}^{2}\right)$

Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point of contact.
Equation of the tangent is $S_{1}=0, \Rightarrow x_{1} x+y_{1} y-r^{2}=0$. ---- (3)
Equations (1) and (3) are representing the same line, therefore, $\frac{x_{1}}{l}=\frac{y_{1}}{m}=\frac{-a^{2}}{n} \Rightarrow x_{1}=\frac{-a^{2} l}{n}, y_{1}=\frac{-a^{2} m}{n}$
Therefore, point of contact is $\left(\frac{-a^{2} l}{n}, \frac{-a^{2} m}{n}\right)$

Theorem: The condition for the straight line $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$ may be a tangent to the circle $x^{2}+y^{2}+2 g x+2 f y+c=0$ is $\left(g^{2}+f^{2}-c\right)\left(l^{2}+m^{2}\right)=(l g+m f-n)^{2}$.

Proof:

The given line is $1 \mathrm{x}+\mathrm{my}+\mathrm{n}=0$
The given circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$

Centre $\mathrm{C}=(-\mathrm{g},-\mathrm{f})$, radius $\mathrm{r}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$
Line (1) is a tangent to the circle (2)
\Leftrightarrow The perpendicular distance from the centre C to the line (1) is equal to the radius r.
$\Leftrightarrow\left|\frac{-\mathrm{lg}-\mathrm{mf}+\mathrm{c}}{\sqrt{\mathrm{l}^{2}+\mathrm{m}^{2}}}\right|=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}$
$\Leftrightarrow(\mathrm{lg}+\mathrm{mf}-\mathrm{n})^{2}=\left(\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}\right)\left(\mathrm{l}^{2}+\mathrm{m}^{2}\right)$

Corollary: The condition for the straight line $y=m x+c$ to touch the circle
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$ is $\mathrm{c}^{2}=\mathrm{r}^{2}\left(1+\mathrm{m}^{2}\right)$.
The given line is $y=m x+c$ i.e., $m x-y+c=0$
The given circle is $S=x^{2}+y^{2}=r^{2}$
Centre $C=(0,0)$, radius $=r$.
If (1) is a tangent to the circle, then
Radius of the circle $=$ perpendicular distance from centre of the circle to the line.

$\Rightarrow r=\frac{|c|}{\sqrt{m^{2}+1}} \Rightarrow r^{2}=\frac{c^{2}}{m^{2}+1} \Rightarrow r^{2}\left(m^{2}+1\right)=c^{2}$

Corollary: If the straight line $y=m x+c$ touches the circle $x^{2}+y^{2}=r^{2}$, then their point of contact is $\left(-\frac{\mathrm{r}^{2} \mathrm{~m}}{\mathrm{c}}, \frac{\mathrm{r}^{2}}{\mathrm{c}}\right)$.

Proof:

The given line is $y=m x+c$ i.e., $m x-y+c=0$
The given circle is $S=x^{2}+y^{2}=r^{2}$
Centre $\mathrm{C}=(0,0)$, radius $=\mathrm{r}$
Let $\mathrm{P}\left(\mathrm{x}_{1,} \mathrm{y}_{1}\right)$ be the point of contact.
Equation of the tangent is $S_{1}=0, \quad=>x_{1} x+y_{1} y-r^{2}=0 .---(3)$

Equations (1) and (3) are representing the same line, therefore, $\frac{x_{1}}{m}=\frac{y_{1}}{-1}=\frac{-r^{2}}{c} \Rightarrow x_{1}=\frac{-r^{2} m}{c}, y_{1}=\frac{r^{2}}{c}$
Point of contact is $\left(x_{1}, y_{1}\right)=\left(-\frac{r^{2} m}{c}, \frac{r^{2}}{c}\right)$
Theorem: If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is a point on the circle with centre $\mathrm{C}(\alpha, \beta)$ and radius r , then $\mathrm{x}=\alpha+\mathrm{r} \cos \theta$, $y=\beta+r \sin \theta$ where $0 \leq \theta<2 \pi$.

Note 1: The equations $x=\alpha+r \cos \theta, y=\beta+r \sin \theta, 0 \leq \theta<2 \pi$ are called parametric equations of the circle with centre (α, β) and radius r.

Note 2: A point on the circle $x^{2}+y^{2}=r^{2}$ is taken in the form $(r \cos \theta, r \sin \theta)$. The point $(r \cos \theta, r \sin \theta)$ is simply denoted as point θ.

Theorem: The equation of the chord joining two points θ_{1} and θ_{2} on the circle
$x^{2}+y^{2}+2 g x+2 f y+c=0$ is $(x+g) \cos \frac{\theta_{1}+\theta_{2}}{2}+(y+f) \sin \frac{\theta_{1}+\theta_{2}}{2}=r \cos \frac{\theta_{1}-\theta_{2}}{2}$ where r is the radius of the circle.

Note1: The equation of the chord joining the points θ_{1} and θ_{2} on the circle $x^{2}+y^{2}=r^{2}$ is $x \cos \frac{\theta_{1}+\theta_{2}}{2}+y \sin \frac{\theta_{1}+\theta_{2}}{2}=r \cos \frac{\theta_{1}-\theta_{2}}{2}$.

Note2: The equation of the tangent at $P(\theta)$ on the circle $(x+g) \cos \theta+(y+f) \sin \theta=\sqrt{g^{2}+f^{2}-c}$.
Note 3: The equation of the tangent at $P(\theta)$ on the circle $x^{2}+y^{2}=r^{2}$ is $x \cos \theta+y \sin \theta=r$.

Note 4: The equation of the normal at $P(\theta)$ on the circle $x^{2}+y^{2}=r^{2}$ is $x \sin \theta-y \cos \theta=r$.

Very Short Answer Questions

1. Find the equation of the tangent at P of the circle $S=0$ where P and S are given by

$$
P=(7,-5), S \equiv x^{2}+y^{2}-6 x+4 y-12
$$

Sol. Equation of the circle is

$$
S \equiv x^{2}+y^{2}-6 x+4 y-12=0
$$

Equation of the tangent at $P(7,5)$ is $S_{1}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{x} .7+\mathrm{y}(-5)-3(\mathrm{x}+7)+2(\mathrm{y}-5)-12=0 \\
& \Rightarrow 7 \mathrm{x}-5 \mathrm{y}-3 \mathrm{x}-21+2 \mathrm{y}-10-12=0 \\
& \Rightarrow 4 \mathrm{x}-3 \mathrm{y}-43=0
\end{aligned}
$$

2) Find the equation of the normal at P of the circle $S=0$ where P and S are given by
i) $\mathbf{P}=(3,-4), S \equiv x^{2}+y^{2}+x+y-24$

Sol. Equation of the normal passing through $\left(x_{1}, y_{1}\right)$ is $\left(x-x_{1}\right)\left(y_{1}+f\right)-\left(y-y_{1}\right)\left(x_{1}+g\right)=0$

$$
\begin{aligned}
& \Rightarrow(\mathrm{x}-3)\left(-4+\frac{1}{2}\right)-(\mathrm{y}+4)\left(3+\frac{1}{2}\right)=0 \\
& \Rightarrow \frac{7}{2}(\mathrm{x}-3)-\frac{7}{2}(\mathrm{y}+4)=0 \\
& \Rightarrow(\mathrm{x}-3)+(\mathrm{y}+4)=0 \\
& \Rightarrow \mathrm{x}-3+\mathrm{y}+4=0
\end{aligned}
$$

$$
\text { i.e., } x+y+1=0
$$

ii) $P=(3,5), S \equiv x^{2}+y^{2}-10 x-2 y+6$

Sol. Equation of the normal passing through $\left(x_{1}, y_{1}\right)$ is $\left(x-x_{1}\right)\left(y_{1}+f\right)-\left(y-y_{1}\right)\left(x_{1}+g\right)$

$$
\begin{aligned}
& (x-3)(5-1)-(y-5)(3-5)=0 \\
& \Rightarrow 4 x-12+2 y-10=0
\end{aligned}
$$

$\Rightarrow 4 \mathrm{x}+2 \mathrm{y}-22=0$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}-11=0$

Short Answer Questions

1) Find the length of the chord intercepted by the circle $x^{2}+y^{2}-x+3 y-22=0$ on the line $y=x-3$
Sol. Equation of the circle is $S \equiv x^{2}+y^{2}-x+3 y-22=0$. Center $C(\overline{\mathbf{2}},-\overline{\mathbf{3}})$ and
Radius $\mathrm{r}=\sqrt{\mathrm{g}^{2}+\mathrm{f}^{2}-\mathrm{c}}=\sqrt{\frac{1}{4}+\frac{9}{4}+22}=\sqrt{\frac{1+9+88}{4}}=\sqrt{\frac{98}{44}}$

Equation of the line is $y=x-3 \Rightarrow x-y-3=0$
$P=$ distance from the centre to the line

Length of the chord $=2 \sqrt{r^{2}-p^{2}}=2 \sqrt{\frac{98}{4}-\frac{1}{2}}=2 \sqrt{\frac{98-2}{2}}=\sqrt{96}=4 \sqrt{6}$ units.
2) Find the length of the chord intercepted by the circle $x^{2}+y^{2}-8 x-2 y-8=0$ the line $x+y+1=0$

Sol. Equation of the circle is $x^{2}+y^{2}-8 x-2 y-8=0$
C entre is $C(4,1)$ and radius $r=\sqrt{16+1+8}=5$
Equation of the line is $x+y+1=0$
$\mathrm{P}=$ distance from the centre to the line

$$
=\left|\frac{4+1+1}{\sqrt{1+1}}\right|=\frac{6}{\sqrt{2}}=3 \sqrt{2}
$$

Length of the chord $=2 \sqrt{r^{2}-p^{2}}$

$$
=2 \sqrt{25-18}=2 \sqrt{7} \text { units. }
$$

3) Find the length of the chord formed by $x^{2}+y^{2}=a^{2}$ on the line $x \cos \alpha+y \sin \alpha=p$.

Sol. Equation of the circle is $x^{2}+y^{2}=a^{2}$
Centre $\mathrm{C}(0,0)$, radius $=\mathrm{a}$
Equation of the line is $\mathrm{X} \cos ^{a}+\mathrm{y} \sin a-\mathrm{p}=0$
$P=$ distance from the centre to the line $=\frac{|0+0-p|}{\sqrt{\cos ^{2} \alpha+\sin ^{2} \alpha}}=p$
Length of the chord $=2 \sqrt{a^{2}-p^{2}}$
4) Find the equation of circle with centre $(2,3)$ and touching the line $3 x-4 y+1=0$.

Sol.
Centre $\mathrm{C}=(2,3)$.
Radius $r=$ Perpendicular distance from C to $3 x-4 y+1=0=\left|\frac{3(2)-4(3)+1}{\sqrt{3^{2}+4^{2}}}\right|$

Equation of circle $(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-2)^{2}+(y-3)^{2}=1$
$x^{2}+y^{2}-4 x-6 y+12=0$
P $\quad 3 x-4 y+1=0$
5) Find the equation of the circle with Centre $(-3,4)$ and touching y-axis.

$(-3,4)$

Sol. Centre of the circle is $C(-3,4)$.
Since the circle touches y-axis',
Radius $r=$ distance of c from y-axis $=|3|=3$
Equation of the circle is $(x+3)^{2}+(y-4)^{2}=9$
$x^{2}+6 x+9+y^{2}-8 y+16-9=0$
i.e., $\quad x^{2}+y^{2}+6 x-8 y+16=0$
6) Find the equation of tangents of the Circle $x^{2}+y^{2}+8 x-2 y+12=0$ at the points whose ordinates are 1.

Sol. Equation of the circle is

$$
S \equiv x^{2}+y^{2}-8 x-2 y+12=0
$$

Let the point $\operatorname{Pbe}(a, 1)$
Since P is a point on the circle,
$a^{2}+1-8 a-2+12=0$
$a^{2}-8 a+11=0$
$\mathrm{a}=\frac{8 \pm \sqrt{64-44}}{2}=\frac{8 \pm 2 \sqrt{5}}{2}=4 \pm \sqrt{5}$
$a_{1}=4+\sqrt{5}, a_{2}=4-\sqrt{5}$
Co - ordinates of P are $(4+\sqrt{5}, 1)$ and $\mathrm{Q}(4-\sqrt{5}, 1)$
Equation of the tangent at $\mathrm{P}(4+\sqrt{5}, 1)$ is $\mathrm{S}_{1}=0$
$x(4+\sqrt{5})+y .1-4(x+4+\sqrt{5})-(y+1)+12=0$
$\Rightarrow 4 \mathrm{x}+\sqrt{5} \mathrm{x}+\mathrm{y}-4 \mathrm{x}-16-4 \sqrt{5}-\mathrm{y}-1+12=0$
$\Rightarrow \sqrt{5} x-5-4 \sqrt{5}=0 \Rightarrow \sqrt{5}(x-\sqrt{5}-4)=0$
$\Rightarrow \mathrm{x}-\sqrt{5}-4=0 \Rightarrow \mathrm{x}=4+\sqrt{5}$

Equation of the tangent at $\mathrm{Q}(4-\sqrt{5}, 1)$ is $\mathrm{S}_{2}=0$
$\Rightarrow \mathrm{x}(4-\sqrt{5})+\mathrm{y} .1-4(\mathrm{x}+4-\sqrt{5})-(\mathrm{y}+1)+12=0$
$\Rightarrow 4 \mathrm{x}-\sqrt{5} \mathrm{x}+\mathrm{y}-4 \mathrm{x}-16+4 \sqrt{5}-\mathrm{y}-1+12=0$
$\Rightarrow-\sqrt{5} x+4 \sqrt{5}-5=0 \Rightarrow-\sqrt{5}(x-4+\sqrt{5})=0$
$\Rightarrow \mathrm{x}-4+\sqrt{5}=0 \Rightarrow \mathrm{x}=4-\sqrt{5}$
7) Find the equation of tangents the circle $x^{2}+y^{2}-10=0$ at the points whose abscissa are 1 .

Sol. Equation of the circle is $S=x^{2}+y^{2}=10$
Let the point be $(1, y)$

$$
1+y^{2}=10 \Rightarrow y^{2}=9
$$

$$
\mathrm{Y}= \pm 3
$$

Co - ordinates of P are $(1,3)$ and $(1,-3)$
Equation of the tangent at $P(1,3)$ is $S_{1}=0$.
$\Rightarrow \mathrm{x} .1+\mathrm{y} .3=10$
$\Rightarrow x+3 y-10=0$
Equation of the tangent of $P(1,-3)$ is $S_{2}=0$

$$
\Rightarrow x .1+y(-3)=10 \Rightarrow x-3 y-10=0
$$

Long Answer Questions

1) If $x^{2}+y^{2}=c^{2}$ and $\frac{x}{a}+\frac{y}{b}=1$ intersect at A and B, then find $A B$. Hence deduce the condition, that the line touches the circle.

Sol. Equation of the line is $\frac{\boldsymbol{x}}{\boldsymbol{a}}+\frac{y}{b}=\mathbf{1}$ Equation of the circle $x^{2}+y^{2}=c^{2}$.

Centre $C=(0,0)$ and radius $r=c$
Perpendicular from c to the line is

$$
\mathrm{d}=\left|\frac{\frac{0.1}{a}+0 \cdot \frac{1}{b}-1}{\sqrt{\frac{1}{a^{2}}}+\frac{1}{b^{2}}}\right|=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}
$$

Length of chord $\mathrm{AB}=2 \sqrt{r^{2}-d^{2}}$
$=2 \sqrt{c^{2}-\frac{1}{\frac{1}{a^{2}}+\frac{1}{b^{2}}}}=2 \sqrt{c^{2}-\left(\frac{a^{2} b^{2}}{a^{2}+b^{2}}\right)}$
Line touches circle when $r^{2}=d^{2}$ or $r=d$
Length of the chord $=0$
$\rightarrow \mathrm{c}=\sqrt{\frac{a^{2} b^{2}}{a^{2}+b^{2}}}$
2) If $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ and $\mathbf{x}^{2}+y^{2}=\mathbf{a}^{2}$ i) intersect at A and B. ii) $A B=2^{\lambda}$, then show that $C^{2}=\left(1+\mathbf{m}^{2}\right)\left(\mathbf{a}^{2}-\lambda^{2}\right)$
Equation of circle $x^{2}+y^{2}=a^{2}$
Sol. $\quad \mathrm{C}=(0,0) \mathrm{r}=\mathrm{a}$
Length of chord $=2 \sqrt{r^{2}-d^{2}}$
$\Rightarrow 2 \sqrt{r^{2}+d^{2}}=2 \lambda$
$\Rightarrow \mathrm{a}^{2}-\mathrm{d}^{2}=\lambda^{2}$.
Equation of the line $y=m x+c \Rightarrow m x-y+c=0$
Perpendicular distance from c to line is $d=\left|\frac{0-0+c}{\sqrt{m^{2}+1}}\right|$
$\Rightarrow \mathrm{d}^{2}=\frac{c^{2}}{m^{2}+1}$
Therefore, from (1)
$\Rightarrow \mathrm{a}^{2}-\frac{c^{2}}{m^{2}+1}=\lambda^{2}$
: $c^{2}=\left(a^{2}-\lambda^{2}\right)\left(1+m^{2}\right)$ which is the required condition
3) Find the equation of the circle with centre ($-2,3$) cutting a chord length 2 units on $3 x+4 y+4=0$

Sol. Equation of the line is $3 x+4 y+4=0$
$d=$ Length of the perpendicular form $(-2,3)$ to $3 x+4 y+4=0$
$=\frac{|3(-2)+4.3+4|}{\sqrt{9+16}}=\frac{10}{5}=2$

If r is the radius of the circle then Length of the chord $=2 \sqrt{r^{2}-d^{2}}=2$ (given) $r^{2}-d^{2}=1$ then $r^{2}-2^{2}=1 \Rightarrow \mathrm{r}^{2}=5$.
\therefore Equation of the circle is $(x+2)^{2}+(y-3)^{2}=r^{2}$

$$
\begin{aligned}
& x^{2}+4 x+4+y^{2}-6 y+9=5 \\
& \text { i.e., } x^{2}+y^{2}+4 x-6 y+8=0
\end{aligned}
$$

4) Find the equation of tangent and normal at $(3,2)$ of the circle $x^{2}+y^{2}-x-3 y-4=0$

Sol.
Equation of the circle is $S \equiv x^{2}+y^{2}-x-3 y-4=0$
Equation of the tangent at $\mathrm{P}(3,2)$ is $\mathrm{S} 1=0$

$$
\begin{gathered}
\Rightarrow x .3+y \cdot 2-\frac{1}{2}(x+3)-\frac{3}{2}(y+2)-4=0 \\
6 x+4 y-x-3-3 y-6-8=0
\end{gathered}
$$

$\Rightarrow 5 \mathrm{x}+\mathrm{y}-17=0$
Let the normal be $x-5 y+c=0(\because$ normal is perpendicular to the tangent $)$
Since normal passes through $P(3,2)$
$\Rightarrow 3-10+\mathrm{c}=0 \Rightarrow \mathrm{c}=7$
Hence Equation of the normal is $x-5 y+7=0$
5) Find the equation of the tangent and normal at $(1,1)$ to the circle $2 x^{2}+2 y^{2}-2 x-5 y+3=0$

Sol. Equation of the circle is
$2 x^{2}+2 y^{2}-2 x-5 y+3=0$
$S \equiv x^{2}+y^{2}-x-\overline{\mathbf{z}} y-\overline{\mathbf{2}}=0$
Equation of the tangent at $P(1,1)$ is $S_{1}=0$
$\mathrm{x} .1+\mathrm{y} .1-\frac{1}{2}(\mathrm{x}+1)^{-\frac{5}{4}}(\mathrm{y}+1)^{\frac{3}{2}}=0$
$4 x+4 y-2(x+1)-5(y+1)+6=0$
$4 x+4 y-2 x-2-5 y-5+6=0$
$2 \mathrm{x}-\mathrm{y}-1=0$
Equation of the normal can be taken as
$x+2 y+k=0$
The normal passes through Center $\mathrm{P}(1,1)$
$\Rightarrow 1+2+\mathrm{k}=0 \Rightarrow \mathrm{k}=-3$
Equation of the normal is $x+2 y-3=0$
6) Prove that the tangent at $(3,-2)$ of the circle $x^{2}+y^{2}=13$ touches the circle $x^{2}+y^{2}+2 x-10 y-26=0$ and find its point of contact.

Sol.

Equation of the circle is $S \equiv x^{2}+y^{2}=13$
Equation of the tangent at $P(3,-2)$ is $S_{1}=0$
$x .3+y(-2)=13$
$\Rightarrow 3 x-2 y-13=0$
Equation of the second circle is
$x^{2}+y^{2}+2 x-10 y-26=0$
Centre is $c(-1,5)$ and

Radius $\mathrm{r}=\sqrt{1+25+26}=\sqrt{52}=2 \sqrt{13}$
$d=$ length of the perpendicular from $c(-1,5)$ to (1)
$\mathrm{d}=\frac{|-3-10-13|}{\sqrt{9+4}}=\frac{26}{\sqrt{13}}=2 \sqrt{13}=$ radius
\therefore The tangent to the first circle also touches the second circle.
Equation of the circle
$x^{2}+y^{2}+2 x-10 y-26=0$
Center $\mathrm{c}=(-1,5)$
Equation of normal is $2 x+3 y+k=0$. This normal is passing through $(-1,5)$
$\Rightarrow 2(-1)+3(5)+\mathrm{k}=0 \Rightarrow \mathrm{~K}=-13$
\therefore Normal is $2 \mathrm{x}+3 \mathrm{y}-13=0$
Solving (1) \& (2)
Point of intersection is $(5,1)$
\therefore Point of contact is $(5,1)$
7) Show that the tangent at $(-1,2)$ the Circle $x^{2}+y^{2}-4 x-8 y+7=0$ touches the Circle $x^{2}+y^{2}+4 x+6 y=0$ and also Find its point of contact.
Sol. $S \equiv x^{2}+y^{2}-4 x-8 y+7=0$ equation of the tangent at $(-1,2)$ to $S=0$ is $S_{1}=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{x}(-1)+\mathrm{y}(2)-2(\mathrm{x}-1)-4(\mathrm{y}+2)+7=0 \\
& \Rightarrow-3 \mathrm{x}-2 \mathrm{y}+1=0 \Rightarrow 3 \mathrm{x}+2 \mathrm{y}-1=0
\end{aligned}
$$

Equation of the second circle is $x^{2}+y^{2}+4 x+6 y=0$
Centre $\mathrm{C}=(-2,-3)$ radius $\mathrm{r}=\sqrt{g^{2}+f^{2}-c}=\sqrt{4+9}=\sqrt{13}$
Perpendicular distance from C to the line is $d=\left|\frac{3(-2)+2(-3)-1}{\sqrt{3^{2}+2^{2}}}\right|=\left|\frac{-13}{\sqrt{13}}\right|=\sqrt{13}$ $\mathrm{d}=\mathrm{r}$

Hence $3 x+2 y-1=0$ is also tangent to
$x^{2}+y^{2}+4 x+6 y=0$
Point of contact (foot of perpendicular)
Let (h, k) be foot of perpendicular from $(-2,-3)$ to the line $3 x+2 y-1=0$
$\frac{h+2}{3}=\frac{k+3}{2}=\frac{|3(-2)+2(-3)-1|}{9+4} \Rightarrow \frac{h+2}{3}=1$ and $\frac{k+3}{2}=1$
$h=1, k=-1$ therefore $(1,-1)$ is point of contact.
8) Find the equation of the tangents to the circle $x^{2}+y^{2}-4 x+6 y-12=0$ which are parallel to $x+y-8=0$
Sol. Equation of the circle is
$S=x^{2}+y^{2}-4 x+6 y-12=0$
Centre is $C(2,-3) ; r=$ radius $=\sqrt{4+9+12}=5$
Equation of the given line is $x+y-8=0$
Equation of the line parallel to above line is $x+y+k=0$
If $x+y+k=0$ is a tangent to the circle then
Radius $=$ perpendicular distance from the centre.

$$
\begin{aligned}
& 5=\frac{|2-3+k|}{\sqrt{1+1}} \\
& \Rightarrow|k-1|=5 \sqrt{2} \Rightarrow \mathrm{k}-1= \pm 5 \sqrt{2} \Rightarrow \mathrm{k}=1 \pm 5 \sqrt{2}
\end{aligned}
$$

Equation of the tangent is
$x+y+1 \pm 5 \sqrt{2}=0$
9) Find the equations of the tangents to the circle $x^{2}+y^{2}+2 x-2 y-3=0$ which are perpendicular to $3 x-y+4=0$
Sol. $\mathbf{S}=\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{x}-2 \mathrm{y}-3=0$, centreC $(-1,1)$
And radius $r=\sqrt{1+1+3}=\sqrt{5}$
Equation of the line perpendicular to $3 x-y+4=0$ is

$$
x+3 y+k=0
$$

$$
\begin{aligned}
& \sqrt{5}=\left|\frac{-1+3+k}{\sqrt{1+9}}\right| \Rightarrow 5=\frac{(k+2)^{2}}{10} \\
& \Rightarrow 50=\mathrm{k}^{2}+4 \mathrm{k}+4 \Rightarrow \mathrm{k}^{2}+4 \mathrm{k}-46=0 \\
& \Rightarrow k=\frac{-4 \pm \sqrt{16+184}}{2} \\
& k=\frac{-4 \pm 10 \sqrt{2}}{2}=-2 \pm 5 \sqrt{2}
\end{aligned}
$$

Equation of the required tangent is

$$
x+3 y-2 \pm 5 \sqrt{2}=0
$$

10) Find the equation of the tangents to the circle $x^{2}+y^{2}-4 x-6 y+3=0$ which makes an angle 45^{0} with $\mathrm{x}-$ axis.

Sol. Equation of the circle is $S=x^{2}+y^{2}-4 x-6 y+3=0$
Centre C $(3,3)$, radius $r=\sqrt{4+9-3}=\sqrt{10}$
Slope of the tangent $\mathrm{m}=\tan 45^{\circ}=1$
Equation of the tangent can be taken as $y=x+c$ i.e., $x-y+c=0$
Length of the perpendicular from centre c to tangent $=\frac{\frac{|2-3+c|}{\sqrt{2}}}{}$
$\therefore \sqrt{10}=\frac{|c-1|}{\sqrt{2}} \Rightarrow(c-1)^{2}=20$
$\mathrm{c}-1= \pm \sqrt{20}= \pm 2 \sqrt{5}$
$c=1 \pm 2 \sqrt{5}$
Equation of the tangents $x-y+1 \pm 2 \sqrt{5}=0$
11) Find the equation of the circle passing through $(-1,0)$ and touching $x+y-7=0$ at $(3,4)$

Sol.
Let $C(a, b)$ be the centre of the circle $A(-1,0)$ and $P(3,4)$
Equation of the tangent is $x+y-7=0$

Now $\mathrm{CA}=\mathrm{CP}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CP}^{2}$
$\Rightarrow(a+1)^{2}+b^{2}=(a-3)^{2}+(b-4)^{2}$
$\Rightarrow 8 \mathrm{a}+8 \mathrm{~b}-24=0 \Rightarrow \mathrm{a}+\mathrm{b}-3=0$
Line CP is perpendicular to tangent (1)
\therefore Product of their slopes $=-1$
$\left(\frac{b-4}{a-3}\right)(-1)=-1 \Rightarrow \mathrm{a}-\mathrm{b}+1=0$
Solving (2) and (3), $a=1$ and $b=2$.
Centre $\mathrm{C}=(1,2)$
radius $\mathrm{r}=\mathrm{CA}=\sqrt{(1+1)^{2}+2^{2}}=\sqrt{8}$
Equation of the circle is $(x-1)^{2}+(y-2)^{2}=8$

$$
\text { i.e., } x^{2}+y^{2}-2 x-4 y-3=0
$$

12) Find the equations of the circles passing through (1, -1)and touching the lines $4 x+3 y+5=0$ and $3 x-4 y-10=0$
Sol. Suppose equation of the circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$
\perp From $(-\mathrm{g},-\mathrm{f})$ to the line is equal to the radius of the circle

$$
\begin{aligned}
& \left|\frac{-4 g-3 f+5}{\mathbf{5}}\right|_{=\mid}\left|\frac{-3 g+4 f-10}{5}\right| \\
& -7 \mathrm{~g}+\mathrm{f}-5=0(\mathrm{or})-\mathrm{g}-7 \mathrm{f}+15=0 \\
& \mathrm{~F}=7 \mathrm{~g}+5 \\
& \text { Now }\left|\frac{-4 g-3 f+5}{5}\right|^{2}(-\mathrm{g}-1)^{2}+(-\mathrm{f}+1)^{2} \\
& \Rightarrow \frac{(-4 g-21 g-15+5)^{2}}{5} \\
& =(-\mathrm{g}-1)^{2}+(-7 \mathrm{~g}-5+1)^{2} \\
& \begin{array}{r}
\left((5 \mathrm{~g}+2)^{2} \mathrm{~g}^{2}+1+2 \mathrm{~g}+16+49\right.
\end{array} \quad=\mathrm{g}^{2}+56 \mathrm{~g}
\end{aligned}
$$

Solving, we get

$$
25 \mathrm{~g}^{2}+38 \mathrm{~g}+13=0
$$

$\mathrm{g}=-1, \frac{-26}{50}$
If $\mathrm{g}=-1 ; \mathrm{f}=-2$
Circle is passing through $(1,-1)$
$\therefore x^{2}+y^{2}-2 x-4 y-4=0$
Required equation of circle is $x^{2}+y^{2}-2 x-4 y-4=0$
13. Show that $x+y+1=0$ touches the circle $x^{2}+y^{2}-3 x+7 y+14=0$ and find its point of contact.

Sol.

$S=x^{2}+y^{2}-3 x+7 y+14=0$
Centre (3/2,-7/2)
Radius $=\frac{1}{\sqrt{2}}$
Perpendicular distance from centre to the line $\mathbf{x}+\mathbf{y}+\mathbf{1}=\mathbf{0} \cdots-\cdots--(\mathbf{1})$ is $\frac{\left|\frac{3}{2}-\frac{7}{2}+1\right|}{\sqrt{1+1}}=\frac{1}{\sqrt{2}}=$ radius of the circle.
\therefore Given line touches the given circle.

Let $\left(\mathrm{x}_{1,}, \mathrm{y}_{1}\right)$ be the point of contact. Then equation of the tangent is $\mathrm{S}_{1}=0$.
$\Rightarrow \mathrm{X}_{1} X+Y_{1} Y-\frac{3}{2}\left(X+X_{1}\right)+\frac{7}{2}\left(Y+Y_{1}\right)+14=0$
$\Rightarrow\left(x_{1}-\frac{3}{2}\right) x+\left(Y_{1}+\frac{7}{2}\right) y+\left(-\frac{3}{2} X_{1}+\frac{7}{2} Y_{1}+14\right)=0$
Equations (1) and (2) representing same line, therefore

$$
\begin{aligned}
& \frac{\left(x_{1}-\frac{3}{2}\right)}{1}=\frac{\left(Y_{1}+\frac{7}{2}\right)}{1}=\frac{\left(-\frac{3}{2} X_{1}+\frac{7}{2} Y_{1}+14\right)}{1} \\
& \Rightarrow x_{1}-y_{1}=5 \text { and } \frac{5}{2} x_{1}-\frac{7}{2} y_{1}=\frac{31}{2} \Rightarrow 5 x_{1}-7 y_{1}=31
\end{aligned}
$$

solving these equations $\mathrm{y}_{1}=-3$ and $\mathrm{x}_{1}=2$

Therefore the point of contact is $(2,-3)$

